Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
function create_mpm = tbx_scfg_hmri_create
% Configuration file for the "histological MRI" (hMRI) toolbox
% Previously named "Voxel-Based Quantification" (VBQ)
% -> Dealing with the creation of the maps
%_______________________________________________________________________
% Copyright (C) 2014 Wellcome Trust Centre for Neuroimaging
% Christophe Phillips
%--------------------------------------------------------------------------
% To enable/disable pop-up messages for all warnings - recommended when
% piloting the data processing.
%--------------------------------------------------------------------------
popup = cfg_menu;
popup.tag = 'popup';
popup.name = 'Pop-up warnings';
popup.help = {['The user can review and keep track of all the information ' ...
'collected, including warnings and other messages coming up during ' ...
'the creation of the maps. By default, the information is logged in ' ...
'the Matlab Command Window, in a log file saved in the "Results/Supplementary" ' ...
'directory, and when more critical, displayed as a pop-up message.'], ...
['The latter must be disabled for processing series of datasets (since it ' ...
'blocks the execution of the code) but it is strongly recommended to ' ...
'leave it enabled when piloting the data processing (single subject) ' ...
'to read through and acknowledge every message and make sure ' ...
'everything is set up properly before running the processing on a ' ...
'whole group.'], ...
['More information about the various messages and action to be taken ' ...
'(or not) accordingly can be found on the hMRI-Toolbox WIKI (http://hmri.info). ' ...
'In particular, see the "Debug tips & tricks" section.']};
popup.labels = {'Disable' 'Enable'};
popup.values = {false true};
popup.val = {true};
% ---------------------------------------------------------------------
% Input FLASH images - T1-weighted
% ---------------------------------------------------------------------
raws3 = cfg_files;
raws3.tag = 'T1';
raws3.name = 'T1 images';
raws3.help = {'Input T1-weighted images.'};
raws3.filter = 'image';
raws3.ufilter = '.*';
raws3.num = [0 Inf];
raws3.val = {''};
% ---------------------------------------------------------------------
% Input FLASH images - PD-weighted
% ---------------------------------------------------------------------
raws2 = cfg_files;
raws2.tag = 'PD';
raws2.name = 'PD images';
raws2.help = {'Input PD-weighted images.'};
raws2.filter = 'image';
raws2.ufilter = '.*';
raws2.num = [0 Inf];
raws2.val = {''};
% ---------------------------------------------------------------------
% Input FLASH images - MT-weighted
% ---------------------------------------------------------------------
raws1 = cfg_files;
raws1.tag = 'MT';
raws1.name = 'MT images';
raws1.help = {'Input MT-weighted images.'};
raws1.filter = 'image';
raws1.ufilter = '.*';
raws1.num = [0 Inf];
raws1.val = {''};
% ---------------------------------------------------------------------
% All multiparameter input images
% ---------------------------------------------------------------------
raws = cfg_branch;
raws.tag = 'raw_mpm';
raws.name = 'Multiparameter input images';
raws.help = {'Input all the MT/PD/T1-weighted images.'};
raws.val = {raws1 raws2 raws3};
%--------------------------------------------------------------------------
% B1 acq/proc defaults file
%--------------------------------------------------------------------------
b1defaults = cfg_files;
b1defaults.tag = 'b1defaults';
b1defaults.name = 'Customised B1 defaults file';
b1defaults.help = {['Select the [hmri_b1_local_defaults_*.m] file containing ' ...
'the parameters to process the B1 map data. By default, parameters will be ' ...
'collected from metadata when available. Defaults parameters are provided as ' ...
'fallback solution when metadata are not available and/or uncomplete.'], ...
['Please make sure that the parameters defined in the defaults file ' ...
'are correct for your data. To create your own customised defaults file, ' ...
'edit the distributed version and save it with a meaningful name such as ' ...
'[hmri_b1_local_defaults_*myprotocol*.m].']};
b1defaults.filter = 'm';
b1defaults.dir = fullfile(fileparts(mfilename('fullpath')),'config','local');
b1defaults.ufilter = '^hmri_.*\.m$';
b1defaults.num = [1 1];
% ---------------------------------------------------------------------
% Use metadata or standard defaults (no customization)
% ---------------------------------------------------------------------
b1metadata = cfg_entry;
b1metadata.tag = 'b1metadata';
b1metadata.name = 'Use metadata or standard defaults';
b1metadata.help = {''};
b1metadata.strtype = 's';
b1metadata.num = [1 Inf];
b1metadata.val = {'yes'};
%--------------------------------------------------------------------------
% B1 processing parameters
%--------------------------------------------------------------------------
b1parameters = cfg_choice;
b1parameters.tag = 'b1parameters';
b1parameters.name = 'Processing parameters';
b1parameters.help = {['You can either stick with metadata and standard ' ...
'defaults parameters (recommended) or select your own customised defaults file ' ...
'(fallback for situations where no metadata are available).']};
b1parameters.values = {b1metadata b1defaults};
b1parameters.val = {b1metadata};
% ---------------------------------------------------------------------
% B1 input images
% ---------------------------------------------------------------------
b1raw = cfg_files;
b1raw.tag = 'b1input';
b1raw.name = 'B1 input';
b1raw.help = {'Select B1 input images according to the type of B1 bias correction.'};
b1raw.filter = 'image';
b1raw.ufilter = '.*';
b1raw.num = [2 30];
% b1raw.val = {''};
% ---------------------------------------------------------------------
% B0 input images
% ---------------------------------------------------------------------
b0raw = cfg_files;
b0raw.tag = 'b0input';
b0raw.name = 'B0 input';
b0raw.help = {'Select B0 field map input images.' ...
'Only required for distortion correction of EPI-based B1 maps.' ...
'Select both magnitude images and the presubtracted phase image, in that order.'};
b0raw.filter = 'image';
b0raw.ufilter = '.*';
b0raw.num = [3 3];
% b0raw.num = [0 3];
% b0raw.val = {''};
% ---------------------------------------------------------------------
% UNICORT B1 bias correction
% ---------------------------------------------------------------------
b1_input_UNICORT = cfg_branch;
b1_input_UNICORT.tag = 'UNICORT';
b1_input_UNICORT.name = 'UNICORT';
b1_input_UNICORT.help = {'UNICORT will be applied for B1 bias correction.'
'No B1 input data required.'
['Customized processing parameters may be introduced by loading ' ...
'customized defaults from a selected [hmri_b1_local_defaults_*.m] file.']};
b1_input_UNICORT.val = {b1parameters};
% ---------------------------------------------------------------------
% No B1 bias correction
% ---------------------------------------------------------------------
b1_input_noB1 = cfg_entry;
b1_input_noB1.tag = 'no_B1_correction';
b1_input_noB1.name = 'no B1 correction';
b1_input_noB1.help = {'No B1 bias correction will be applied.'
['NOTE: when no B1 map is available, UNICORT might be a better ' ...
'solution than no B1 bias correction at all.']};
b1_input_noB1.strtype = 's';
b1_input_noB1.num = [1 Inf];
b1_input_noB1.val = {'noB1'};
% ---------------------------------------------------------------------
% pre-calculated B1 map - including potential rescaling factor
% ---------------------------------------------------------------------
scafac = cfg_entry;
scafac.tag = 'scafac';
scafac.name = 'Scaling factor';
scafac.help = {'The values in the input B1 map will be multiplied by the provided factor.', ...
['If the input B1 map is already in percent units (p.u.) of the nominal flip angle ' ...
'no need to apply any extra scaling factor (ScaFac = 1). If the input B1 map is a multiplication factor ' ...
'of the nominal flip angle (i.e. value of 1 corresponds to the nominal flip angle), a ' ...
'scaling factor ScaFac = 100 is required to produce a B1 map in p.u. of the ' ...
'nominal flip angle.']};
scafac.strtype = 'r';
scafac.num = [1 1];
scafac.val = {1};
b1_input_preproc = cfg_branch;
b1_input_preproc.tag = 'pre_processed_B1';
b1_input_preproc.name = 'pre-processed B1';
b1_input_preproc.help = {'Input pre-calculated B1 bias map.'
['Please select one unprocessed magnitude image ' ...
'from the B1map data set (for coregistration with the multiparameter maps) ' ...
'and the preprocessed B1map, in that order.']
['The B1 map is expected to be in ' ...
'percent units (p.u.) of the nominal flip angle. If this is not the case, ' ...
'a scaling factor can be introduced (see Scaling factor description for more details).']};
b1_input_preproc.val = {b1raw scafac};
% ---------------------------------------------------------------------
% RF_MAP B1 protocol
% ---------------------------------------------------------------------
b1_input_rfmap = cfg_branch;
b1_input_rfmap.tag = 'rf_map';
b1_input_rfmap.name = 'rf_map';
b1_input_rfmap.help = {'Input B1 images for rf_map B1 map protocol.' ...
'As B1 input, please select the pair of anatomical and precalculated B1 map, in that order.'};
b1_input_rfmap.val = {b1raw};
% ---------------------------------------------------------------------
% TFL_B1_MAP B1 protocol
% ---------------------------------------------------------------------
b1_input_tfl = cfg_branch;
b1_input_tfl.tag = 'tfl_b1_map';
b1_input_tfl.name = 'tfl_b1_map';
b1_input_tfl.help = {'Input B1 images for TFL B1 map protocol.' ...
'As B1 input, please select the pair of anatomical and precalculated B1 map, in that order.'};
b1_input_tfl.val = {b1raw};
% ---------------------------------------------------------------------
% i3D_AFI B1 protocol
% ---------------------------------------------------------------------
b1_input_3DAFI = cfg_branch;
b1_input_3DAFI.tag = 'i3D_AFI';
b1_input_3DAFI.name = '3D AFI';
b1_input_3DAFI.help = {'3D Actual Flip Angle Imaging (AFI) protocol.', ...
'As B1 input, please select a TR2/TR1 pair of magnitude images.', ...
['Regarding processing parameters, you can either stick with metadata and standard ' ...
'defaults parameters (recommended) or select your own [hmri_b1_local_defaults_*.m] customised defaults file ' ...
'(fallback for situations where no metadata are available).']};
b1_input_3DAFI.val = {b1raw b1parameters};
% ---------------------------------------------------------------------
% i3D_EPI B1 protocol
% ---------------------------------------------------------------------
b1_input_3DEPI = cfg_branch;
b1_input_3DEPI.tag = 'i3D_EPI';
b1_input_3DEPI.name = '3D EPI';
b1_input_3DEPI.help = {'Input B0/B1 data for 3D EPI protocol'
'As B1 input, please select all pairs of SE/STE 3D EPI images.'
['For this EPI protocol, it is recommended to acquire B0 field map data ' ...
'for distortion correction. If no B0 map available, the script will proceed ' ...
'with distorted images.']
['Please enter the two magnitude images and the presubtracted phase image ' ...
'from the B0 mapping acquisition, in that order.']
['Regarding processing parameters, you can either stick with metadata and standard ' ...
'defaults parameters (recommended) or select your own [hmri_b1_local_defaults_*.m] customised defaults file ' ...
'(fallback for situations where no metadata are available).']};
b1_input_3DEPI.val = {b1raw b0raw b1parameters};
% ---------------------------------------------------------------------
% menu type_b1
% ---------------------------------------------------------------------
b1_type = cfg_choice;
b1_type.tag = 'b1_type';
b1_type.name = 'B1 bias correction';
b1_type.help = {'Choose the methods for B1 bias correction.'
['Various types of B1 mapping protocols can be handled by the hMRI ' ...
'toolbox when creating the multiparameter maps. See list below for a ' ...
'brief description of each type. Note that all types may not be ' ...
'available at your site.']
[' - 3D EPI: B1map obtained from spin echo (SE) and stimulated echo ' ...
'(STE) images recorded with a 3D EPI scheme [Lutti A et al., ' ...
'PLoS One 2012;7(3):e32379].']
[' - 3D AFI: 3D actual flip angle imaging (AFI) method based on [Yarnykh VL, ' ...
'Magn Reson Med 2007;57:192-200].']
[' - tfl_b1_map: Siemens product sequence for B1 mapping based on turbo FLASH.']
[' - rf_map: Siemens product sequence for B1 mapping based on SE/STE.']
[' - no B1 correction: if selected no B1 bias correction will be applied.']
[' - pre-processed B1: B1 map pre-calculated outside the hMRI toolbox, must ' ...
'be expressed in percent units of the nominal flip angle value (percent bias).']
[' - UNICORT: Use this option when B1 maps not available. ' ...
'Bias field estimation and correction will be performed ' ...
'using the approach described in [Weiskopf et al., NeuroImage 2011; 54:2116-2124]. ' ...
'WARNING: the correction only applies to R1 maps.']
}; %#ok<*NBRAK>
b1_type.values = {b1_input_3DEPI b1_input_3DAFI b1_input_tfl b1_input_rfmap b1_input_preproc b1_input_UNICORT b1_input_noB1};
b1_type.val = {b1_input_3DEPI};
% ---------------------------------------------------------------------
% Input images for RF sensitivity - RF sensitivity maps for MTw images
% ---------------------------------------------------------------------
sraws3MT = cfg_files;
sraws3MT.tag = 'raw_sens_MT';
sraws3MT.name = 'RF sensitivity maps for MTw images';
sraws3MT.help = {'Select low resolution RF sensitivity maps acquired with the head and body coils respectively, in that order.'};
sraws3MT.filter = 'image';
sraws3MT.ufilter = '.*';
% sraws3MT.num = [2 2];
sraws3MT.num = [0 2];
sraws3MT.val = {''};
% ---------------------------------------------------------------------
% Input images for RF sensitivity - RF sensitivity maps for PDw images
% ---------------------------------------------------------------------
sraws3PD = cfg_files;
sraws3PD.tag = 'raw_sens_PD';
sraws3PD.name = 'RF sensitivity maps for PDw images';
sraws3PD.help = {'Select low resolution RF sensitivity maps acquired with the head and body coils respectively, in that order.'};
sraws3PD.filter = 'image';
sraws3PD.ufilter = '.*';
% sraws3PD.num = [2 2];
sraws3PD.num = [0 2];
sraws3PD.val = {''};
% ---------------------------------------------------------------------
% Input images for RF sensitivity - RF sensitivity maps for T1w images
% ---------------------------------------------------------------------
sraws3T1 = cfg_files;
sraws3T1.tag = 'raw_sens_T1';
sraws3T1.name = 'RF sensitivity maps for T1w images';
sraws3T1.help = {'Select low resolution RF sensitivity maps acquired with the head and body coils respectively, in that order.'};
sraws3T1.filter = 'image';
sraws3T1.ufilter = '.*';
% sraws3T1.num = [2 2];
sraws3T1.num = [0 2];
sraws3T1.val = {''};
% ---------------------------------------------------------------------
% xNULL No RF sensitivity bias correction applied at all
% ---------------------------------------------------------------------
xNULL = cfg_entry;
xNULL.tag = 'RF_none';
xNULL.name = 'None';
xNULL.help = {'No RF sensitivity bias correction will be applied.'};
xNULL.strtype = 's';
xNULL.num = [1 Inf];
xNULL.val = {'-'};
% ---------------------------------------------------------------------
% x0 No RF sensitivity
% ---------------------------------------------------------------------
x0 = cfg_entry;
x0.tag = 'RF_us';
x0.name = 'Unified Segmentation';
x0.help = {['RF sensitivity bias correction based on the Unified Segmentation ' ...
'(US) approach. The resulting Bias Field estimate is used to correct for ' ...
'RF sensitivity bias (applies to the PD map calculation only). ' ...
'No RF sensitivity map is required.']};
x0.strtype = 's';
x0.num = [1 Inf];
x0.val = {'-'};
% ---------------------------------------------------------------------
% x1 Single RF sensitivity maps acquired for all contrasts
% ---------------------------------------------------------------------
x1 = cfg_files;
x1.tag = 'RF_once';
x1.name = 'Single';
x1.help = {'Single set of RF sensitivity maps acquired for all contrasts.', ...
'Select low resolution RF sensitivity maps acquired with the head and body coils respectively, in that order.'};
x1.filter = 'image';
x1.ufilter = '.*';
x1.num = [2 2];
% ---------------------------------------------------------------------
% x3 RF sensitivity acquired for each modality
% ---------------------------------------------------------------------
x3 = cfg_branch;
x3.tag = 'RF_per_contrast';
x3.name = 'Per contrast';
x3.help = {['One set of RF sensitivity maps is acquired for each contrast ' ...
'i.e. for each of the PD-, T1- and MT-weighted multi-echo FLASH acquisitions.']};
x3.val = {sraws3MT sraws3PD sraws3T1};
% ---------------------------------------------------------------------
% sensitivity Sensitivity choice
% ---------------------------------------------------------------------
sensitivity = cfg_choice;
sensitivity.tag = 'sensitivity';
sensitivity.name = 'RF sensitivity bias correction';
sensitivity.help = {'Specify the type of RF sensitivity bias correction to be applied. '
'You can select either:'
'- None: no correction will be applied,'
'- Unified Segmentation: based on US, no RF sensitivity map required,'
'- Single: based on a single set of RF sensitivity maps for all contrasts,'
'- Per contrast: based on one set of RF sensitivity maps acquired for each contrast.'};
sensitivity.values = {xNULL x0 x1 x3};
sensitivity.val = {x0};
% ---------------------------------------------------------------------
% indir Input directory as output directory
% ---------------------------------------------------------------------
indir = cfg_entry;
indir.tag = 'indir';
indir.name = 'Input directory';
indir.help = {['Output files will be written to the same folder ' ...
'as each corresponding input file.']};
indir.strtype = 's';
indir.num = [1 Inf];
indir.val = {'yes'};
% ---------------------------------------------------------------------
% outdir Output directory
% ---------------------------------------------------------------------
outdir = cfg_files;
outdir.tag = 'outdir';
outdir.name = 'Output directory';
outdir.help = {'Select a directory where output files will be written to.'};
outdir.filter = 'dir';
outdir.ufilter = '.*';
outdir.num = [1 1];
% ---------------------------------------------------------------------
% output Output choice
% ---------------------------------------------------------------------
output = cfg_choice;
output.tag = 'output';
output.name = 'Output choice';
output.help = {['Output directory can be the same as the input ' ...
'directory for each input file or user selected']};
output.values = {indir outdir };
output.val = {indir};
% ---------------------------------------------------------------------
% subj Subject
% ---------------------------------------------------------------------
subj = cfg_branch;
subj.tag = 'subj';
subj.name = 'Subject';
subj.help = {'Specify a subject for maps calculation.'};
subj.val = {output sensitivity b1_type raws popup};
% ---------------------------------------------------------------------
% data Data
% ---------------------------------------------------------------------
sdata = cfg_repeat;
sdata.tag = 'data';
sdata.name = 'Few Subjects';
sdata.help = {'Specify the number of subjects.'};
sdata.num = [1 Inf];
sdata.val = {subj };
sdata.values = {subj };
% ---------------------------------------------------------------------
% create_mpr Create MPR maps (whether B0/B1 maps are available or not)
% ---------------------------------------------------------------------
create_mpm = cfg_exbranch;
create_mpm.tag = 'create_mpm';
create_mpm.name = 'Create hMRI maps';
create_mpm.val = { sdata };
create_mpm.help = {'hMRI map creation based on multi-echo FLASH sequences including optional receive/transmit bias correction.'};
create_mpm.prog = @hmri_run_create;
create_mpm.vout = @vout_create;
end
%----------------------------------------------------------------------
% ========================================================================
%% VOUT & OTHER SUBFUNCTIONS
% ========================================================================
% The RUN function:
% - out = hmri_run_create(job)
% is defined separately.
%_______________________________________________________________________
function dep = vout_create(job)
% This depends on job contents, which may not be present when virtual
% outputs are calculated.
k=1;
cdep(1,5*numel(job.subj)) = cfg_dep;
for i=1:numel(job.subj)
cdep(k) = cfg_dep;
cdep(k).sname = sprintf('R1_subj%d',i);
cdep(k).src_output = substruct('.','subj','()',{i},'.','R1','()',{':'});
cdep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
k=k+1;
cdep(k) = cfg_dep;
cdep(k).sname = sprintf('R2s_subj%d',i);
cdep(k).src_output = substruct('.','subj','()',{i},'.','R2s','()',{':'});
cdep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
k=k+1;
cdep(k) = cfg_dep;
cdep(k).sname = sprintf('MT_subj%d',i);
cdep(k).src_output = substruct('.','subj','()',{i},'.','MT','()',{':'});
cdep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
k=k+1;
cdep(k) = cfg_dep;
cdep(k).sname = sprintf('A_subj%d',i);
cdep(k).src_output = substruct('.','subj','()',{i},'.','A','()',{':'});
cdep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
k=k+1;
cdep(k) = cfg_dep;
cdep(k).sname = sprintf('T1w_subj%d',i);
cdep(k).src_output = substruct('.','subj','()',{i},'.','T1w','()',{':'});
cdep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
k=k+1;
cdep(k) = cfg_dep;
cdep(k).sname = sprintf('MTw_subj%d',i);
cdep(k).src_output = substruct('.','subj','()',{i},'.','MTw','()',{':'});
cdep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
k=k+1;
cdep(k) = cfg_dep;
cdep(k).sname = sprintf('PDw_subj%d',i);
cdep(k).src_output = substruct('.','subj','()',{i},'.','PDw','()',{':'});
cdep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
k=k+1;
end
dep = cdep;
end
%_______________________________________________________________________