diff --git a/[refs] b/[refs] index 38164746c24d..f3c2efb64fbe 100644 --- a/[refs] +++ b/[refs] @@ -1,2 +1,2 @@ --- -refs/heads/master: d59fdcf2ac501de99c3dfb452af5e254d4342886 +refs/heads/master: a3da5bf84a97d48cfaf66c6842470fc403da5121 diff --git a/trunk/Documentation/ABI/testing/sysfs-block b/trunk/Documentation/ABI/testing/sysfs-block index 4bd9ea539129..44f52a4f5903 100644 --- a/trunk/Documentation/ABI/testing/sysfs-block +++ b/trunk/Documentation/ABI/testing/sysfs-block @@ -26,3 +26,37 @@ Description: I/O statistics of partition . The format is the same as the above-written /sys/block//stat format. + + +What: /sys/block//integrity/format +Date: June 2008 +Contact: Martin K. Petersen +Description: + Metadata format for integrity capable block device. + E.g. T10-DIF-TYPE1-CRC. + + +What: /sys/block//integrity/read_verify +Date: June 2008 +Contact: Martin K. Petersen +Description: + Indicates whether the block layer should verify the + integrity of read requests serviced by devices that + support sending integrity metadata. + + +What: /sys/block//integrity/tag_size +Date: June 2008 +Contact: Martin K. Petersen +Description: + Number of bytes of integrity tag space available per + 512 bytes of data. + + +What: /sys/block//integrity/write_generate +Date: June 2008 +Contact: Martin K. Petersen +Description: + Indicates whether the block layer should automatically + generate checksums for write requests bound for + devices that support receiving integrity metadata. diff --git a/trunk/Documentation/ABI/testing/sysfs-bus-css b/trunk/Documentation/ABI/testing/sysfs-bus-css new file mode 100644 index 000000000000..b585ec258a08 --- /dev/null +++ b/trunk/Documentation/ABI/testing/sysfs-bus-css @@ -0,0 +1,35 @@ +What: /sys/bus/css/devices/.../type +Date: March 2008 +Contact: Cornelia Huck + linux-s390@vger.kernel.org +Description: Contains the subchannel type, as reported by the hardware. + This attribute is present for all subchannel types. + +What: /sys/bus/css/devices/.../modalias +Date: March 2008 +Contact: Cornelia Huck + linux-s390@vger.kernel.org +Description: Contains the module alias as reported with uevents. + It is of the format css:t and present for all + subchannel types. + +What: /sys/bus/css/drivers/io_subchannel/.../chpids +Date: December 2002 +Contact: Cornelia Huck + linux-s390@vger.kernel.org +Description: Contains the ids of the channel paths used by this + subchannel, as reported by the channel subsystem + during subchannel recognition. + Note: This is an I/O-subchannel specific attribute. +Users: s390-tools, HAL + +What: /sys/bus/css/drivers/io_subchannel/.../pimpampom +Date: December 2002 +Contact: Cornelia Huck + linux-s390@vger.kernel.org +Description: Contains the PIM/PAM/POM values, as reported by the + channel subsystem when last queried by the common I/O + layer (this implies that this attribute is not neccessarily + in sync with the values current in the channel subsystem). + Note: This is an I/O-subchannel specific attribute. +Users: s390-tools, HAL diff --git a/trunk/Documentation/block/data-integrity.txt b/trunk/Documentation/block/data-integrity.txt new file mode 100644 index 000000000000..e9dc8d86adc7 --- /dev/null +++ b/trunk/Documentation/block/data-integrity.txt @@ -0,0 +1,327 @@ +---------------------------------------------------------------------- +1. INTRODUCTION + +Modern filesystems feature checksumming of data and metadata to +protect against data corruption. However, the detection of the +corruption is done at read time which could potentially be months +after the data was written. At that point the original data that the +application tried to write is most likely lost. + +The solution is to ensure that the disk is actually storing what the +application meant it to. Recent additions to both the SCSI family +protocols (SBC Data Integrity Field, SCC protection proposal) as well +as SATA/T13 (External Path Protection) try to remedy this by adding +support for appending integrity metadata to an I/O. The integrity +metadata (or protection information in SCSI terminology) includes a +checksum for each sector as well as an incrementing counter that +ensures the individual sectors are written in the right order. And +for some protection schemes also that the I/O is written to the right +place on disk. + +Current storage controllers and devices implement various protective +measures, for instance checksumming and scrubbing. But these +technologies are working in their own isolated domains or at best +between adjacent nodes in the I/O path. The interesting thing about +DIF and the other integrity extensions is that the protection format +is well defined and every node in the I/O path can verify the +integrity of the I/O and reject it if corruption is detected. This +allows not only corruption prevention but also isolation of the point +of failure. + +---------------------------------------------------------------------- +2. THE DATA INTEGRITY EXTENSIONS + +As written, the protocol extensions only protect the path between +controller and storage device. However, many controllers actually +allow the operating system to interact with the integrity metadata +(IMD). We have been working with several FC/SAS HBA vendors to enable +the protection information to be transferred to and from their +controllers. + +The SCSI Data Integrity Field works by appending 8 bytes of protection +information to each sector. The data + integrity metadata is stored +in 520 byte sectors on disk. Data + IMD are interleaved when +transferred between the controller and target. The T13 proposal is +similar. + +Because it is highly inconvenient for operating systems to deal with +520 (and 4104) byte sectors, we approached several HBA vendors and +encouraged them to allow separation of the data and integrity metadata +scatter-gather lists. + +The controller will interleave the buffers on write and split them on +read. This means that the Linux can DMA the data buffers to and from +host memory without changes to the page cache. + +Also, the 16-bit CRC checksum mandated by both the SCSI and SATA specs +is somewhat heavy to compute in software. Benchmarks found that +calculating this checksum had a significant impact on system +performance for a number of workloads. Some controllers allow a +lighter-weight checksum to be used when interfacing with the operating +system. Emulex, for instance, supports the TCP/IP checksum instead. +The IP checksum received from the OS is converted to the 16-bit CRC +when writing and vice versa. This allows the integrity metadata to be +generated by Linux or the application at very low cost (comparable to +software RAID5). + +The IP checksum is weaker than the CRC in terms of detecting bit +errors. However, the strength is really in the separation of the data +buffers and the integrity metadata. These two distinct buffers much +match up for an I/O to complete. + +The separation of the data and integrity metadata buffers as well as +the choice in checksums is referred to as the Data Integrity +Extensions. As these extensions are outside the scope of the protocol +bodies (T10, T13), Oracle and its partners are trying to standardize +them within the Storage Networking Industry Association. + +---------------------------------------------------------------------- +3. KERNEL CHANGES + +The data integrity framework in Linux enables protection information +to be pinned to I/Os and sent to/received from controllers that +support it. + +The advantage to the integrity extensions in SCSI and SATA is that +they enable us to protect the entire path from application to storage +device. However, at the same time this is also the biggest +disadvantage. It means that the protection information must be in a +format that can be understood by the disk. + +Generally Linux/POSIX applications are agnostic to the intricacies of +the storage devices they are accessing. The virtual filesystem switch +and the block layer make things like hardware sector size and +transport protocols completely transparent to the application. + +However, this level of detail is required when preparing the +protection information to send to a disk. Consequently, the very +concept of an end-to-end protection scheme is a layering violation. +It is completely unreasonable for an application to be aware whether +it is accessing a SCSI or SATA disk. + +The data integrity support implemented in Linux attempts to hide this +from the application. As far as the application (and to some extent +the kernel) is concerned, the integrity metadata is opaque information +that's attached to the I/O. + +The current implementation allows the block layer to automatically +generate the protection information for any I/O. Eventually the +intent is to move the integrity metadata calculation to userspace for +user data. Metadata and other I/O that originates within the kernel +will still use the automatic generation interface. + +Some storage devices allow each hardware sector to be tagged with a +16-bit value. The owner of this tag space is the owner of the block +device. I.e. the filesystem in most cases. The filesystem can use +this extra space to tag sectors as they see fit. Because the tag +space is limited, the block interface allows tagging bigger chunks by +way of interleaving. This way, 8*16 bits of information can be +attached to a typical 4KB filesystem block. + +This also means that applications such as fsck and mkfs will need +access to manipulate the tags from user space. A passthrough +interface for this is being worked on. + + +---------------------------------------------------------------------- +4. BLOCK LAYER IMPLEMENTATION DETAILS + +4.1 BIO + +The data integrity patches add a new field to struct bio when +CONFIG_BLK_DEV_INTEGRITY is enabled. bio->bi_integrity is a pointer +to a struct bip which contains the bio integrity payload. Essentially +a bip is a trimmed down struct bio which holds a bio_vec containing +the integrity metadata and the required housekeeping information (bvec +pool, vector count, etc.) + +A kernel subsystem can enable data integrity protection on a bio by +calling bio_integrity_alloc(bio). This will allocate and attach the +bip to the bio. + +Individual pages containing integrity metadata can subsequently be +attached using bio_integrity_add_page(). + +bio_free() will automatically free the bip. + + +4.2 BLOCK DEVICE + +Because the format of the protection data is tied to the physical +disk, each block device has been extended with a block integrity +profile (struct blk_integrity). This optional profile is registered +with the block layer using blk_integrity_register(). + +The profile contains callback functions for generating and verifying +the protection data, as well as getting and setting application tags. +The profile also contains a few constants to aid in completing, +merging and splitting the integrity metadata. + +Layered block devices will need to pick a profile that's appropriate +for all subdevices. blk_integrity_compare() can help with that. DM +and MD linear, RAID0 and RAID1 are currently supported. RAID4/5/6 +will require extra work due to the application tag. + + +---------------------------------------------------------------------- +5.0 BLOCK LAYER INTEGRITY API + +5.1 NORMAL FILESYSTEM + + The normal filesystem is unaware that the underlying block device + is capable of sending/receiving integrity metadata. The IMD will + be automatically generated by the block layer at submit_bio() time + in case of a WRITE. A READ request will cause the I/O integrity + to be verified upon completion. + + IMD generation and verification can be toggled using the + + /sys/block//integrity/write_generate + + and + + /sys/block//integrity/read_verify + + flags. + + +5.2 INTEGRITY-AWARE FILESYSTEM + + A filesystem that is integrity-aware can prepare I/Os with IMD + attached. It can also use the application tag space if this is + supported by the block device. + + + int bdev_integrity_enabled(block_device, int rw); + + bdev_integrity_enabled() will return 1 if the block device + supports integrity metadata transfer for the data direction + specified in 'rw'. + + bdev_integrity_enabled() honors the write_generate and + read_verify flags in sysfs and will respond accordingly. + + + int bio_integrity_prep(bio); + + To generate IMD for WRITE and to set up buffers for READ, the + filesystem must call bio_integrity_prep(bio). + + Prior to calling this function, the bio data direction and start + sector must be set, and the bio should have all data pages + added. It is up to the caller to ensure that the bio does not + change while I/O is in progress. + + bio_integrity_prep() should only be called if + bio_integrity_enabled() returned 1. + + + int bio_integrity_tag_size(bio); + + If the filesystem wants to use the application tag space it will + first have to find out how much storage space is available. + Because tag space is generally limited (usually 2 bytes per + sector regardless of sector size), the integrity framework + supports interleaving the information between the sectors in an + I/O. + + Filesystems can call bio_integrity_tag_size(bio) to find out how + many bytes of storage are available for that particular bio. + + Another option is bdev_get_tag_size(block_device) which will + return the number of available bytes per hardware sector. + + + int bio_integrity_set_tag(bio, void *tag_buf, len); + + After a successful return from bio_integrity_prep(), + bio_integrity_set_tag() can be used to attach an opaque tag + buffer to a bio. Obviously this only makes sense if the I/O is + a WRITE. + + + int bio_integrity_get_tag(bio, void *tag_buf, len); + + Similarly, at READ I/O completion time the filesystem can + retrieve the tag buffer using bio_integrity_get_tag(). + + +6.3 PASSING EXISTING INTEGRITY METADATA + + Filesystems that either generate their own integrity metadata or + are capable of transferring IMD from user space can use the + following calls: + + + struct bip * bio_integrity_alloc(bio, gfp_mask, nr_pages); + + Allocates the bio integrity payload and hangs it off of the bio. + nr_pages indicate how many pages of protection data need to be + stored in the integrity bio_vec list (similar to bio_alloc()). + + The integrity payload will be freed at bio_free() time. + + + int bio_integrity_add_page(bio, page, len, offset); + + Attaches a page containing integrity metadata to an existing + bio. The bio must have an existing bip, + i.e. bio_integrity_alloc() must have been called. For a WRITE, + the integrity metadata in the pages must be in a format + understood by the target device with the notable exception that + the sector numbers will be remapped as the request traverses the + I/O stack. This implies that the pages added using this call + will be modified during I/O! The first reference tag in the + integrity metadata must have a value of bip->bip_sector. + + Pages can be added using bio_integrity_add_page() as long as + there is room in the bip bio_vec array (nr_pages). + + Upon completion of a READ operation, the attached pages will + contain the integrity metadata received from the storage device. + It is up to the receiver to process them and verify data + integrity upon completion. + + +6.4 REGISTERING A BLOCK DEVICE AS CAPABLE OF EXCHANGING INTEGRITY + METADATA + + To enable integrity exchange on a block device the gendisk must be + registered as capable: + + int blk_integrity_register(gendisk, blk_integrity); + + The blk_integrity struct is a template and should contain the + following: + + static struct blk_integrity my_profile = { + .name = "STANDARDSBODY-TYPE-VARIANT-CSUM", + .generate_fn = my_generate_fn, + .verify_fn = my_verify_fn, + .get_tag_fn = my_get_tag_fn, + .set_tag_fn = my_set_tag_fn, + .tuple_size = sizeof(struct my_tuple_size), + .tag_size = , + }; + + 'name' is a text string which will be visible in sysfs. This is + part of the userland API so chose it carefully and never change + it. The format is standards body-type-variant. + E.g. T10-DIF-TYPE1-IP or T13-EPP-0-CRC. + + 'generate_fn' generates appropriate integrity metadata (for WRITE). + + 'verify_fn' verifies that the data buffer matches the integrity + metadata. + + 'tuple_size' must be set to match the size of the integrity + metadata per sector. I.e. 8 for DIF and EPP. + + 'tag_size' must be set to identify how many bytes of tag space + are available per hardware sector. For DIF this is either 2 or + 0 depending on the value of the Control Mode Page ATO bit. + + See 6.2 for a description of get_tag_fn and set_tag_fn. + +---------------------------------------------------------------------- +2007-12-24 Martin K. Petersen diff --git a/trunk/Documentation/ioctl-number.txt b/trunk/Documentation/ioctl-number.txt index 240ce7a56c40..3bb5f466a90d 100644 --- a/trunk/Documentation/ioctl-number.txt +++ b/trunk/Documentation/ioctl-number.txt @@ -117,6 +117,7 @@ Code Seq# Include File Comments 'c' 00-7F linux/comstats.h conflict! 'c' 00-7F linux/coda.h conflict! +'c' 80-9F asm-s390/chsc.h 'd' 00-FF linux/char/drm/drm/h conflict! 'd' 00-DF linux/video_decoder.h conflict! 'd' F0-FF linux/digi1.h diff --git a/trunk/Documentation/sound/alsa/ALSA-Configuration.txt b/trunk/Documentation/sound/alsa/ALSA-Configuration.txt index 0bbee38acd26..72aff61e7315 100644 --- a/trunk/Documentation/sound/alsa/ALSA-Configuration.txt +++ b/trunk/Documentation/sound/alsa/ALSA-Configuration.txt @@ -753,8 +753,11 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. [Multiple options for each card instance] model - force the model name - position_fix - Fix DMA pointer (0 = auto, 1 = none, 2 = POSBUF, 3 = FIFO size) + position_fix - Fix DMA pointer (0 = auto, 1 = use LPIB, 2 = POSBUF) probe_mask - Bitmask to probe codecs (default = -1, meaning all slots) + bdl_pos_adj - Specifies the DMA IRQ timing delay in samples. + Passing -1 will make the driver to choose the appropriate + value based on the controller chip. [Single (global) options] single_cmd - Use single immediate commands to communicate with @@ -845,7 +848,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. ALC269 basic Basic preset - ALC662 + ALC662/663 3stack-dig 3-stack (2-channel) with SPDIF 3stack-6ch 3-stack (6-channel) 3stack-6ch-dig 3-stack (6-channel) with SPDIF @@ -853,6 +856,10 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. lenovo-101e Lenovo laptop eeepc-p701 ASUS Eeepc P701 eeepc-ep20 ASUS Eeepc EP20 + m51va ASUS M51VA + g71v ASUS G71V + h13 ASUS H13 + g50v ASUS G50V auto auto-config reading BIOS (default) ALC882/885 @@ -1091,7 +1098,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. This occurs when the access to non-existing or non-working codec slot (likely a modem one) causes a stall of the communication via HD-audio bus. You can see which codec slots are probed by enabling - CONFIG_SND_DEBUG_DETECT, or simply from the file name of the codec + CONFIG_SND_DEBUG_VERBOSE, or simply from the file name of the codec proc files. Then limit the slots to probe by probe_mask option. For example, probe_mask=1 means to probe only the first slot, and probe_mask=4 means only the third slot. @@ -2267,6 +2274,10 @@ case above again, the first two slots are already reserved. If any other driver (e.g. snd-usb-audio) is loaded before snd-interwave or snd-ens1371, it will be assigned to the third or later slot. +When a module name is given with '!', the slot will be given for any +modules but that name. For example, "slots=!snd-pcsp" will reserve +the first slot for any modules but snd-pcsp. + ALSA PCM devices to OSS devices mapping ======================================= diff --git a/trunk/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl b/trunk/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl index b03df4d4795c..e13c4e67029f 100644 --- a/trunk/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl +++ b/trunk/Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl @@ -6127,8 +6127,8 @@ struct _snd_pcm_runtime { snd_printdd() is compiled in only when - CONFIG_SND_DEBUG_DETECT is set. Please note - that DEBUG_DETECT is not set as default + CONFIG_SND_DEBUG_VERBOSE is set. Please note + that CONFIG_SND_DEBUG_VERBOSE is not set as default even if you configure the alsa-driver with option. You need to give explicitly option instead. diff --git a/trunk/arch/avr32/Kconfig b/trunk/arch/avr32/Kconfig index 09ad7995080c..45d63c986015 100644 --- a/trunk/arch/avr32/Kconfig +++ b/trunk/arch/avr32/Kconfig @@ -88,6 +88,7 @@ config PLATFORM_AT32AP select MMU select PERFORMANCE_COUNTERS select HAVE_GPIO_LIB + select GENERIC_ALLOCATOR # # CPU types @@ -147,6 +148,9 @@ config PHYS_OFFSET source "kernel/Kconfig.preempt" +config QUICKLIST + def_bool y + config HAVE_ARCH_BOOTMEM_NODE def_bool n @@ -201,6 +205,11 @@ endmenu menu "Power management options" +source "kernel/power/Kconfig" + +config ARCH_SUSPEND_POSSIBLE + def_bool y + menu "CPU Frequency scaling" source "drivers/cpufreq/Kconfig" diff --git a/trunk/arch/avr32/boards/atngw100/setup.c b/trunk/arch/avr32/boards/atngw100/setup.c index a398be284966..a51bb9fb3c89 100644 --- a/trunk/arch/avr32/boards/atngw100/setup.c +++ b/trunk/arch/avr32/boards/atngw100/setup.c @@ -9,6 +9,8 @@ */ #include #include +#include +#include #include #include #include @@ -25,6 +27,13 @@ #include #include +/* Oscillator frequencies. These are board-specific */ +unsigned long at32_board_osc_rates[3] = { + [0] = 32768, /* 32.768 kHz on RTC osc */ + [1] = 20000000, /* 20 MHz on osc0 */ + [2] = 12000000, /* 12 MHz on osc1 */ +}; + /* Initialized by bootloader-specific startup code. */ struct tag *bootloader_tags __initdata; @@ -140,6 +149,10 @@ static struct platform_device i2c_gpio_device = { }, }; +static struct i2c_board_info __initdata i2c_info[] = { + /* NOTE: original ATtiny24 firmware is at address 0x0b */ +}; + static int __init atngw100_init(void) { unsigned i; @@ -165,12 +178,28 @@ static int __init atngw100_init(void) } platform_device_register(&ngw_gpio_leds); + /* all these i2c/smbus pins should have external pullups for + * open-drain sharing among all I2C devices. SDA and SCL do; + * PB28/EXTINT3 doesn't; it should be SMBALERT# (for PMBus), + * but it's not available off-board. + */ + at32_select_periph(GPIO_PIN_PB(28), 0, AT32_GPIOF_PULLUP); at32_select_gpio(i2c_gpio_data.sda_pin, AT32_GPIOF_MULTIDRV | AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH); at32_select_gpio(i2c_gpio_data.scl_pin, AT32_GPIOF_MULTIDRV | AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH); platform_device_register(&i2c_gpio_device); + i2c_register_board_info(0, i2c_info, ARRAY_SIZE(i2c_info)); return 0; } postcore_initcall(atngw100_init); + +static int __init atngw100_arch_init(void) +{ + /* set_irq_type() after the arch_initcall for EIC has run, and + * before the I2C subsystem could try using this IRQ. + */ + return set_irq_type(AT32_EXTINT(3), IRQ_TYPE_EDGE_FALLING); +} +arch_initcall(atngw100_arch_init); diff --git a/trunk/arch/avr32/boards/atstk1000/atstk1002.c b/trunk/arch/avr32/boards/atstk1000/atstk1002.c index 000eb4220a12..86b363c1c25b 100644 --- a/trunk/arch/avr32/boards/atstk1000/atstk1002.c +++ b/trunk/arch/avr32/boards/atstk1000/atstk1002.c @@ -28,6 +28,12 @@ #include "atstk1000.h" +/* Oscillator frequencies. These are board specific */ +unsigned long at32_board_osc_rates[3] = { + [0] = 32768, /* 32.768 kHz on RTC osc */ + [1] = 20000000, /* 20 MHz on osc0 */ + [2] = 12000000, /* 12 MHz on osc1 */ +}; struct eth_addr { u8 addr[6]; @@ -232,7 +238,7 @@ static int __init atstk1002_init(void) set_hw_addr(at32_add_device_eth(1, ð_data[1])); #else at32_add_device_lcdc(0, &atstk1000_lcdc_data, - fbmem_start, fbmem_size); + fbmem_start, fbmem_size, 0); #endif at32_add_device_usba(0, NULL); #ifndef CONFIG_BOARD_ATSTK100X_SW3_CUSTOM diff --git a/trunk/arch/avr32/boards/atstk1000/atstk1003.c b/trunk/arch/avr32/boards/atstk1000/atstk1003.c index a0b223df35a2..ea109f435a83 100644 --- a/trunk/arch/avr32/boards/atstk1000/atstk1003.c +++ b/trunk/arch/avr32/boards/atstk1000/atstk1003.c @@ -27,6 +27,13 @@ #include "atstk1000.h" +/* Oscillator frequencies. These are board specific */ +unsigned long at32_board_osc_rates[3] = { + [0] = 32768, /* 32.768 kHz on RTC osc */ + [1] = 20000000, /* 20 MHz on osc0 */ + [2] = 12000000, /* 12 MHz on osc1 */ +}; + #ifdef CONFIG_BOARD_ATSTK1000_EXTDAC static struct at73c213_board_info at73c213_data = { .ssc_id = 0, diff --git a/trunk/arch/avr32/boards/atstk1000/atstk1004.c b/trunk/arch/avr32/boards/atstk1000/atstk1004.c index e765a8652b3e..c7236df74d74 100644 --- a/trunk/arch/avr32/boards/atstk1000/atstk1004.c +++ b/trunk/arch/avr32/boards/atstk1000/atstk1004.c @@ -29,6 +29,13 @@ #include "atstk1000.h" +/* Oscillator frequencies. These are board specific */ +unsigned long at32_board_osc_rates[3] = { + [0] = 32768, /* 32.768 kHz on RTC osc */ + [1] = 20000000, /* 20 MHz on osc0 */ + [2] = 12000000, /* 12 MHz on osc1 */ +}; + #ifdef CONFIG_BOARD_ATSTK1000_EXTDAC static struct at73c213_board_info at73c213_data = { .ssc_id = 0, @@ -133,7 +140,7 @@ static int __init atstk1004_init(void) at32_add_device_mci(0); #endif at32_add_device_lcdc(0, &atstk1000_lcdc_data, - fbmem_start, fbmem_size); + fbmem_start, fbmem_size, 0); at32_add_device_usba(0, NULL); #ifndef CONFIG_BOARD_ATSTK100X_SW3_CUSTOM at32_add_device_ssc(0, ATMEL_SSC_TX); diff --git a/trunk/arch/avr32/kernel/entry-avr32b.S b/trunk/arch/avr32/kernel/entry-avr32b.S index 5f31702d6b1c..2b398cae110c 100644 --- a/trunk/arch/avr32/kernel/entry-avr32b.S +++ b/trunk/arch/avr32/kernel/entry-avr32b.S @@ -74,50 +74,41 @@ exception_vectors: .align 2 bral do_dtlb_modified - /* - * r0 : PGD/PT/PTE - * r1 : Offending address - * r2 : Scratch register - * r3 : Cause (5, 12 or 13) - */ #define tlbmiss_save pushm r0-r3 #define tlbmiss_restore popm r0-r3 - .section .tlbx.ex.text,"ax",@progbits + .org 0x50 .global itlb_miss itlb_miss: tlbmiss_save rjmp tlb_miss_common - .section .tlbr.ex.text,"ax",@progbits + .org 0x60 dtlb_miss_read: tlbmiss_save rjmp tlb_miss_common - .section .tlbw.ex.text,"ax",@progbits + .org 0x70 dtlb_miss_write: tlbmiss_save .global tlb_miss_common + .align 2 tlb_miss_common: mfsr r0, SYSREG_TLBEAR mfsr r1, SYSREG_PTBR - /* Is it the vmalloc space? */ - bld r0, 31 - brcs handle_vmalloc_miss - - /* First level lookup */ + /* + * First level lookup: The PGD contains virtual pointers to + * the second-level page tables, but they may be NULL if not + * present. + */ pgtbl_lookup: lsr r2, r0, PGDIR_SHIFT ld.w r3, r1[r2 << 2] bfextu r1, r0, PAGE_SHIFT, PGDIR_SHIFT - PAGE_SHIFT - bld r3, _PAGE_BIT_PRESENT - brcc page_table_not_present - - /* Translate to virtual address in P1. */ - andl r3, 0xf000 - sbr r3, 31 + cp.w r3, 0 + breq page_table_not_present /* Second level lookup */ ld.w r2, r3[r1 << 2] @@ -148,16 +139,55 @@ pgtbl_lookup: tlbmiss_restore rete -handle_vmalloc_miss: - /* Simply do the lookup in init's page table */ + /* The slow path of the TLB miss handler */ + .align 2 +page_table_not_present: + /* Do we need to synchronize with swapper_pg_dir? */ + bld r0, 31 + brcs sync_with_swapper_pg_dir + +page_not_present: + tlbmiss_restore + sub sp, 4 + stmts --sp, r0-lr + rcall save_full_context_ex + mfsr r12, SYSREG_ECR + mov r11, sp + rcall do_page_fault + rjmp ret_from_exception + + .align 2 +sync_with_swapper_pg_dir: + /* + * If swapper_pg_dir contains a non-NULL second-level page + * table pointer, copy it into the current PGD. If not, we + * must handle it as a full-blown page fault. + * + * Jumping back to pgtbl_lookup causes an unnecessary lookup, + * but it is guaranteed to be a cache hit, it won't happen + * very often, and we absolutely do not want to sacrifice any + * performance in the fast path in order to improve this. + */ mov r1, lo(swapper_pg_dir) orh r1, hi(swapper_pg_dir) + ld.w r3, r1[r2 << 2] + cp.w r3, 0 + breq page_not_present + mfsr r1, SYSREG_PTBR + st.w r1[r2 << 2], r3 rjmp pgtbl_lookup + /* + * We currently have two bytes left at this point until we + * crash into the system call handler... + * + * Don't worry, the assembler will let us know. + */ + /* --- System Call --- */ - .section .scall.text,"ax",@progbits + .org 0x100 system_call: #ifdef CONFIG_PREEMPT mask_interrupts @@ -266,18 +296,6 @@ syscall_exit_work: brcc syscall_exit_cont rjmp enter_monitor_mode - /* The slow path of the TLB miss handler */ -page_table_not_present: -page_not_present: - tlbmiss_restore - sub sp, 4 - stmts --sp, r0-lr - rcall save_full_context_ex - mfsr r12, SYSREG_ECR - mov r11, sp - rcall do_page_fault - rjmp ret_from_exception - /* This function expects to find offending PC in SYSREG_RAR_EX */ .type save_full_context_ex, @function .align 2 diff --git a/trunk/arch/avr32/kernel/signal.c b/trunk/arch/avr32/kernel/signal.c index 5616a00c10ba..c5b11f9067f1 100644 --- a/trunk/arch/avr32/kernel/signal.c +++ b/trunk/arch/avr32/kernel/signal.c @@ -93,6 +93,9 @@ asmlinkage int sys_rt_sigreturn(struct pt_regs *regs) if (restore_sigcontext(regs, &frame->uc.uc_mcontext)) goto badframe; + if (do_sigaltstack(&frame->uc.uc_stack, NULL, regs->sp) == -EFAULT) + goto badframe; + pr_debug("Context restored: pc = %08lx, lr = %08lx, sp = %08lx\n", regs->pc, regs->lr, regs->sp); diff --git a/trunk/arch/avr32/kernel/time.c b/trunk/arch/avr32/kernel/time.c index 00a9862380ff..abd954fb7ba0 100644 --- a/trunk/arch/avr32/kernel/time.c +++ b/trunk/arch/avr32/kernel/time.c @@ -7,21 +7,13 @@ */ #include #include -#include -#include +#include #include #include -#include -#include -#include -#include -#include -#include +#include +#include -#include #include -#include -#include #include diff --git a/trunk/arch/avr32/kernel/vmlinux.lds.S b/trunk/arch/avr32/kernel/vmlinux.lds.S index 481cfd40c053..5d25d8eeb750 100644 --- a/trunk/arch/avr32/kernel/vmlinux.lds.S +++ b/trunk/arch/avr32/kernel/vmlinux.lds.S @@ -68,14 +68,6 @@ SECTIONS _evba = .; _text = .; *(.ex.text) - . = 0x50; - *(.tlbx.ex.text) - . = 0x60; - *(.tlbr.ex.text) - . = 0x70; - *(.tlbw.ex.text) - . = 0x100; - *(.scall.text) *(.irq.text) KPROBES_TEXT TEXT_TEXT @@ -107,6 +99,10 @@ SECTIONS */ *(.data.init_task) + /* Then, the page-aligned data */ + . = ALIGN(PAGE_SIZE); + *(.data.page_aligned) + /* Then, the cacheline aligned data */ . = ALIGN(L1_CACHE_BYTES); *(.data.cacheline_aligned) diff --git a/trunk/arch/avr32/lib/io-readsb.S b/trunk/arch/avr32/lib/io-readsb.S index 2be5da7ed26b..cb2d86945559 100644 --- a/trunk/arch/avr32/lib/io-readsb.S +++ b/trunk/arch/avr32/lib/io-readsb.S @@ -41,7 +41,7 @@ __raw_readsb: 2: sub r10, -4 reteq r12 -3: ld.uh r8, r12[0] +3: ld.ub r8, r12[0] sub r10, 1 st.b r11++, r8 brne 3b diff --git a/trunk/arch/avr32/mach-at32ap/Makefile b/trunk/arch/avr32/mach-at32ap/Makefile index e89009439e4a..d5018e2eed25 100644 --- a/trunk/arch/avr32/mach-at32ap/Makefile +++ b/trunk/arch/avr32/mach-at32ap/Makefile @@ -1,3 +1,8 @@ -obj-y += at32ap.o clock.o intc.o extint.o pio.o hsmc.o +obj-y += pdc.o clock.o intc.o extint.o pio.o hsmc.o obj-$(CONFIG_CPU_AT32AP700X) += at32ap700x.o pm-at32ap700x.o obj-$(CONFIG_CPU_FREQ_AT32AP) += cpufreq.o +obj-$(CONFIG_PM) += pm.o + +ifeq ($(CONFIG_PM_DEBUG),y) +CFLAGS_pm.o += -DDEBUG +endif diff --git a/trunk/arch/avr32/mach-at32ap/at32ap700x.c b/trunk/arch/avr32/mach-at32ap/at32ap700x.c index 0f24b4f85c17..07b21b121eef 100644 --- a/trunk/arch/avr32/mach-at32ap/at32ap700x.c +++ b/trunk/arch/avr32/mach-at32ap/at32ap700x.c @@ -20,6 +20,7 @@ #include #include #include +#include #include