This repository has been archived by the owner. It is now read-only.
Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
gridSorter/projectionMerge.m
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
131 lines (110 sloc)
4.98 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function [gc,f]=projectionMerge(spikeFeatures,initIdx,varargin) | |
%merge clusters in a group that have to be merge based on the residuals between spikes and templates. | |
%synthax : [gc,f]=projectionMerge(spikeFeatures,initIdx,varargin) | |
%input: | |
% - spikeFeatures : spike features () | |
% - initIdx : the clusters index of every spike | |
% vararin - 'property','value' | |
%output : | |
% - gc: a binary matrix with ones indicating a necessary merge | |
% - f: a figure handle for the generated plot | |
%default variables | |
obj.clusteringMinNSpikesCluster=10; | |
obj.clusteringSTDMergeFac=2; | |
obj.clusteringMergeThreshold=0.18; | |
obj.clusteringPlotProjection=1; | |
%Collects all options | |
for i=1:2:length(varargin) | |
eval([varargin{i} '=' 'varargin{i+1};']) | |
end | |
%find robust cluster centers | |
nClustersIn=numel(unique(initIdx)); | |
for k=1:nClustersIn | |
cent(k,:)=median(spikeFeatures(initIdx==k,:)); | |
end | |
if nClustersIn<=1 | |
gc=1; | |
f=[]; | |
return; | |
end | |
if obj.clusteringPlotProjection | |
f=figure('Position',[50 50 1400 900]); | |
else | |
f=[]; | |
end | |
D=zeros(nClustersIn); | |
groups=mat2cell(1:nClustersIn,1,ones(1,nClustersIn)); | |
gc=1:nClustersIn; % a group is assigned to every cluster | |
for k=2:nClustersIn | |
for m=1:k-1 | |
v=(cent(k,:)-cent(m,:)); | |
p1=projectionND(v,spikeFeatures(initIdx==k,:)); | |
p2=projectionND(v,spikeFeatures(initIdx==m,:)); | |
pCent=projectionND(v,[cent(k,:);cent(m,:)]);%for plotting purpuses | |
if numel(p1)<obj.clusteringMinNSpikesCluster || numel(p2)<obj.clusteringMinNSpikesCluster | |
D(k,m)=0; | |
std_p1=[]; | |
std_p2=[]; | |
v=[]; | |
else | |
mp1=median(p1); | |
mp2=median(p2); | |
std_p1=median(abs( p1-mp1 ),2) / 0.6745; | |
std_p2=median(abs( p2-mp2 ),2) / 0.6745; | |
%std_p1=std(p1); | |
%std_p2=std(p1); | |
nV=numel(p1)+numel(p2); | |
s=sign(mp1-mp2); | |
%edges=[(mp2-std_p2*s):(s*10/nV*abs(mp1-mp2)):(mp1+std_p1*s)]; | |
edges=(mp2-std_p2*s):(((mp1+std_p1*s)-(mp2-std_p2*s))/(round(log(nV))/10)/20):(mp1+std_p1*s); | |
%eges must be divided in a way that preserve the extreme edges on both sides | |
n1=histc(p1,edges); | |
n2=histc(p2,edges); | |
n=n2(1:end-1)-n1(1:end-1); %eliminate edges that sum over | |
%edges=edges(1:end-1); | |
firstCross=find(n(2:end)<=0 & n(1:end-1)>0,1,'first')+1; | |
secondCross=find(n(1:end-1)>=0 & n(2:end)<0,1,'last'); | |
intersection=(edges(firstCross) + edges(secondCross))/2; | |
%D(k,m)=max(sum(p2>(intersection-std_p2/obj.clusteringSTDMergeFac))/sum(n2),sum(p1<(intersection+std_p1/obj.clusteringSTDMergeFac))/sum(n1)); | |
%D(k,m)=sum([p1 p2]<(intersection+std_p2/obj.clusteringSTDMergeFac) & [p1 p2]>(intersection-std_p1/obj.clusteringSTDMergeFac))/sum([n1 n2]); | |
if isempty(intersection) %one cluster is contained within the other | |
D(k,m)=1; | |
else | |
D(k,m)=( sum(p2>(intersection-std_p2/obj.clusteringSTDMergeFac)) + sum(p1<(intersection+std_p1/obj.clusteringSTDMergeFac)) ) /sum([n1 n2] ); | |
end | |
%figure;plot([p1 p2]);hold on;plot(ones(1,numel(edges)),edges,'or');line([1 sum([n1 n2])],[intersection intersection],'color','k','LineWidth',2); | |
end | |
%D(k,m)=(sqrt(sum(v.^2))/sqrt(std_p1^2 + std_p2.^2)); | |
%D(k,m)=(sqrt(sum(v.^2))/(std_p + std_p2); | |
%D(k,m)=(1+skewness([p1 p2])^2)/(kurtosis([p1 p2])+3); | |
%D(k,m) = kstest2(p1,p2,[],0.0.05); | |
if D(k,m)>obj.clusteringMergeThreshold | |
%find in which group k is and add all is group to m | |
groupOfK=gc(k); | |
groupOfM=gc(m); | |
gc(gc==groupOfK)=groupOfM; | |
end | |
if obj.clusteringPlotProjection | |
subaxis(nClustersIn,nClustersIn,(m-1)*nClustersIn+k,'Spacing', 0.001, 'Padding', 0.001, 'Margin', 0.001); | |
edges=[min([p1 p2]):((max([p1 p2])-min([p1 p2]))/30):max([p1 p2])]; %edges different from before | |
n1=hist(p1,edges); | |
n2=hist(p2,edges); | |
bar(edges,[n1;n2]',1,'stacked'); | |
axis tight; | |
set(gca,'XTickLabel',[],'YTickLabel',[]); | |
subaxis(nClustersIn,nClustersIn,(k-1)*nClustersIn+m,'Spacing', 0.001, 'Padding', 0.001, 'Margin', 0.001); | |
strTxt={['F=' num2str(D(k,m))],['s1=' num2str(std_p1)],['s2=' num2str(std_p2)],['D=' num2str(sqrt(sum(v.^2)))]}; | |
text(0,0.5,strTxt); | |
axis off; | |
end | |
end | |
end | |
function p=projectionND(v,d) | |
%Calculate projection between a vector and a set of dots in multi dimensional space | |
%v = [1 x N] - vector | |
%d = [M X N] - M dot locations | |
%calculate the cos angle between vector and dots | |
cosAng=v*d'./(sqrt(sum(v.^2))*sqrt(sum(d'.^2))); | |
p=cosAng.*sqrt(sum(d'.^2)); | |
end | |
end |