Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
git-mirror
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
0
Pull requests
0
Actions
Projects
0
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Security
Insights
Files
master
Documentation
arch
block
certs
crypto
drivers
firmware
fs
9p
adfs
affs
afs
autofs4
befs
bfs
btrfs
cachefiles
ceph
cifs
coda
configfs
cramfs
crypto
debugfs
devpts
dlm
Kconfig
Makefile
ast.c
ast.h
config.c
config.h
debug_fs.c
dir.c
dir.h
dlm_internal.h
lock.c
lock.h
lockspace.c
lockspace.h
lowcomms.c
lowcomms.h
lvb_table.h
main.c
member.c
member.h
memory.c
memory.h
midcomms.c
midcomms.h
netlink.c
plock.c
rcom.c
rcom.h
recover.c
recover.h
recoverd.c
recoverd.h
requestqueue.c
requestqueue.h
user.c
user.h
util.c
util.h
ecryptfs
efivarfs
efs
exofs
exportfs
ext2
ext4
f2fs
fat
freevxfs
fscache
fuse
gfs2
hfs
hfsplus
hostfs
hpfs
hugetlbfs
isofs
jbd2
jffs2
jfs
kernfs
lockd
logfs
minix
ncpfs
nfs
nfs_common
nfsd
nilfs2
nls
notify
ntfs
ocfs2
omfs
openpromfs
orangefs
overlayfs
proc
pstore
qnx4
qnx6
quota
ramfs
reiserfs
romfs
squashfs
sysfs
sysv
tracefs
ubifs
udf
ufs
xfs
Kconfig
Kconfig.binfmt
Makefile
aio.c
anon_inodes.c
attr.c
bad_inode.c
binfmt_aout.c
binfmt_elf.c
binfmt_elf_fdpic.c
binfmt_em86.c
binfmt_flat.c
binfmt_misc.c
binfmt_script.c
block_dev.c
buffer.c
char_dev.c
compat.c
compat_binfmt_elf.c
compat_ioctl.c
coredump.c
dax.c
dcache.c
dcookies.c
direct-io.c
drop_caches.c
eventfd.c
eventpoll.c
exec.c
fcntl.c
fhandle.c
file.c
file_table.c
filesystems.c
fs-writeback.c
fs_pin.c
fs_struct.c
inode.c
internal.h
ioctl.c
libfs.c
locks.c
mbcache.c
mount.h
mpage.c
namei.c
namespace.c
no-block.c
nsfs.c
open.c
pipe.c
pnode.c
pnode.h
posix_acl.c
proc_namespace.c
read_write.c
readdir.c
select.c
seq_file.c
signalfd.c
splice.c
stack.c
stat.c
statfs.c
super.c
sync.c
timerfd.c
userfaultfd.c
utimes.c
xattr.c
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.get_maintainer.ignore
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
fs
/
dlm
/
recover.c
Blame
Blame
Latest commit
History
History
955 lines (796 loc) · 22.8 KB
Breadcrumbs
linux
/
fs
/
dlm
/
recover.c
Top
File metadata and controls
Code
Blame
955 lines (796 loc) · 22.8 KB
Raw
/****************************************************************************** ******************************************************************************* ** ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. ** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. ** ** This copyrighted material is made available to anyone wishing to use, ** modify, copy, or redistribute it subject to the terms and conditions ** of the GNU General Public License v.2. ** ******************************************************************************* ******************************************************************************/ #include "dlm_internal.h" #include "lockspace.h" #include "dir.h" #include "config.h" #include "ast.h" #include "memory.h" #include "rcom.h" #include "lock.h" #include "lowcomms.h" #include "member.h" #include "recover.h" /* * Recovery waiting routines: these functions wait for a particular reply from * a remote node, or for the remote node to report a certain status. They need * to abort if the lockspace is stopped indicating a node has failed (perhaps * the one being waited for). */ /* * Wait until given function returns non-zero or lockspace is stopped * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes). When another * function thinks it could have completed the waited-on task, they should wake * up ls_wait_general to get an immediate response rather than waiting for the * timeout. This uses a timeout so it can check periodically if the wait * should abort due to node failure (which doesn't cause a wake_up). * This should only be called by the dlm_recoverd thread. */ int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls)) { int error = 0; int rv; while (1) { rv = wait_event_timeout(ls->ls_wait_general, testfn(ls) || dlm_recovery_stopped(ls), dlm_config.ci_recover_timer * HZ); if (rv) break; } if (dlm_recovery_stopped(ls)) { log_debug(ls, "dlm_wait_function aborted"); error = -EINTR; } return error; } /* * An efficient way for all nodes to wait for all others to have a certain * status. The node with the lowest nodeid polls all the others for their * status (wait_status_all) and all the others poll the node with the low id * for its accumulated result (wait_status_low). When all nodes have set * status flag X, then status flag X_ALL will be set on the low nodeid. */ uint32_t dlm_recover_status(struct dlm_ls *ls) { uint32_t status; spin_lock(&ls->ls_recover_lock); status = ls->ls_recover_status; spin_unlock(&ls->ls_recover_lock); return status; } static void _set_recover_status(struct dlm_ls *ls, uint32_t status) { ls->ls_recover_status |= status; } void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status) { spin_lock(&ls->ls_recover_lock); _set_recover_status(ls, status); spin_unlock(&ls->ls_recover_lock); } static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status, int save_slots) { struct dlm_rcom *rc = ls->ls_recover_buf; struct dlm_member *memb; int error = 0, delay; list_for_each_entry(memb, &ls->ls_nodes, list) { delay = 0; for (;;) { if (dlm_recovery_stopped(ls)) { error = -EINTR; goto out; } error = dlm_rcom_status(ls, memb->nodeid, 0); if (error) goto out; if (save_slots) dlm_slot_save(ls, rc, memb); if (rc->rc_result & wait_status) break; if (delay < 1000) delay += 20; msleep(delay); } } out: return error; } static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status, uint32_t status_flags) { struct dlm_rcom *rc = ls->ls_recover_buf; int error = 0, delay = 0, nodeid = ls->ls_low_nodeid; for (;;) { if (dlm_recovery_stopped(ls)) { error = -EINTR; goto out; } error = dlm_rcom_status(ls, nodeid, status_flags); if (error) break; if (rc->rc_result & wait_status) break; if (delay < 1000) delay += 20; msleep(delay); } out: return error; } static int wait_status(struct dlm_ls *ls, uint32_t status) { uint32_t status_all = status << 1; int error; if (ls->ls_low_nodeid == dlm_our_nodeid()) { error = wait_status_all(ls, status, 0); if (!error) dlm_set_recover_status(ls, status_all); } else error = wait_status_low(ls, status_all, 0); return error; } int dlm_recover_members_wait(struct dlm_ls *ls) { struct dlm_member *memb; struct dlm_slot *slots; int num_slots, slots_size; int error, rv; uint32_t gen; list_for_each_entry(memb, &ls->ls_nodes, list) { memb->slot = -1; memb->generation = 0; } if (ls->ls_low_nodeid == dlm_our_nodeid()) { error = wait_status_all(ls, DLM_RS_NODES, 1); if (error) goto out; /* slots array is sparse, slots_size may be > num_slots */ rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen); if (!rv) { spin_lock(&ls->ls_recover_lock); _set_recover_status(ls, DLM_RS_NODES_ALL); ls->ls_num_slots = num_slots; ls->ls_slots_size = slots_size; ls->ls_slots = slots; ls->ls_generation = gen; spin_unlock(&ls->ls_recover_lock); } else { dlm_set_recover_status(ls, DLM_RS_NODES_ALL); } } else { error = wait_status_low(ls, DLM_RS_NODES_ALL, DLM_RSF_NEED_SLOTS); if (error) goto out; dlm_slots_copy_in(ls); } out: return error; } int dlm_recover_directory_wait(struct dlm_ls *ls) { return wait_status(ls, DLM_RS_DIR); } int dlm_recover_locks_wait(struct dlm_ls *ls) { return wait_status(ls, DLM_RS_LOCKS); } int dlm_recover_done_wait(struct dlm_ls *ls) { return wait_status(ls, DLM_RS_DONE); } /* * The recover_list contains all the rsb's for which we've requested the new * master nodeid. As replies are returned from the resource directories the * rsb's are removed from the list. When the list is empty we're done. * * The recover_list is later similarly used for all rsb's for which we've sent * new lkb's and need to receive new corresponding lkid's. * * We use the address of the rsb struct as a simple local identifier for the * rsb so we can match an rcom reply with the rsb it was sent for. */ static int recover_list_empty(struct dlm_ls *ls) { int empty; spin_lock(&ls->ls_recover_list_lock); empty = list_empty(&ls->ls_recover_list); spin_unlock(&ls->ls_recover_list_lock); return empty; } static void recover_list_add(struct dlm_rsb *r) { struct dlm_ls *ls = r->res_ls; spin_lock(&ls->ls_recover_list_lock); if (list_empty(&r->res_recover_list)) { list_add_tail(&r->res_recover_list, &ls->ls_recover_list); ls->ls_recover_list_count++; dlm_hold_rsb(r); } spin_unlock(&ls->ls_recover_list_lock); } static void recover_list_del(struct dlm_rsb *r) { struct dlm_ls *ls = r->res_ls; spin_lock(&ls->ls_recover_list_lock); list_del_init(&r->res_recover_list); ls->ls_recover_list_count--; spin_unlock(&ls->ls_recover_list_lock); dlm_put_rsb(r); } static void recover_list_clear(struct dlm_ls *ls) { struct dlm_rsb *r, *s; spin_lock(&ls->ls_recover_list_lock); list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) { list_del_init(&r->res_recover_list); r->res_recover_locks_count = 0; dlm_put_rsb(r); ls->ls_recover_list_count--; } if (ls->ls_recover_list_count != 0) { log_error(ls, "warning: recover_list_count %d", ls->ls_recover_list_count); ls->ls_recover_list_count = 0; } spin_unlock(&ls->ls_recover_list_lock); } static int recover_idr_empty(struct dlm_ls *ls) { int empty = 1; spin_lock(&ls->ls_recover_idr_lock); if (ls->ls_recover_list_count) empty = 0; spin_unlock(&ls->ls_recover_idr_lock); return empty; } static int recover_idr_add(struct dlm_rsb *r) { struct dlm_ls *ls = r->res_ls; int rv; idr_preload(GFP_NOFS); spin_lock(&ls->ls_recover_idr_lock); if (r->res_id) { rv = -1; goto out_unlock; } rv = idr_alloc(&ls->ls_recover_idr, r, 1, 0, GFP_NOWAIT); if (rv < 0) goto out_unlock; r->res_id = rv; ls->ls_recover_list_count++; dlm_hold_rsb(r); rv = 0; out_unlock: spin_unlock(&ls->ls_recover_idr_lock); idr_preload_end(); return rv; } static void recover_idr_del(struct dlm_rsb *r) { struct dlm_ls *ls = r->res_ls; spin_lock(&ls->ls_recover_idr_lock); idr_remove(&ls->ls_recover_idr, r->res_id); r->res_id = 0; ls->ls_recover_list_count--; spin_unlock(&ls->ls_recover_idr_lock); dlm_put_rsb(r); } static struct dlm_rsb *recover_idr_find(struct dlm_ls *ls, uint64_t id) { struct dlm_rsb *r; spin_lock(&ls->ls_recover_idr_lock); r = idr_find(&ls->ls_recover_idr, (int)id); spin_unlock(&ls->ls_recover_idr_lock); return r; } static void recover_idr_clear(struct dlm_ls *ls) { struct dlm_rsb *r; int id; spin_lock(&ls->ls_recover_idr_lock); idr_for_each_entry(&ls->ls_recover_idr, r, id) { idr_remove(&ls->ls_recover_idr, id); r->res_id = 0; r->res_recover_locks_count = 0; ls->ls_recover_list_count--; dlm_put_rsb(r); } if (ls->ls_recover_list_count != 0) { log_error(ls, "warning: recover_list_count %d", ls->ls_recover_list_count); ls->ls_recover_list_count = 0; } spin_unlock(&ls->ls_recover_idr_lock); } /* Master recovery: find new master node for rsb's that were mastered on nodes that have been removed. dlm_recover_masters recover_master dlm_send_rcom_lookup -> receive_rcom_lookup dlm_dir_lookup receive_rcom_lookup_reply <- dlm_recover_master_reply set_new_master set_master_lkbs set_lock_master */ /* * Set the lock master for all LKBs in a lock queue * If we are the new master of the rsb, we may have received new * MSTCPY locks from other nodes already which we need to ignore * when setting the new nodeid. */ static void set_lock_master(struct list_head *queue, int nodeid) { struct dlm_lkb *lkb; list_for_each_entry(lkb, queue, lkb_statequeue) { if (!(lkb->lkb_flags & DLM_IFL_MSTCPY)) { lkb->lkb_nodeid = nodeid; lkb->lkb_remid = 0; } } } static void set_master_lkbs(struct dlm_rsb *r) { set_lock_master(&r->res_grantqueue, r->res_nodeid); set_lock_master(&r->res_convertqueue, r->res_nodeid); set_lock_master(&r->res_waitqueue, r->res_nodeid); } /* * Propagate the new master nodeid to locks * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider. * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which * rsb's to consider. */ static void set_new_master(struct dlm_rsb *r) { set_master_lkbs(r); rsb_set_flag(r, RSB_NEW_MASTER); rsb_set_flag(r, RSB_NEW_MASTER2); } /* * We do async lookups on rsb's that need new masters. The rsb's * waiting for a lookup reply are kept on the recover_list. * * Another node recovering the master may have sent us a rcom lookup, * and our dlm_master_lookup() set it as the new master, along with * NEW_MASTER so that we'll recover it here (this implies dir_nodeid * equals our_nodeid below). */ static int recover_master(struct dlm_rsb *r, unsigned int *count) { struct dlm_ls *ls = r->res_ls; int our_nodeid, dir_nodeid; int is_removed = 0; int error; if (is_master(r)) return 0; is_removed = dlm_is_removed(ls, r->res_nodeid); if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER)) return 0; our_nodeid = dlm_our_nodeid(); dir_nodeid = dlm_dir_nodeid(r); if (dir_nodeid == our_nodeid) { if (is_removed) { r->res_master_nodeid = our_nodeid; r->res_nodeid = 0; } /* set master of lkbs to ourself when is_removed, or to another new master which we set along with NEW_MASTER in dlm_master_lookup */ set_new_master(r); error = 0; } else { recover_idr_add(r); error = dlm_send_rcom_lookup(r, dir_nodeid); } (*count)++; return error; } /* * All MSTCPY locks are purged and rebuilt, even if the master stayed the same. * This is necessary because recovery can be started, aborted and restarted, * causing the master nodeid to briefly change during the aborted recovery, and * change back to the original value in the second recovery. The MSTCPY locks * may or may not have been purged during the aborted recovery. Another node * with an outstanding request in waiters list and a request reply saved in the * requestqueue, cannot know whether it should ignore the reply and resend the * request, or accept the reply and complete the request. It must do the * former if the remote node purged MSTCPY locks, and it must do the later if * the remote node did not. This is solved by always purging MSTCPY locks, in * which case, the request reply would always be ignored and the request * resent. */ static int recover_master_static(struct dlm_rsb *r, unsigned int *count) { int dir_nodeid = dlm_dir_nodeid(r); int new_master = dir_nodeid; if (dir_nodeid == dlm_our_nodeid()) new_master = 0; dlm_purge_mstcpy_locks(r); r->res_master_nodeid = dir_nodeid; r->res_nodeid = new_master; set_new_master(r); (*count)++; return 0; } /* * Go through local root resources and for each rsb which has a master which * has departed, get the new master nodeid from the directory. The dir will * assign mastery to the first node to look up the new master. That means * we'll discover in this lookup if we're the new master of any rsb's. * * We fire off all the dir lookup requests individually and asynchronously to * the correct dir node. */ int dlm_recover_masters(struct dlm_ls *ls) { struct dlm_rsb *r; unsigned int total = 0; unsigned int count = 0; int nodir = dlm_no_directory(ls); int error; log_rinfo(ls, "dlm_recover_masters"); down_read(&ls->ls_root_sem); list_for_each_entry(r, &ls->ls_root_list, res_root_list) { if (dlm_recovery_stopped(ls)) { up_read(&ls->ls_root_sem); error = -EINTR; goto out; } lock_rsb(r); if (nodir) error = recover_master_static(r, &count); else error = recover_master(r, &count); unlock_rsb(r); cond_resched(); total++; if (error) { up_read(&ls->ls_root_sem); goto out; } } up_read(&ls->ls_root_sem); log_rinfo(ls, "dlm_recover_masters %u of %u", count, total); error = dlm_wait_function(ls, &recover_idr_empty); out: if (error) recover_idr_clear(ls); return error; } int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc) { struct dlm_rsb *r; int ret_nodeid, new_master; r = recover_idr_find(ls, rc->rc_id); if (!r) { log_error(ls, "dlm_recover_master_reply no id %llx", (unsigned long long)rc->rc_id); goto out; } ret_nodeid = rc->rc_result; if (ret_nodeid == dlm_our_nodeid()) new_master = 0; else new_master = ret_nodeid; lock_rsb(r); r->res_master_nodeid = ret_nodeid; r->res_nodeid = new_master; set_new_master(r); unlock_rsb(r); recover_idr_del(r); if (recover_idr_empty(ls)) wake_up(&ls->ls_wait_general); out: return 0; } /* Lock recovery: rebuild the process-copy locks we hold on a remastered rsb on the new rsb master. dlm_recover_locks recover_locks recover_locks_queue dlm_send_rcom_lock -> receive_rcom_lock dlm_recover_master_copy receive_rcom_lock_reply <- dlm_recover_process_copy */ /* * keep a count of the number of lkb's we send to the new master; when we get * an equal number of replies then recovery for the rsb is done */ static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head) { struct dlm_lkb *lkb; int error = 0; list_for_each_entry(lkb, head, lkb_statequeue) { error = dlm_send_rcom_lock(r, lkb); if (error) break; r->res_recover_locks_count++; } return error; } static int recover_locks(struct dlm_rsb *r) { int error = 0; lock_rsb(r); DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r);); error = recover_locks_queue(r, &r->res_grantqueue); if (error) goto out; error = recover_locks_queue(r, &r->res_convertqueue); if (error) goto out; error = recover_locks_queue(r, &r->res_waitqueue); if (error) goto out; if (r->res_recover_locks_count) recover_list_add(r); else rsb_clear_flag(r, RSB_NEW_MASTER); out: unlock_rsb(r); return error; } int dlm_recover_locks(struct dlm_ls *ls) { struct dlm_rsb *r; int error, count = 0; down_read(&ls->ls_root_sem); list_for_each_entry(r, &ls->ls_root_list, res_root_list) { if (is_master(r)) { rsb_clear_flag(r, RSB_NEW_MASTER); continue; } if (!rsb_flag(r, RSB_NEW_MASTER)) continue; if (dlm_recovery_stopped(ls)) { error = -EINTR; up_read(&ls->ls_root_sem); goto out; } error = recover_locks(r); if (error) { up_read(&ls->ls_root_sem); goto out; } count += r->res_recover_locks_count; } up_read(&ls->ls_root_sem); log_rinfo(ls, "dlm_recover_locks %d out", count); error = dlm_wait_function(ls, &recover_list_empty); out: if (error) recover_list_clear(ls); return error; } void dlm_recovered_lock(struct dlm_rsb *r) { DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r);); r->res_recover_locks_count--; if (!r->res_recover_locks_count) { rsb_clear_flag(r, RSB_NEW_MASTER); recover_list_del(r); } if (recover_list_empty(r->res_ls)) wake_up(&r->res_ls->ls_wait_general); } /* * The lvb needs to be recovered on all master rsb's. This includes setting * the VALNOTVALID flag if necessary, and determining the correct lvb contents * based on the lvb's of the locks held on the rsb. * * RSB_VALNOTVALID is set in two cases: * * 1. we are master, but not new, and we purged an EX/PW lock held by a * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL) * * 2. we are a new master, and there are only NL/CR locks left. * (We could probably improve this by only invaliding in this way when * the previous master left uncleanly. VMS docs mention that.) * * The LVB contents are only considered for changing when this is a new master * of the rsb (NEW_MASTER2). Then, the rsb's lvb is taken from any lkb with * mode > CR. If no lkb's exist with mode above CR, the lvb contents are taken * from the lkb with the largest lvb sequence number. */ static void recover_lvb(struct dlm_rsb *r) { struct dlm_lkb *lkb, *high_lkb = NULL; uint32_t high_seq = 0; int lock_lvb_exists = 0; int big_lock_exists = 0; int lvblen = r->res_ls->ls_lvblen; if (!rsb_flag(r, RSB_NEW_MASTER2) && rsb_flag(r, RSB_RECOVER_LVB_INVAL)) { /* case 1 above */ rsb_set_flag(r, RSB_VALNOTVALID); return; } if (!rsb_flag(r, RSB_NEW_MASTER2)) return; /* we are the new master, so figure out if VALNOTVALID should be set, and set the rsb lvb from the best lkb available. */ list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) { if (!(lkb->lkb_exflags & DLM_LKF_VALBLK)) continue; lock_lvb_exists = 1; if (lkb->lkb_grmode > DLM_LOCK_CR) { big_lock_exists = 1; goto setflag; } if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) { high_lkb = lkb; high_seq = lkb->lkb_lvbseq; } } list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) { if (!(lkb->lkb_exflags & DLM_LKF_VALBLK)) continue; lock_lvb_exists = 1; if (lkb->lkb_grmode > DLM_LOCK_CR) { big_lock_exists = 1; goto setflag; } if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) { high_lkb = lkb; high_seq = lkb->lkb_lvbseq; } } setflag: if (!lock_lvb_exists) goto out; /* lvb is invalidated if only NL/CR locks remain */ if (!big_lock_exists) rsb_set_flag(r, RSB_VALNOTVALID); if (!r->res_lvbptr) { r->res_lvbptr = dlm_allocate_lvb(r->res_ls); if (!r->res_lvbptr) goto out; } if (big_lock_exists) { r->res_lvbseq = lkb->lkb_lvbseq; memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen); } else if (high_lkb) { r->res_lvbseq = high_lkb->lkb_lvbseq; memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen); } else { r->res_lvbseq = 0; memset(r->res_lvbptr, 0, lvblen); } out: return; } /* All master rsb's flagged RECOVER_CONVERT need to be looked at. The locks converting PR->CW or CW->PR need to have their lkb_grmode set. */ static void recover_conversion(struct dlm_rsb *r) { struct dlm_ls *ls = r->res_ls; struct dlm_lkb *lkb; int grmode = -1; list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) { if (lkb->lkb_grmode == DLM_LOCK_PR || lkb->lkb_grmode == DLM_LOCK_CW) { grmode = lkb->lkb_grmode; break; } } list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) { if (lkb->lkb_grmode != DLM_LOCK_IV) continue; if (grmode == -1) { log_debug(ls, "recover_conversion %x set gr to rq %d", lkb->lkb_id, lkb->lkb_rqmode); lkb->lkb_grmode = lkb->lkb_rqmode; } else { log_debug(ls, "recover_conversion %x set gr %d", lkb->lkb_id, grmode); lkb->lkb_grmode = grmode; } } } /* We've become the new master for this rsb and waiting/converting locks may need to be granted in dlm_recover_grant() due to locks that may have existed from a removed node. */ static void recover_grant(struct dlm_rsb *r) { if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue)) rsb_set_flag(r, RSB_RECOVER_GRANT); } void dlm_recover_rsbs(struct dlm_ls *ls) { struct dlm_rsb *r; unsigned int count = 0; down_read(&ls->ls_root_sem); list_for_each_entry(r, &ls->ls_root_list, res_root_list) { lock_rsb(r); if (is_master(r)) { if (rsb_flag(r, RSB_RECOVER_CONVERT)) recover_conversion(r); /* recover lvb before granting locks so the updated lvb/VALNOTVALID is presented in the completion */ recover_lvb(r); if (rsb_flag(r, RSB_NEW_MASTER2)) recover_grant(r); count++; } else { rsb_clear_flag(r, RSB_VALNOTVALID); } rsb_clear_flag(r, RSB_RECOVER_CONVERT); rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL); rsb_clear_flag(r, RSB_NEW_MASTER2); unlock_rsb(r); } up_read(&ls->ls_root_sem); if (count) log_rinfo(ls, "dlm_recover_rsbs %d done", count); } /* Create a single list of all root rsb's to be used during recovery */ int dlm_create_root_list(struct dlm_ls *ls) { struct rb_node *n; struct dlm_rsb *r; int i, error = 0; down_write(&ls->ls_root_sem); if (!list_empty(&ls->ls_root_list)) { log_error(ls, "root list not empty"); error = -EINVAL; goto out; } for (i = 0; i < ls->ls_rsbtbl_size; i++) { spin_lock(&ls->ls_rsbtbl[i].lock); for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) { r = rb_entry(n, struct dlm_rsb, res_hashnode); list_add(&r->res_root_list, &ls->ls_root_list); dlm_hold_rsb(r); } if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss)) log_error(ls, "dlm_create_root_list toss not empty"); spin_unlock(&ls->ls_rsbtbl[i].lock); } out: up_write(&ls->ls_root_sem); return error; } void dlm_release_root_list(struct dlm_ls *ls) { struct dlm_rsb *r, *safe; down_write(&ls->ls_root_sem); list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) { list_del_init(&r->res_root_list); dlm_put_rsb(r); } up_write(&ls->ls_root_sem); } void dlm_clear_toss(struct dlm_ls *ls) { struct rb_node *n, *next; struct dlm_rsb *r; unsigned int count = 0; int i; for (i = 0; i < ls->ls_rsbtbl_size; i++) { spin_lock(&ls->ls_rsbtbl[i].lock); for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) { next = rb_next(n); r = rb_entry(n, struct dlm_rsb, res_hashnode); rb_erase(n, &ls->ls_rsbtbl[i].toss); dlm_free_rsb(r); count++; } spin_unlock(&ls->ls_rsbtbl[i].lock); } if (count) log_rinfo(ls, "dlm_clear_toss %u done", count); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
You can’t perform that action at this time.