diff --git a/Baudin.png b/Baudin.png
new file mode 100644
index 0000000..1718ee3
Binary files /dev/null and b/Baudin.png differ
diff --git a/MRA.png b/MRA.png
new file mode 100644
index 0000000..3e97cd7
Binary files /dev/null and b/MRA.png differ
diff --git a/coffee_is_essential.jpg b/coffee_is_essential.jpg
new file mode 100644
index 0000000..7b9b4bc
Binary files /dev/null and b/coffee_is_essential.jpg differ
diff --git a/fft_example.R b/fft_example.R
index 470e005..11e3164 100644
--- a/fft_example.R
+++ b/fft_example.R
@@ -1,15 +1,18 @@
-N <- 1024*128
-w1 <- 200
-w2 <- 543
+N <- 1024
+w1 <- 1
+w2 <- 1
a1 <- 1
-a2 <- 2
+a2 <- 0
noise <- 0
-x <- seq(from=0, to=5,length.out = N)
+x <- seq(from=0, to=5.5,length.out = N)
Dt <- (max(x) - min(x)) / N
Dw <- 1 / (N * Dt)
y <- a1*sin(w1*x*2*pi) + a2*cos(w2*x*2*pi) + rnorm(N, 0, noise)
-plot(x,y,type="l")
Y <- fft(y)/N
MY <- 2*Mod(Y)
freqs <- seq(from=0, to=N-1) * Dw
-plot(freqs,MY^2, type="l", xlim=c(0,1000))
+
+par(mfrow = c(2,1))
+plot(x,y,type="l")
+plot(freqs,MY^2, type="b", xlim=c(0,10))
+par(mfrow = c(1,1))
\ No newline at end of file
diff --git a/kprl-example.png b/kprl-example.png
new file mode 100644
index 0000000..e56261f
Binary files /dev/null and b/kprl-example.png differ
diff --git a/main-figure/unnamed-chunk-1-1.png b/main-figure/unnamed-chunk-1-1.png
index f3b7069..48d512a 100644
Binary files a/main-figure/unnamed-chunk-1-1.png and b/main-figure/unnamed-chunk-1-1.png differ
diff --git a/main-figure/unnamed-chunk-10-1.png b/main-figure/unnamed-chunk-10-1.png
index 9aa8a70..260f099 100644
Binary files a/main-figure/unnamed-chunk-10-1.png and b/main-figure/unnamed-chunk-10-1.png differ
diff --git a/main-figure/unnamed-chunk-12-1.png b/main-figure/unnamed-chunk-12-1.png
index fbf70df..2206f39 100644
Binary files a/main-figure/unnamed-chunk-12-1.png and b/main-figure/unnamed-chunk-12-1.png differ
diff --git a/main-figure/unnamed-chunk-2-1.png b/main-figure/unnamed-chunk-2-1.png
index d7750bb..1f41ed7 100644
Binary files a/main-figure/unnamed-chunk-2-1.png and b/main-figure/unnamed-chunk-2-1.png differ
diff --git a/main-figure/unnamed-chunk-5-1.png b/main-figure/unnamed-chunk-5-1.png
index 62ef7c7..d0b828c 100644
Binary files a/main-figure/unnamed-chunk-5-1.png and b/main-figure/unnamed-chunk-5-1.png differ
diff --git a/main-figure/unnamed-chunk-6-1.png b/main-figure/unnamed-chunk-6-1.png
index 3e36175..02b4ada 100644
Binary files a/main-figure/unnamed-chunk-6-1.png and b/main-figure/unnamed-chunk-6-1.png differ
diff --git a/main-figure/unnamed-chunk-7-1.png b/main-figure/unnamed-chunk-7-1.png
index f5978de..dc5dec4 100644
Binary files a/main-figure/unnamed-chunk-7-1.png and b/main-figure/unnamed-chunk-7-1.png differ
diff --git a/main-figure/unnamed-chunk-8-1.png b/main-figure/unnamed-chunk-8-1.png
index 051ac33..142120d 100644
Binary files a/main-figure/unnamed-chunk-8-1.png and b/main-figure/unnamed-chunk-8-1.png differ
diff --git a/main-figure/unnamed-chunk-9-1.png b/main-figure/unnamed-chunk-9-1.png
index 4a6348c..9758d08 100644
Binary files a/main-figure/unnamed-chunk-9-1.png and b/main-figure/unnamed-chunk-9-1.png differ
diff --git a/main.Rpres b/main.Rpres
index 8130890..eeb4de0 100644
--- a/main.Rpres
+++ b/main.Rpres
@@ -29,16 +29,17 @@ $$f(x) = a_0 + a_1 e^{i w_1 x} + a_2 e^{i w_2 x} + \cdots$$
Fourier representations
========================================================
+incremental: true
The Fourier representation looks different depending on the domain of the function $f:A\rightarrow\mathbb{C}$, with $A$ being:
$\mathbb{R}$: Real numbers
-$\mathbb{Z}$: Integer numbers
-
$\mathbb{T}_p$: Circle of length $p$
+$\mathbb{Z}$: Integer numbers
+
$\mathbb{P}_N$: Polygon of $N$ sides
Continuous Fourier Transform (CFT)
@@ -55,32 +56,32 @@ $$
\end{aligned}
$$
-Discrete Time Fourier Transform (DTFT)
+Fourier Series
========================================================
-For functions defined on the integers $\mathbb{Z}$.
+For functions defined on the integers on an interval $\mathbb{T}_p=[0,p)$.
-$\phi:\mathbb{Z}\rightarrow\mathbb{C}$
+$g:\mathbb{T}_p\rightarrow\mathbb{C}$ with $g(p) = g(0)$
$$
\begin{aligned}
- \phi(n) &= \int_{0}^p \Phi(s) e^{2\pi isn/p} ds \\
- \Phi(s) &= \frac{1}{p}\sum_{n=-\infty}^\infty \phi(n) e^{-2\pi isn/p} \\
+ g(x) &= \sum_{k=-\infty}^\infty G(k) e^{2\pi ikx/p} \\
+ G(k) &= \frac{1}{p}\int_{0}^p g(x) e^{-2\pi ikx/p} dx \\
\end{aligned}
$$
-Fourier Series
+Discrete Time Fourier Transform (DTFT)
========================================================
-For functions defined on the integers on an interval $\mathbb{T}_p=[0,p)$.
+For functions defined on the integers $\mathbb{Z}$.
-$g:\mathbb{T}_p\rightarrow\mathbb{C}$ with $g(p) = g(0)$
+$\phi:\mathbb{Z}\rightarrow\mathbb{C}$
$$
\begin{aligned}
- g(x) &= \sum_{k=-\infty}^\infty G(k) e^{2\pi ikx/p} \\
- G(k) &= \frac{1}{p}\int_{0}^p g(x) e^{-2\pi ikx/p} dx \\
+ \phi(n) &= \int_{0}^p \Phi(s) e^{2\pi isn/p} ds \\
+ \Phi(s) &= \frac{1}{p}\sum_{n=-\infty}^\infty \phi(n) e^{-2\pi isn/p} \\
\end{aligned}
$$
@@ -106,15 +107,16 @@ $$
\begin{aligned}
\int_{-\infty}^\infty f(x)\overline{g(x)}dx
&= \int_{-\infty}^\infty F(s)\overline{G(x)}ds,\ \ \mathbb{R} \\
- \sum_{n=-\infty}^\infty f(n)\overline{g(n)}
- &= p \int_{0}^p F(s)\overline{G(x)}ds,\ \ \mathbb{Z} \\
\int_{0}^p f(x)\overline{g(x)}dx
&= p \sum_{k=-\infty}^\infty F(k)\overline{G(k)},\ \ \mathbb{T}_p \\
+ \sum_{n=-\infty}^\infty f(n)\overline{g(n)}
+ &= p \int_{0}^p F(s)\overline{G(x)}ds,\ \ \mathbb{Z} \\
\sum_{n=0}^{N-1} f(n)\overline{g(n)}
&= N \sum_{k=0}^{N-1} F(k)\overline{G(k)},\ \ \mathbb{P}_N
\end{aligned}
$$
+
Discretization and periodization
========================================================
@@ -126,6 +128,7 @@ From a function $f$, under some conditions, we can construct a periodic functio
$$g(x) = \sum_{m=-\infty}^\infty f(x-mp) $$
+
Poisson relations
========================================================
incremental: true
@@ -149,6 +152,7 @@ Poisson cube
Nyquist-Shannon sampling theorem
========================================================
+incremental: true
Assume that $f(t)$ is *$\sigma$-bandlimited*
@@ -166,6 +170,7 @@ $$\sigma < \frac{1}{2\Delta t} \equiv \omega_{Nyq}$$
Example: single sinusoid
========================================================
+incremental:true
$$
\begin{aligned}
@@ -189,12 +194,12 @@ Example: single sinusoid
========================================================
```{r, echo=FALSE}
-N <- 1024*128
-w1 <- 10
+N <- 1024
+w1 <- 1
a1 <- 1
-x <- seq(from=0, to=4/w1,length.out = N)
+x <- seq(from=0, to=5.3,length.out = N)
y <- a1*sin(w1*x*2*pi)
-plot(x*w1,y/a1,type="b",
+plot(x*w1,y/a1,type="l",
xlab = expression(paste("w"[1],"t")),
ylab = expression("f(t)/a"[1]))
```
@@ -247,7 +252,7 @@ Example: Multiple sinusoids with noise
========================================================
```{r, echo=FALSE}
-N <- 1024*128
+N <- 1024*4
w1 <- 10
w2 <- 1
a1 <- 2
@@ -286,7 +291,7 @@ Example: Time-varying signal
========================================================
```{r, echo=FALSE}
-N <- 1024*128
+N <- 1024*4
w1 <- 5
a1 <- 1
mu <- 5
@@ -331,7 +336,7 @@ Example: Time-varying signal 2
========================================================
```{r, echo=FALSE}
-N <- 1024*256
+N <- 1024*4
w1 <- 5
w2 <- 0.7
w3 <- 1
@@ -427,6 +432,7 @@ text(1,0.8, labels = "a=1.2", col="blue")
Definition of wavelet transforms
========================================================
+incremental: true
Given $f\in L^2(\mathbb{R})$, we define its *continuous wavelet transform* with respect to the wavelet $\psi$ as
@@ -440,6 +446,7 @@ $$ 0 < C_{\psi}\equiv\int_{-\infty}^\infty
Example: Time-varying signal CWT
========================================================
+incremental: true
```{r, echo=FALSE}
N <- 1024*256
@@ -482,6 +489,7 @@ Mexican hat CWT
Example: Time-varying signal CWT 2
========================================================
+incremental: true
Haar CWT
@@ -496,6 +504,7 @@ Morlet CWT
Example: Time-varying signal CWT 3
========================================================
+incremental: true
Morlet
@@ -524,9 +533,16 @@ $$
Inverse of a wavelet transform
========================================================
+incremental: true
$$f(t) = \frac{1}{C_\psi}\int_{-\infty}^\infty\int_{-\infty}^\infty \mathcal{W}_\psi[f](a,b) \psi_{a,b}(t) \frac{da\ db}{a^2}$$
+only when
+
+$$ 0 < C_{\psi}\equiv\int_{-\infty}^\infty
+\frac{\left|\hat{\psi}(\omega)\right|^2}{\left|\omega\right|} d\omega
+<\infty $$
+
Discrete wavelet transform
========================================================
@@ -543,20 +559,59 @@ $$\psi_{m,n}(t)=2^{-m/2} \psi \left( 2^{-m} t - n \right),\ \ \ n,m \in \mathbb{
When can we recover $f(t)$ from $\mathcal{W}_\psi[f](m,n)$ ?
-Discrete wavelet transform 2
+Orthonormal basis
========================================================
-When $\psi_{m,n}$ is complete in and orthonormal in $L^2(\mathbb{R})$:
+Find $\psi_{m,n}$ such that they form a complete and orthonormal basis in $L^2(\mathbb{R})$:
$$f(t) = \sum_{m,n=-\infty}^\infty \langle f,\psi_{m,n}\rangle\ \psi_{m,n}(t)$$
Multiresolution analysis (MRA)
========================================================
+incremental: true
+
+
+
+> *MRA is really an effective mathematical framework for hierarchical decomposition of an image (or signal) into components of different scales (or frequencies).*
+
+
+Example application
+========================================================
+
+**Time-frequency analysis of solar $p$-modes**
+
+*F. Baudin, A. Gabriel, D. Gibert (1994)*
+
+***
+
+
+
+
+Example application 2
+========================================================
+
+**Wavelets: a powerful tool for studying rotation, activity, and pulsation in Kepler and CoRoT stellar light curves**
+
+*J. P. Bravo, S. Roque, R. Estrela, I. C. Leão, and J. R. De Medeiros (2014)*
+
+***
+
+
+
+
+Thank you!
+========================================================
+
+
+
+***
-> MRA is really an effective mathematical framework for hierarchical decomposition of an image (or signal) into components of different scales (or frequencies).
+[https://github.molgen.mpg.de/saravia/wavelets-SAGE](https://github.molgen.mpg.de/saravia/wavelets-SAGE)
+saravia@mps.mpg.de
+ags3006@gmail.com
Orthogonality relations
========================================================
diff --git a/main.md b/main.md
index 27eb132..0c42fb6 100644
--- a/main.md
+++ b/main.md
@@ -29,16 +29,17 @@ $$f(x) = a_0 + a_1 e^{i w_1 x} + a_2 e^{i w_2 x} + \cdots$$
Fourier representations
========================================================
+incremental: true
The Fourier representation looks different depending on the domain of the function $f:A\rightarrow\mathbb{C}$, with $A$ being:
$\mathbb{R}$: Real numbers
-$\mathbb{Z}$: Integer numbers
-
$\mathbb{T}_p$: Circle of length $p$
+$\mathbb{Z}$: Integer numbers
+
$\mathbb{P}_N$: Polygon of $N$ sides
Continuous Fourier Transform (CFT)
@@ -55,32 +56,32 @@ $$
\end{aligned}
$$
-Discrete Time Fourier Transform (DTFT)
+Fourier Series
========================================================
-For functions defined on the integers $\mathbb{Z}$.
+For functions defined on the integers on an interval $\mathbb{T}_p=[0,p)$.
-$\phi:\mathbb{Z}\rightarrow\mathbb{C}$
+$g:\mathbb{T}_p\rightarrow\mathbb{C}$ with $g(p) = g(0)$
$$
\begin{aligned}
- \phi(n) &= \int_{0}^p \Phi(s) e^{2\pi isn/p} ds \\
- \Phi(s) &= \frac{1}{p}\sum_{n=-\infty}^\infty \phi(n) e^{-2\pi isn/p} \\
+ g(x) &= \sum_{k=-\infty}^\infty G(k) e^{2\pi ikx/p} \\
+ G(k) &= \frac{1}{p}\int_{0}^p g(x) e^{-2\pi ikx/p} dx \\
\end{aligned}
$$
-Fourier Series
+Discrete Time Fourier Transform (DTFT)
========================================================
-For functions defined on the integers on an interval $\mathbb{T}_p=[0,p)$.
+For functions defined on the integers $\mathbb{Z}$.
-$g:\mathbb{T}_p\rightarrow\mathbb{C}$ with $g(p) = g(0)$
+$\phi:\mathbb{Z}\rightarrow\mathbb{C}$
$$
\begin{aligned}
- g(x) &= \sum_{k=-\infty}^\infty G(k) e^{2\pi ikx/p} \\
- G(k) &= \frac{1}{p}\int_{0}^p g(x) e^{-2\pi ikx/p} dx \\
+ \phi(n) &= \int_{0}^p \Phi(s) e^{2\pi isn/p} ds \\
+ \Phi(s) &= \frac{1}{p}\sum_{n=-\infty}^\infty \phi(n) e^{-2\pi isn/p} \\
\end{aligned}
$$
@@ -106,15 +107,16 @@ $$
\begin{aligned}
\int_{-\infty}^\infty f(x)\overline{g(x)}dx
&= \int_{-\infty}^\infty F(s)\overline{G(x)}ds,\ \ \mathbb{R} \\
- \sum_{n=-\infty}^\infty f(n)\overline{g(n)}
- &= p \int_{0}^p F(s)\overline{G(x)}ds,\ \ \mathbb{Z} \\
\int_{0}^p f(x)\overline{g(x)}dx
&= p \sum_{k=-\infty}^\infty F(k)\overline{G(k)},\ \ \mathbb{T}_p \\
+ \sum_{n=-\infty}^\infty f(n)\overline{g(n)}
+ &= p \int_{0}^p F(s)\overline{G(x)}ds,\ \ \mathbb{Z} \\
\sum_{n=0}^{N-1} f(n)\overline{g(n)}
&= N \sum_{k=0}^{N-1} F(k)\overline{G(k)},\ \ \mathbb{P}_N
\end{aligned}
$$
+
Discretization and periodization
========================================================
@@ -126,6 +128,7 @@ From a function $f$, under some conditions, we can construct a periodic functio
$$g(x) = \sum_{m=-\infty}^\infty f(x-mp) $$
+
Poisson relations
========================================================
incremental: true
@@ -149,6 +152,7 @@ Poisson cube
Nyquist-Shannon sampling theorem
========================================================
+incremental: true
Assume that $f(t)$ is *$\sigma$-bandlimited*
@@ -166,6 +170,7 @@ $$\sigma < \frac{1}{2\Delta t} \equiv \omega_{Nyq}$$
Example: single sinusoid
========================================================
+incremental:true
$$
\begin{aligned}
@@ -275,6 +280,7 @@ $$\psi_{a,b}(t)=\frac{1}{\sqrt{a}}\psi\left(\frac{t-b}{a}\right)$$
Definition of wavelet transforms
========================================================
+incremental: true
Given $f\in L^2(\mathbb{R})$, we define its *continuous wavelet transform* with respect to the wavelet $\psi$ as
@@ -288,6 +294,7 @@ $$ 0 < C_{\psi}\equiv\int_{-\infty}^\infty
Example: Time-varying signal CWT
========================================================
+incremental: true

@@ -299,6 +306,7 @@ Mexican hat CWT
Example: Time-varying signal CWT 2
========================================================
+incremental: true
Haar CWT
@@ -313,6 +321,7 @@ Morlet CWT
Example: Time-varying signal CWT 3
========================================================
+incremental: true
Morlet
@@ -341,9 +350,16 @@ $$
Inverse of a wavelet transform
========================================================
+incremental: true
$$f(t) = \frac{1}{C_\psi}\int_{-\infty}^\infty\int_{-\infty}^\infty \mathcal{W}_\psi[f](a,b) \psi_{a,b}(t) \frac{da\ db}{a^2}$$
+only when
+
+$$ 0 < C_{\psi}\equiv\int_{-\infty}^\infty
+\frac{\left|\hat{\psi}(\omega)\right|^2}{\left|\omega\right|} d\omega
+<\infty $$
+
Discrete wavelet transform
========================================================
@@ -360,20 +376,59 @@ $$\psi_{m,n}(t)=2^{-m/2} \psi \left( 2^{-m} t - n \right),\ \ \ n,m \in \mathbb{
When can we recover $f(t)$ from $\mathcal{W}_\psi[f](m,n)$ ?
-Discrete wavelet transform 2
+Orthonormal basis
========================================================
-When $\psi_{m,n}$ is complete in and orthonormal in $L^2(\mathbb{R})$:
+Find $\psi_{m,n}$ such that they form a complete and orthonormal basis in $L^2(\mathbb{R})$:
$$f(t) = \sum_{m,n=-\infty}^\infty \langle f,\psi_{m,n}\rangle\ \psi_{m,n}(t)$$
Multiresolution analysis (MRA)
========================================================
+incremental: true
+
+
+
+> *MRA is really an effective mathematical framework for hierarchical decomposition of an image (or signal) into components of different scales (or frequencies).*
+
+
+Example application
+========================================================
+
+**Time-frequency analysis of solar $p$-modes**
+
+*F. Baudin, A. Gabriel, D. Gibert (1994)*
+
+***
+
+
+
+
+Example application 2
+========================================================
+
+**Wavelets: a powerful tool for studying rotation, activity, and pulsation in Kepler and CoRoT stellar light curves**
+
+*J. P. Bravo, S. Roque, R. Estrela, I. C. Leão, and J. R. De Medeiros (2014)*
+
+***
+
+
+
+
+Thank you!
+========================================================
+
+
+
+***
-> MRA is really an effective mathematical framework for hierarchical decomposition of an image (or signal) into components of different scales (or frequencies).
+[https://github.molgen.mpg.de/saravia/wavelets-SAGE](https://github.molgen.mpg.de/saravia/wavelets-SAGE)
+saravia@mps.mpg.de
+ags3006@gmail.com
Orthogonality relations
========================================================