diff --git a/[refs] b/[refs] index c6f7252dcdcf..7df7eef04350 100644 --- a/[refs] +++ b/[refs] @@ -1,2 +1,2 @@ --- -refs/heads/master: a016471a16b5c4d4ec8f5221575e603a3d11e5e9 +refs/heads/master: db210e70e5f191710a3b1d09f653b44885d397ea diff --git a/trunk/mm/slub.c b/trunk/mm/slub.c index 4c5a76f505ea..05674aac9294 100644 --- a/trunk/mm/slub.c +++ b/trunk/mm/slub.c @@ -2103,8 +2103,24 @@ init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) { +#ifdef CONFIG_SMP + /* + * Will use reserve that does not require slab operation during + * early boot. + */ BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); +#else + /* + * Special hack for UP mode. allocpercpu() falls back to kmalloc + * operations. So we cannot use that before the slab allocator is up + * Simply get the smallest possible compound page. The page will be + * released via kfree() when the cpu caches are resized later. + */ + if (slab_state < UP) + s->cpu_slab = (__percpu void *)kmalloc_large(PAGE_SIZE << 1, GFP_NOWAIT); + else +#endif s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);