Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
NSKToolBox/postSpikeFieldAnalysis_old.m
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
316 lines (273 sloc)
12.9 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [fieldPar,h]=postSpikeFieldAnalysis(avgWF,ch,Fs,preSpikeMs,neuronNames,En,varargin) | |
% PostSpikeFieldAnalysis(avgWF,ch,Fs,preSpikeMs,neuronNames,En,varargin) | |
% Function purpose : Calculate distribution of post spike fields (PSF) | |
% | |
% Function recives : avgWF - average spike STAs over all electrodes in ch [Double [neurons x ch x samples] | |
% ch - the channel numbers of the channels in avgWFWaveform [NChannels,Time] - the raw voltage samples of all channels | |
% Fs - sampling frequency of the WFs | |
% preSpikeMs - pre spike time in avgWF | |
% neuronNames - names of neurons [2 x n], [channel numbers ; neuron number] | |
% En - electrode layout | |
% varargin ('property name','property value') | |
% | |
% Function give back : par - a structure of output parameters | |
% .classIE - I/E marker (I=2, E=3) | |
% h - a structure of handles from generated plots | |
% | |
% Last updated : 14/12/14 | |
%help, avgWF [neurons x ch x samples] | |
%% default variables | |
electrodePitch=100; | |
distanceForIEFieldCheck=190; | |
postSpikeIntegralStartMs=5; | |
postSpikeIntegralEndMs=40; | |
preSpikePeakMs=2; | |
postSpike0CrossLimMs=20; | |
classIEThreshMs=2; | |
medianFilterLengthMs=7; | |
PSFMethod='max';%'integral','max','extrapInt' | |
fieldPositionMethod='interpolatedMaxima';%'maxima','interpolatedMaxima','COM' | |
preProcessing='medianFilter'; %'none' | |
removeEdges=false; | |
dAngle4Plot=30; | |
maxFields4Plot=375; | |
plotAllFields=false; | |
polarPlot=true; | |
plotVectorsOnElectrodes=true; | |
plotNeuronNumbersAllFields=false; | |
normalizeColorCode=true; | |
extrapolateMaxima=true; | |
markerSizeAllFields=15; | |
XYSpikeCorrection=[0;0]; % [2 x nNeurons] correction to position based on spike shape [um] | |
classIE=true; %[true,false,vec]if false, all assumed inhibitory, can also be a vector with excitatory (2) and inhibitory (3) classifications (or 0 for require classification) | |
%% Output list of default variables | |
%print out default arguments and values if no inputs are given | |
if nargin==0 | |
defaultArguments=who; | |
for i=1:numel(defaultArguments) | |
eval(['defaultArgumentValue=' defaultArguments{i} ';']); | |
disp([defaultArguments{i} ' = ' num2str(defaultArgumentValue)]); | |
end | |
return; | |
end | |
%% Collects all input variables | |
for i=1:2:length(varargin) | |
eval([varargin{i} '=' 'varargin{i+1};']) | |
end | |
%% Main code - general calculations | |
postSpikeIntegralStartSamples=postSpikeIntegralStartMs*Fs/1000; | |
postSpikeIntegralEndSamples=postSpikeIntegralEndMs*Fs/1000; | |
preSpikeSamples=preSpikeMs*Fs/1000; | |
preSpikePeakSamples=preSpikePeakMs*Fs/1000; | |
medianFilterSamples=round(medianFilterLengthMs*Fs/1000/2)*2+1; %has to be an odd number | |
postSpike0CrossLimSamples=postSpike0CrossLimMs*Fs/1000; | |
pRelevantSamples=(preSpikeSamples+postSpikeIntegralStartSamples):(preSpikeSamples+postSpikeIntegralEndSamples); | |
[nNeurons,nCh,nSamples]=size(avgWF); | |
%Build inverse map between electrode and location | |
[meshX,meshY]=meshgrid(1:size(En,1),1:size(En,2)); | |
Xc(En(~isnan(En)))=meshX(~isnan(En))*electrodePitch; | |
Yc(En(~isnan(En)))=meshY(~isnan(En))*electrodePitch; | |
%% pre-process the input waveforms | |
switch preProcessing | |
case 'medianFilter' | |
fprintf('Calculating median filter on neuron: '); | |
for i=1:nNeurons | |
fprintf('%d,',i); | |
for j=1:nCh | |
avgWF(i,j,:) = fastmedfilt1d(squeeze(avgWF(i,j,:))',medianFilterSamples); | |
end | |
end | |
otherwise | |
end | |
%% inhibitory excitatory classification | |
if numel(classIE)==1 | |
if classIE==0 %do not classify, but set all to be inhibitory | |
classIE=3*ones(1,nNeurons); | |
elseif classIE==1 %classify all | |
classIE=ones(1,nNeurons); | |
end %nothing happens for the case of one neuron in recording that was already clasified in the input | |
end | |
toClassify=(classIE==1); | |
if any(toClassify) | |
preBaseline=median(avgWF(:,:,1:(preSpikeSamples-preSpikePeakSamples)),3); | |
normWF=bsxfun(@minus,avgWF,preBaseline); %baseline substruction | |
tmp = num2cell( cat(3, normWF(:,:,(preSpikeSamples+1):(preSpikeSamples+postSpike0CrossLimSamples)) > 0 , true([nNeurons, nCh]) ) , 3); %transform to cell mat and add one at the end of every vector | |
firstNon0Idx = cell2mat(cellfun(@(x) find(x, 1, 'first'), tmp,'UniformOutput',0)); %find first threshold crossing for every trace | |
firstNon0Idx(firstNon0Idx==(postSpike0CrossLimSamples+1))=0; %set to zero (meaning no crossing found) all the traces with crossings in the last artificially added bin | |
for i=1:nNeurons %go over neurons and collect the closest N channel around the spike peak for determining I or E | |
pRelevantElectrodes=find(sqrt((Xc-Xc(neuronNames(1,i))).^2+(Yc-Yc(neuronNames(1,i))).^2)<=distanceForIEFieldCheck); | |
fieldPar.IEScore(i)=mean(firstNon0Idx(i,pRelevantElectrodes)); | |
end | |
fieldPar.IEScore=fieldPar.IEScore/Fs*1000; %convert from samples to ms | |
pExcit=find(fieldPar.IEScore>=classIEThreshMs); | |
pInhib=find(fieldPar.IEScore<classIEThreshMs); | |
fieldPar.classIE(pExcit)=3; | |
fieldPar.classIE(pInhib)=2; | |
fieldPar.classIE(~toClassify)=classIE(~toClassify); %give the neurons that should not be classified their original classification | |
%!!!! check if to give the classified cells a constant firstNon0Idx value instead of calculating it | |
end | |
%% calculate post spike fields | |
fprintf('\nCalculating PSDs...'); | |
switch PSFMethod | |
case 'max' | |
%peak voltage normalized by pre spike peak | |
val(pInhib,:)=max(avgWF(pInhib,:,pRelevantSamples),[],3)-mean(avgWF(pInhib,:,1:(preSpikeSamples-preSpikePeakSamples)),3); | |
val(pExcit,:)=-min(avgWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)),[],3)-mean(avgWF(pExcit,:,1:(preSpikeSamples-preSpikePeakSamples)),3); | |
case 'integral' | |
%mean voltage normalized by pre spike mean | |
val(pInhib,:)=mean(avgWF(pInhib,:,pRelevantSamples),3)-mean(avgWF(pInhib,:,1:(preSpikeSamples-preSpikePeakSamples)),3); %for inhibitory cells | |
%for inhibitory cells - in places where no threshold crossing occured, a NaN is placed | |
postSpike0CrossLimSamplesCell=mat2cell(firstNon0Idx(pExcit,:),ones(1,numel(pExcit)),ones(1,nCh)); | |
tmp = num2cell( normWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)) , 3); | |
val(pExcit,:)= -cellfun(@(x,y) mean(x(1:y)), tmp, postSpike0CrossLimSamplesCell); %baseline alreadys substructed for normWF | |
%tmp = num2cell( avgWF(pExcit,:,(1+preSpikeSamples):(preSpikeSamples+postSpike0CrossLimSamples)) , 3); | |
%val(pExcit,:)= cellfun(@(x,y) mean(x(1:y)), tmp, postSpike0CrossLimSamplesCell)-mean(avgWF(pExcit,:,1:(preSpikeSamples-preSpikePeakSamples)),3); | |
case 'interpInt' %!!!! Has to be rewritten to support separation between excitatory and inhibitory | |
%angle and magnitude of integral voltage maximium divided by the average profile before spike | |
sideSamples=[1:(preSpikeSamples-preSpikePeakSamples) postSpikeIntegralEndSamples:nSamples]; | |
val=zeros(nNeurons,nCh); | |
for i=1:nNeurons | |
vq = interp1(sideSamples,squeeze(avgWF(i,:,sideSamples))',pRelevantSamples); %calculate the linear line between the two noise ends (before and after PSD) | |
val(i,:)=mean(squeeze(avgWF(i,:,pRelevantSamples))-vq',2); | |
%{ | |
h=axes;[hPlot]=activityTracePhysicalSpacePlot(h,1:120,squeeze(avgWF(i,:,:)),En);hold on; | |
test=squeeze(avgWF(i,:,:));test(:,pRelevantSamples)=vq'; | |
[hPlot]=activityTracePhysicalSpacePlot(h,1:120,test,En); | |
%} | |
end | |
end | |
makeGaussianFit=0; | |
if makeGaussianFit | |
gaussFit.mX=zeros(1,nNeurons); | |
gaussFit.mY=zeros(1,nNeurons); | |
gaussFit.sX=zeros(1,nNeurons); | |
gaussFit.sY=zeros(1,nNeurons); | |
gaussFit.A=zeros(1,nNeurons); | |
gaussFit.Theta=zeros(1,nNeurons); | |
for i=1:nNeurons | |
[fitresult] = fmgaussfit(Xc,Yc,val(i,:)); %[amp, ang, sx, sy, xo, yo, zo] | |
gaussFit.A(i)=fitresult(1); | |
gaussFit.Theta(i)=fitresult(2); | |
gaussFit.sX(i)=fitresult(3); | |
gaussFit.sY(i)=fitresult(4); | |
gaussFit.mX(i)=fitresult(5); | |
gaussFit.mY(i)=fitresult(6); | |
end | |
end | |
if removeEdges | |
[~,pMax]=max(val,[],2); | |
[m,n]=size(En); | |
fieldPar.edgeNeurons=zeros(1,nNeurons); | |
for i=1:nNeurons | |
[pX,pY]=find(En==neuronNames(1,i)); | |
if pX==1 || pX==n || pY==1 || pY==m | |
fieldPar.edgeNeurons(i)=1; | |
else | |
surroundingSquare=En(pY-1:pY+1,pX-1:pX+1); | |
if any(any(isnan(surroundingSquare))) | |
fieldPar.edgeNeurons(i)=2; | |
end | |
end | |
end | |
else | |
fieldPar.edgeNeurons=zeros(1,nNeurons); %set all neuron as ones not at the edge | |
end | |
fprintf('\nCalculating field peak...'); | |
switch fieldPositionMethod | |
case 'interpolatedMaxima' | |
[m,n]=size(En); | |
Z=nan([m,n]); | |
%Z=zeros([m,n]); | |
fieldCoord=zeros(2,nNeurons); | |
for i=1:nNeurons | |
Z(sub2ind([m,n],Xc(ch)/electrodePitch,Yc(ch)/electrodePitch))=val(i,:); | |
[fieldCoord(:,i)] = peakfit2d(Z); | |
end | |
Xfield=fieldCoord(1,:)*electrodePitch; | |
Yfield=fieldCoord(2,:)*electrodePitch; | |
case 'COM' %biased by array edges | |
Xfield=(sum(bsxfun(@times,val,Xc),2)./sum(val,2))'; | |
Yfield=(sum(bsxfun(@times,val,Yc),2)./sum(val,2))'; | |
case 'maxima' | |
[PSF,pChPSF]=max(val,[],2);%location of field integral maxima | |
Xfield=Xc(ch(pChPSF)); | |
Yfield=Yc(ch(pChPSF)); | |
end | |
%check that dimensions of spike position correction are correct | |
if size(XYSpikeCorrection,2)==1 && size(XYSpikeCorrection,1)~=2 | |
error('XYSpikeCorrection was not entered in the correct format'); | |
end | |
X=[Xc(neuronNames(1,:))+XYSpikeCorrection(1,:);Xfield]; | |
Y=[Yc(neuronNames(1,:))+XYSpikeCorrection(2,:);Yfield]; | |
mag=sqrt((X(2,:)-X(1,:)).^2 + (Y(2,:)-Y(1,:)).^2); | |
angle=atan2(Y(2,:)-Y(1,:),X(2,:)-X(1,:)); | |
pPosMagI=intersect(find(mag>0 & fieldPar.edgeNeurons==0),pInhib); | |
pPosMagE=intersect(find(mag>0 & fieldPar.edgeNeurons==0),pExcit); | |
%% Plotting results | |
if polarPlot | |
%prepare for plotting | |
f=figure('position',[100 100 500 500]); | |
P = panel(f); | |
P.pack(2,2); | |
P.margin=8; | |
angleBins=(dAngle4Plot/360/2*pi):(dAngle4Plot/360*pi):(pi*2); | |
maximalMag=median(mag([pPosMagI pPosMagE]))+6*mad(mag([pPosMagI pPosMagE]),1); | |
%inhibitory | |
h.polar(1,1)=P(1, 1).select(); | |
hRose=rose(angle(pPosMagI),angleBins); | |
XdataRose = get(hRose,'Xdata'); | |
YdataRose = get(hRose,'Ydata'); | |
hPatch=patch(XdataRose,YdataRose,[0.8 0.2 0.2]); | |
set(gca,'color','k'); | |
%compass(U,V) | |
h.polar(1,2)=P(1, 2).select(); | |
polar(0,maximalMag,'-k');hold on; %set scale for polar plot | |
polar(angle(pPosMagI),mag(pPosMagI),'.r'); | |
%excitatory | |
h.polar(2,1)=P(2, 1).select(); | |
hRose=rose(angle(pPosMagE),angleBins); | |
XdataRose = get(hRose,'Xdata'); | |
YdataRose = get(hRose,'Ydata'); | |
hPatch=patch(XdataRose,YdataRose,[0.2 0.2 0.8]); | |
set(gca,'color','k'); | |
h.polar(2,2)=P(2, 2).select(); | |
polar(0,maximalMag,'-k');hold on; %set scale for polar plot | |
polar(angle(pPosMagE),mag(pPosMagE),'.'); | |
end | |
%DSI=(prefered - (prefered+pi))/(prefered + (prefered+pi)) | |
if plotVectorsOnElectrodes | |
f=figure('position',[100 100 700 700]); | |
h.hVec=axes; | |
%hQ=quiver(Xc(neuronNames(1,:)),Yc(neuronNames(1,:)),intdX,intdY,'filled','lineWidth',2,'MaxHeadSize',0.1,'color','k','MarkerSize',2,'MarkerFaceColor','k'); | |
[tmpX,tmpY]=pol2cart(angle,50); | |
%hQ=arrow3([X(1,:);Y(1,:)]',[X(1,:)+tmpX;Y(1,:)+tmpY]','k1',0.5); | |
%set(hQ,'AutoScale','off'); | |
h.hArrowI=arrow3([X(1,pPosMagI);Y(1,pPosMagI)]',[X(1,pPosMagI)+tmpX(pPosMagI);Y(1,pPosMagI)+tmpY(pPosMagI)]','r2',0.5,1);hold on; | |
h.hArrowE=arrow3([X(1,pPosMagE);Y(1,pPosMagE)]',[X(1,pPosMagE)+tmpX(pPosMagE);Y(1,pPosMagE)+tmpY(pPosMagE)]','b2',0.5,1); | |
xlabel('X [\mum]','FontSize',14); | |
ylabel('Y [\mum]','FontSize',14); | |
end | |
if plotAllFields | |
if normalizeColorCode | |
Ilim=0; | |
else | |
Ilim=[min(val(:)) max(val(:))]; | |
end | |
n=ceil(sqrt(min(maxFields4Plot,nNeurons)/3/5));%define images in a 3 x 5 ratio | |
xPlots=n*5; | |
yPlots=n*3; | |
nPlotPerPage=xPlots*yPlots; | |
f=figure; | |
P = panel(f); | |
P.pack(yPlots,xPlots); | |
P.margin=0.001; | |
for i=1:nNeurons | |
h.hAllFieldAxes(i)=P(ceil(i/xPlots),i-(ceil(i/xPlots)-1)*xPlots).select(); | |
IntensityPhysicalSpacePlot(1:120,val(i,:),En,'plotElectrodeNumbers',0,'plotGridLines',0,'plotColorBar',0,'markerSize',markerSizeAllFields,'h',h.hAllFieldAxes(i),'Ilim',Ilim); | |
text(Xc(neuronNames(1,i))/electrodePitch-0.5,Yc(neuronNames(1,i))/electrodePitch-0.5,'o','horizontalAlignment','center','fontsize',6); | |
if plotNeuronNumbersAllFields | |
text(0,0,num2str(i),'horizontalAlignment','left','verticalAlignment','bottom','fontsize',6); | |
end | |
line( [Xc(neuronNames(1,i)) Xfield(i)]/electrodePitch - 0.5 , [Yc(neuronNames(1,i)) Yfield(i)]/electrodePitch - 0.5 ,'color','k'); | |
end | |
end | |