Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
'''
Created on Jan 14, 2019
@author: cxchu
'''
import codecs
from sklearn.externals import joblib
import sys, os
from create_dataset import create_raw_dataset
from src.batcher import Batcher
from src.hook import acc_hook, save_predictions, evaluate_perclass
from src.model.nn_model import Model
import tensorflow as tf
import numpy as np
import pandas as pd
import optparse
optparser = optparse.OptionParser()
optparser.add_option(
"-b", "--basedir", default="/var/tmp/wikia/entity-typing/deep-learning/",
help="directory to model of top class prediction"
)
optparser.add_option(
"-u", "--universe", default="aoc",
help="reference universe"
)
opts = optparser.parse_args()[0]
refuniverse = opts.universe
basedir = opts.basedir
dict = basedir + refuniverse + "/data/dicts_gillick.pkl"
# inuniverse = "onion"
# raw_data = "/var/tmp/wikia/entity-typing/input-data/" + inuniverse + "/" + inuniverse + "-3-supervised"
# save_data = "/var/tmp/wikia/entity-typing/deep-learning/got/got_test.pkl"
dicts = joblib.load(dict)
label2id = dicts["label2id"]
id2label = dicts["id2label"]
word2id = dicts["word2id"]
feature2id = dicts["feature2id"]
if "unknown" not in word2id:
word2id["unknown"] = list(word2id.values())[0]
storage,data,sentences, mentions = create_raw_dataset(label2id,word2id,feature2id)
test_dataset = {"storage":storage,"data":data}
# joblib.dump(dataset,save_data)
print ("Loading the dataset")
# test_dataset = joblib.load(save_data)
print
print ("test_size: ", test_dataset["data"].shape[0])
print ("Creating batchers")
# batch_size : 1000, context_length : 10
test_batcher = Batcher(test_dataset["storage"],test_dataset["data"],test_dataset["data"].shape[0],10,dicts["id2vec"])
print('Loading the model..............')
save_dir = basedir + refuniverse
model_name = 'model'
checkpoint_file = os.path.join(save_dir, model_name)
graph = tf.Graph()
with graph.as_default():
sess = tf.Session()
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
keep_prob = graph.get_operation_by_name("keep_prob").outputs[0]
mention_representation = graph.get_operation_by_name("mention_representation").outputs[0]
context_length = 8
context = [graph.get_operation_by_name("context" + str(i)).outputs[0] for i in range(context_length*2+1)]
distribution = graph.get_operation_by_name("distribution").outputs[0]
context_data, mention_representation_data, target_data, feature_data = test_batcher.next()
feed = {mention_representation: mention_representation_data,
keep_prob: [1.0]}
# if self.feature == True and feature_data is not None:
# feed[self.features] = feature_data
for i in range(context_length*2+1):
feed[context[i]] = context_data[:,i,:]
scores = sess.run(distribution,feed_dict=feed)
################3
# remove top class with too popular =====
populardist = []
type2freq = {}
classFile = basedir + refuniverse + '/resource/label2id_gillick.txt'
for line in codecs.open(classFile, "r", 'utf8'):
tmp = line.split('\t')
populardist.append(float(tmp[2]))
type2freq[tmp[1]] = float(tmp[2])
df = pd.DataFrame(populardist)
threshold = float(df.quantile(1))
print(threshold)
#writing to file.....
print('results')
sys.stdout.flush()
for sent, score in zip(mentions, scores):
res = []
for id, s in enumerate(list(score)):
if s >= 0.5 and type2freq[id2label[id]] <= threshold:
res.append(id2label[id] + "\t" + str(s))
if len(res) > 0:
print(sent + "=====[" + ", ".join([t for t in res]) + "]")
print('end')
sys.stdout.flush()