diff --git a/src/data_processing/check_interest_id_valid.py b/src/data_processing/check_interest_id_valid.py
index faadaae..a545dac 100644
--- a/src/data_processing/check_interest_id_valid.py
+++ b/src/data_processing/check_interest_id_valid.py
@@ -13,6 +13,7 @@
import logging
import os
import math
+import sys
## suppress request INFO messages
logging.getLogger("requests").setLevel(logging.WARNING)
@@ -142,6 +143,8 @@ def interest_name_query_batch(access_token, user_id, interest_ids):
print('rate limit reached at id=%d, sleeping for %d seconds'%(interest_id, RATE_LIMIT_SLEEP_TIME))
sleep(RATE_LIMIT_SLEEP_TIME)
success = True
+ ## try to restart program to dodge rate limit
+# os.execl(sys.executable, sys.executable, *sys.argv)
else:
response_data = response_json['targetingsentencelines']
response_data_matches = filter(lambda x: x['content']=='People Who Match:' or x['content']=='And Must Also Match:',
@@ -232,7 +235,7 @@ def main():
if(len(response_names_i) < interest_names_i):
fixed_names_i = ['NA' if x not in set(response_names_i) else x for x in interest_names_i]
else:
- fixed_names_i = list(interest_names_i)
+ fixed_names_i = list(response_names_i)
# print('%d/%d fixed names %s'%(len(response_names_i), len(interest_names_i), fixed_names_i))
## check for missing names
# if(len(response_names_i) != len(fixed_names_i) or any([name_i=='' for name_i in response_names_i])):
diff --git a/src/data_processing/compare_top_interests.ipynb b/src/data_processing/compare_top_interests.ipynb
index a295b6d..fda2bae 100644
--- a/src/data_processing/compare_top_interests.ipynb
+++ b/src/data_processing/compare_top_interests.ipynb
@@ -956,6 +956,3706 @@
" l_file = '../../data/query_results/%s_top_%d_%s.csv'%(l, top_k, audience_var)\n",
" l_data_k.loc[:, ['interest_name', audience_var]].to_csv(l_file, sep=',', index=False, encoding='utf-8')"
]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Compare Ex-pat interests\n",
+ "We've now mined the top 3000 interests for Hispanic Mexican ex-pats living in the US, so let's see how those stack up against native US Americans."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 121,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "original data has 3000 rows\n",
+ "clean data has 2100 rows\n",
+ "2100 results total\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " interest_id | \n",
+ " interest_name | \n",
+ " location | \n",
+ " ages_ranges | \n",
+ " behavior | \n",
+ " dau_audience | \n",
+ " mau_audience | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 6003349442621 | \n",
+ " Entertainment | \n",
+ " US | \n",
+ " {u'max': 65, u'min': 18} | \n",
+ " {u'and': [6023676072183], u'or': [600313321237... | \n",
+ " 26193599 | \n",
+ " 34000000 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 6003142505790 | \n",
+ " Facebook | \n",
+ " US | \n",
+ " {u'max': 65, u'min': 18} | \n",
+ " {u'and': [6023676072183], u'or': [600313321237... | \n",
+ " 22969411 | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 6003342621987 | \n",
+ " Social network | \n",
+ " US | \n",
+ " {u'max': 65, u'min': 18} | \n",
+ " {u'and': [6023676072183], u'or': [600313321237... | \n",
+ " 22028399 | \n",
+ " 29000000 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 6003167425934 | \n",
+ " Shopping and fashion | \n",
+ " US | \n",
+ " {u'max': 65, u'min': 18} | \n",
+ " {u'and': [6023676072183], u'or': [600313321237... | \n",
+ " 25855999 | \n",
+ " 32000000 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 6003985771306 | \n",
+ " Technology | \n",
+ " US | \n",
+ " {u'max': 65, u'min': 18} | \n",
+ " {u'and': [6023676072183], u'or': [600313321237... | \n",
+ " 25855999 | \n",
+ " 32000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " interest_id interest_name location ages_ranges \\\n",
+ "0 6003349442621 Entertainment US {u'max': 65, u'min': 18} \n",
+ "1 6003142505790 Facebook US {u'max': 65, u'min': 18} \n",
+ "2 6003342621987 Social network US {u'max': 65, u'min': 18} \n",
+ "3 6003167425934 Shopping and fashion US {u'max': 65, u'min': 18} \n",
+ "4 6003985771306 Technology US {u'max': 65, u'min': 18} \n",
+ "\n",
+ " behavior dau_audience \\\n",
+ "0 {u'and': [6023676072183], u'or': [600313321237... 26193599 \n",
+ "1 {u'and': [6023676072183], u'or': [600313321237... 22969411 \n",
+ "2 {u'and': [6023676072183], u'or': [600313321237... 22028399 \n",
+ "3 {u'and': [6023676072183], u'or': [600313321237... 25855999 \n",
+ "4 {u'and': [6023676072183], u'or': [600313321237... 25855999 \n",
+ "\n",
+ " mau_audience \n",
+ "0 34000000 \n",
+ "1 30000000 \n",
+ "2 29000000 \n",
+ "3 32000000 \n",
+ "4 32000000 "
+ ]
+ },
+ "execution_count": 121,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "from ast import literal_eval\n",
+ "expat_interests = pd.read_csv('../../dataframe_collecting_1527418768.csv', sep=',', index_col=0)\n",
+ "expat_interests = clean_interest_data(expat_interests)\n",
+ "print('%d results total'%(expat_interests.shape[0]))\n",
+ "expat_interests.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 122,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " interest_name | \n",
+ " mau_audience | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 524 | \n",
+ " New Tang Dynasty Television | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 468 | \n",
+ " A.N.S.W.E.R. | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 705 | \n",
+ " Canadian Albums Chart | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1740 | \n",
+ " Province | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1756 | \n",
+ " Act-i-vate | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1833 | \n",
+ " Indian people | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1845 | \n",
+ " Message | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1866 | \n",
+ " Suicide awareness | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 562 | \n",
+ " Allah | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 558 | \n",
+ " Dieting | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 530 | \n",
+ " Wide Open West | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1193 | \n",
+ " Ton | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1919 | \n",
+ " Conservatism | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 441 | \n",
+ " Realidade | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 2082 | \n",
+ " Lakh | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 2005 | \n",
+ " Lady | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 2018 | \n",
+ " Egyptians | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 2054 | \n",
+ " Hispanic and latino american culture | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 331 | \n",
+ " Lewis and Clark-class dry cargo ship | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 325 | \n",
+ " Entreprise | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 305 | \n",
+ " Islam | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 279 | \n",
+ " Fatigue (medical) | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 273 | \n",
+ " EveR | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 266 | \n",
+ " Christianity | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 242 | \n",
+ " Gyms | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 230 | \n",
+ " Muka | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1739 | \n",
+ " Stop consonant | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 709 | \n",
+ " Mystery meat navigation | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 718 | \n",
+ " Zumba | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 739 | \n",
+ " Acne vulgaris | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1350 | \n",
+ " family planning | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 994 | \n",
+ " Hotline | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1386 | \n",
+ " Obesity awareness | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1391 | \n",
+ " Mosque | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1402 | \n",
+ " Communist Party USA | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1414 | \n",
+ " Ampere-hour | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 952 | \n",
+ " Screenshot | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1420 | \n",
+ " Securite | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1282 | \n",
+ " Arabic language | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1458 | \n",
+ " Entity | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1469 | \n",
+ " Inflammation | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1265 | \n",
+ " List of districts of Turkey | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 892 | \n",
+ " Canadian Hot 100 | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1496 | \n",
+ " Bharatiya Janata Party | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 884 | \n",
+ " Muhammad | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 862 | \n",
+ " Sin | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 861 | \n",
+ " Quran | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1091 | \n",
+ " Hashtag | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 841 | \n",
+ " Ultra-prominent peak | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1581 | \n",
+ " Infection | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 809 | \n",
+ " Hiking | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 1637 | \n",
+ " Ramadan | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 751 | \n",
+ " Addiction | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 175 | \n",
+ " Nutrition | \n",
+ " 38000000 | \n",
+ "
\n",
+ " \n",
+ " 0 | \n",
+ " Entertainment | \n",
+ " 34000000 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " Hobbies and activities | \n",
+ " 33000000 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " Business and industry | \n",
+ " 32000000 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Shopping and fashion | \n",
+ " 32000000 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Technology | \n",
+ " 32000000 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " Music | \n",
+ " 31000000 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " Sports and outdoors | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " Food and drink | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Facebook | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " Sports | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " Entre Rios Province | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " Family and relationships | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Social network | \n",
+ " 29000000 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " Consumer electronics | \n",
+ " 29000000 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " Food | \n",
+ " 29000000 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " Instant messaging | \n",
+ " 28000000 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " Facebook Messenger | \n",
+ " 28000000 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " Family | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " Shopping | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " Reading | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " Games | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " Arts and music | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " Love | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 41 | \n",
+ " Business | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " Movies | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " Travel | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " Televisions | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " Education | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " Time | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " Fitness and wellness | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " Vehicles | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 45 | \n",
+ " TV | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " Beauty | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " Automobiles | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " Video games | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " Clothing | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " Life | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " Friendship | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 43 | \n",
+ " Finance | \n",
+ " 22000000 | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " Instagram | \n",
+ " 22000000 | \n",
+ "
\n",
+ " \n",
+ " 94 | \n",
+ " Product (business) | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 51 | \n",
+ " Sales | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 97 | \n",
+ " United States | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " Online shopping | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 49 | \n",
+ " Live events | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " Computers | \n",
+ " 20000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " interest_name mau_audience\n",
+ "524 New Tang Dynasty Television 38000000\n",
+ "468 A.N.S.W.E.R. 38000000\n",
+ "705 Canadian Albums Chart 38000000\n",
+ "1740 Province 38000000\n",
+ "1756 Act-i-vate 38000000\n",
+ "1833 Indian people 38000000\n",
+ "1845 Message 38000000\n",
+ "1866 Suicide awareness 38000000\n",
+ "562 Allah 38000000\n",
+ "558 Dieting 38000000\n",
+ "530 Wide Open West 38000000\n",
+ "1193 Ton 38000000\n",
+ "1919 Conservatism 38000000\n",
+ "441 Realidade 38000000\n",
+ "2082 Lakh 38000000\n",
+ "2005 Lady 38000000\n",
+ "2018 Egyptians 38000000\n",
+ "2054 Hispanic and latino american culture 38000000\n",
+ "331 Lewis and Clark-class dry cargo ship 38000000\n",
+ "325 Entreprise 38000000\n",
+ "305 Islam 38000000\n",
+ "279 Fatigue (medical) 38000000\n",
+ "273 EveR 38000000\n",
+ "266 Christianity 38000000\n",
+ "242 Gyms 38000000\n",
+ "230 Muka 38000000\n",
+ "1739 Stop consonant 38000000\n",
+ "709 Mystery meat navigation 38000000\n",
+ "718 Zumba 38000000\n",
+ "739 Acne vulgaris 38000000\n",
+ "1350 family planning 38000000\n",
+ "994 Hotline 38000000\n",
+ "1386 Obesity awareness 38000000\n",
+ "1391 Mosque 38000000\n",
+ "1402 Communist Party USA 38000000\n",
+ "1414 Ampere-hour 38000000\n",
+ "952 Screenshot 38000000\n",
+ "1420 Securite 38000000\n",
+ "1282 Arabic language 38000000\n",
+ "1458 Entity 38000000\n",
+ "1469 Inflammation 38000000\n",
+ "1265 List of districts of Turkey 38000000\n",
+ "892 Canadian Hot 100 38000000\n",
+ "1496 Bharatiya Janata Party 38000000\n",
+ "884 Muhammad 38000000\n",
+ "862 Sin 38000000\n",
+ "861 Quran 38000000\n",
+ "1091 Hashtag 38000000\n",
+ "841 Ultra-prominent peak 38000000\n",
+ "1581 Infection 38000000\n",
+ "809 Hiking 38000000\n",
+ "1637 Ramadan 38000000\n",
+ "751 Addiction 38000000\n",
+ "175 Nutrition 38000000\n",
+ "0 Entertainment 34000000\n",
+ "5 Hobbies and activities 33000000\n",
+ "10 Business and industry 32000000\n",
+ "3 Shopping and fashion 32000000\n",
+ "4 Technology 32000000\n",
+ "16 Music 31000000\n",
+ "8 Sports and outdoors 30000000\n",
+ "15 Food and drink 30000000\n",
+ "1 Facebook 30000000\n",
+ "9 Sports 30000000\n",
+ "37 Entre Rios Province 30000000\n",
+ "13 Family and relationships 30000000\n",
+ "2 Social network 29000000\n",
+ "11 Consumer electronics 29000000\n",
+ "18 Food 29000000\n",
+ "6 Instant messaging 28000000\n",
+ "7 Facebook Messenger 28000000\n",
+ "21 Family 27000000\n",
+ "12 Shopping 27000000\n",
+ "22 Reading 27000000\n",
+ "17 Games 27000000\n",
+ "28 Arts and music 26000000\n",
+ "23 Love 26000000\n",
+ "41 Business 26000000\n",
+ "19 Movies 26000000\n",
+ "20 Travel 26000000\n",
+ "24 Televisions 26000000\n",
+ "30 Education 24000000\n",
+ "40 Time 24000000\n",
+ "36 Fitness and wellness 24000000\n",
+ "34 Vehicles 24000000\n",
+ "45 TV 24000000\n",
+ "31 Beauty 24000000\n",
+ "39 Automobiles 23000000\n",
+ "26 Video games 23000000\n",
+ "29 Clothing 23000000\n",
+ "38 Life 23000000\n",
+ "32 Friendship 23000000\n",
+ "43 Finance 22000000\n",
+ "35 Instagram 22000000\n",
+ "94 Product (business) 21000000\n",
+ "51 Sales 21000000\n",
+ "97 United States 21000000\n",
+ "33 Online shopping 21000000\n",
+ "49 Live events 21000000\n",
+ "25 Computers 20000000"
+ ]
+ },
+ "execution_count": 122,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "audience_var = 'mau_audience'\n",
+ "expat_interests.sort_values(audience_var, inplace=True, ascending=False)\n",
+ "expat_interests.loc[:, ['interest_name', audience_var]].head(n=100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 123,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " interest_name | \n",
+ " mau_audience | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2013 | \n",
+ " Tamil cinema | \n",
+ " 270000 | \n",
+ "
\n",
+ " \n",
+ " 972 | \n",
+ " Hacker (computer security) | \n",
+ " 250000 | \n",
+ "
\n",
+ " \n",
+ " 1585 | \n",
+ " Export | \n",
+ " 250000 | \n",
+ "
\n",
+ " \n",
+ " 1640 | \n",
+ " Call centre | \n",
+ " 250000 | \n",
+ "
\n",
+ " \n",
+ " 1737 | \n",
+ " China Central Television | \n",
+ " 240000 | \n",
+ "
\n",
+ " \n",
+ " 2083 | \n",
+ " Departments of France | \n",
+ " 240000 | \n",
+ "
\n",
+ " \n",
+ " 1289 | \n",
+ " Man (Middle-earth) | \n",
+ " 240000 | \n",
+ "
\n",
+ " \n",
+ " 2092 | \n",
+ " Storey | \n",
+ " 230000 | \n",
+ "
\n",
+ " \n",
+ " 1351 | \n",
+ " Bangkok | \n",
+ " 230000 | \n",
+ "
\n",
+ " \n",
+ " 1731 | \n",
+ " Zara (retailer) | \n",
+ " 220000 | \n",
+ "
\n",
+ " \n",
+ " 1822 | \n",
+ " Hard drives | \n",
+ " 210000 | \n",
+ "
\n",
+ " \n",
+ " 1659 | \n",
+ " Sale, Greater Manchester | \n",
+ " 210000 | \n",
+ "
\n",
+ " \n",
+ " 1296 | \n",
+ " Lenovo | \n",
+ " 210000 | \n",
+ "
\n",
+ " \n",
+ " 1688 | \n",
+ " Qatar | \n",
+ " 200000 | \n",
+ "
\n",
+ " \n",
+ " 2093 | \n",
+ " Ultras | \n",
+ " 180000 | \n",
+ "
\n",
+ " \n",
+ " 1745 | \n",
+ " 4G | \n",
+ " 180000 | \n",
+ "
\n",
+ " \n",
+ " 924 | \n",
+ " Huawei | \n",
+ " 170000 | \n",
+ "
\n",
+ " \n",
+ " 2077 | \n",
+ " Reseller | \n",
+ " 170000 | \n",
+ "
\n",
+ " \n",
+ " 1808 | \n",
+ " Delhi | \n",
+ " 150000 | \n",
+ "
\n",
+ " \n",
+ " 1951 | \n",
+ " Turkish language | \n",
+ " 150000 | \n",
+ "
\n",
+ " \n",
+ " 1660 | \n",
+ " IPhone 5 | \n",
+ " 150000 | \n",
+ "
\n",
+ " \n",
+ " 1656 | \n",
+ " Middle Eastern cuisine | \n",
+ " 150000 | \n",
+ "
\n",
+ " \n",
+ " 1055 | \n",
+ " Million | \n",
+ " 140000 | \n",
+ "
\n",
+ " \n",
+ " 1937 | \n",
+ " Multi-core processor | \n",
+ " 140000 | \n",
+ "
\n",
+ " \n",
+ " 460 | \n",
+ " URL shortening | \n",
+ " 130000 | \n",
+ "
\n",
+ " \n",
+ " 1704 | \n",
+ " Bangladesh | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 791 | \n",
+ " truecaller | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 2035 | \n",
+ " Chinese New Year | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 2072 | \n",
+ " Prophets and messengers in Islam | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 2028 | \n",
+ " Nescafe | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 1190 | \n",
+ " Istanbul | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 1793 | \n",
+ " Cairo | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 1987 | \n",
+ " Holi | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 2008 | \n",
+ " Indonesian language | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 1403 | \n",
+ " Hijab | \n",
+ " 100000 | \n",
+ "
\n",
+ " \n",
+ " 1761 | \n",
+ " Jakarta | \n",
+ " 100000 | \n",
+ "
\n",
+ " \n",
+ " 1468 | \n",
+ " Arab world | \n",
+ " 93000 | \n",
+ "
\n",
+ " \n",
+ " 1722 | \n",
+ " Condominio | \n",
+ " 87000 | \n",
+ "
\n",
+ " \n",
+ " 617 | \n",
+ " Academia | \n",
+ " 85000 | \n",
+ "
\n",
+ " \n",
+ " 1980 | \n",
+ " African Union | \n",
+ " 84000 | \n",
+ "
\n",
+ " \n",
+ " 357 | \n",
+ " Government | \n",
+ " 83000 | \n",
+ "
\n",
+ " \n",
+ " 987 | \n",
+ " Cod | \n",
+ " 83000 | \n",
+ "
\n",
+ " \n",
+ " 1387 | \n",
+ " Sari | \n",
+ " 82000 | \n",
+ "
\n",
+ " \n",
+ " 1593 | \n",
+ " Wire transfer | \n",
+ " 81000 | \n",
+ "
\n",
+ " \n",
+ " 1705 | \n",
+ " Limited company | \n",
+ " 80000 | \n",
+ "
\n",
+ " \n",
+ " 1008 | \n",
+ " Indian Premier League | \n",
+ " 79000 | \n",
+ "
\n",
+ " \n",
+ " 2086 | \n",
+ " Urdu | \n",
+ " 74000 | \n",
+ "
\n",
+ " \n",
+ " 2097 | \n",
+ " Nokia | \n",
+ " 72000 | \n",
+ "
\n",
+ " \n",
+ " 552 | \n",
+ " Facebook for Every Phone | \n",
+ " 71000 | \n",
+ "
\n",
+ " \n",
+ " 1478 | \n",
+ " Heel (shoe) | \n",
+ " 55000 | \n",
+ "
\n",
+ " \n",
+ " 1297 | \n",
+ " Samsung Galaxy S III | \n",
+ " 52000 | \n",
+ "
\n",
+ " \n",
+ " 1698 | \n",
+ " My Talking Tom | \n",
+ " 41000 | \n",
+ "
\n",
+ " \n",
+ " 1644 | \n",
+ " Tamil language | \n",
+ " 37000 | \n",
+ "
\n",
+ " \n",
+ " 2041 | \n",
+ " Salman Khan | \n",
+ " 34000 | \n",
+ "
\n",
+ " \n",
+ " 1943 | \n",
+ " Legal personality | \n",
+ " 32000 | \n",
+ "
\n",
+ " \n",
+ " 950 | \n",
+ " Synthpop | \n",
+ " 17000 | \n",
+ "
\n",
+ " \n",
+ " 2053 | \n",
+ " Indo pop | \n",
+ " 16000 | \n",
+ "
\n",
+ " \n",
+ " 1911 | \n",
+ " Telugu language | \n",
+ " 14000 | \n",
+ "
\n",
+ " \n",
+ " 1861 | \n",
+ " Virat Kohli | \n",
+ " 13000 | \n",
+ "
\n",
+ " \n",
+ " 1558 | \n",
+ " Narendra Modi | \n",
+ " 11000 | \n",
+ "
\n",
+ " \n",
+ " 1915 | \n",
+ " BlackBerry Messenger | \n",
+ " 9300 | \n",
+ "
\n",
+ " \n",
+ " 1368 | \n",
+ " Vodafone | \n",
+ " 9000 | \n",
+ "
\n",
+ " \n",
+ " 1451 | \n",
+ " Flipkart | \n",
+ " 4700 | \n",
+ "
\n",
+ " \n",
+ " 1550 | \n",
+ " Supporters of FC Barcelona | \n",
+ " 4400 | \n",
+ "
\n",
+ " \n",
+ " 2003 | \n",
+ " Indian pop | \n",
+ " 4000 | \n",
+ "
\n",
+ " \n",
+ " 1948 | \n",
+ " CCTV News | \n",
+ " 3600 | \n",
+ "
\n",
+ " \n",
+ " 1527 | \n",
+ " British rock | \n",
+ " 3500 | \n",
+ "
\n",
+ " \n",
+ " 859 | \n",
+ " UC Browser | \n",
+ " 2900 | \n",
+ "
\n",
+ " \n",
+ " 1520 | \n",
+ " Value-added tax | \n",
+ " 2400 | \n",
+ "
\n",
+ " \n",
+ " 1729 | \n",
+ " Oppo Electronics | \n",
+ " 2100 | \n",
+ "
\n",
+ " \n",
+ " 810 | \n",
+ " Gender | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 795 | \n",
+ " Leaf | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 65 | \n",
+ " Books | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 1847 | \n",
+ " Motor vehicle | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 801 | \n",
+ " Card games | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 1851 | \n",
+ " Mining | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 789 | \n",
+ " People's Liberation Army Navy | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 458 | \n",
+ " LG Optimus L4 II | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 1854 | \n",
+ " Sydney | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 1842 | \n",
+ " Songwriter | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 1841 | \n",
+ " Gucci | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 75 | \n",
+ " Woman | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 79 | \n",
+ " Newspapers | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 2055 | \n",
+ " India News | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 87 | \n",
+ " WhatsApp | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 1850 | \n",
+ " Venezuela | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 792 | \n",
+ " Skiing | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 91 | \n",
+ " Nature | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 803 | \n",
+ " ITunes Store | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 806 | \n",
+ " Source code | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 903 | \n",
+ " Cinema of India | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 908 | \n",
+ " Mumbai | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 1629 | \n",
+ " Types of business entity | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 174 | \n",
+ " Dogs | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 784 | \n",
+ " Vegetarianism | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 807 | \n",
+ " Musician | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 1397 | \n",
+ " Franchising | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 798 | \n",
+ " Hollywood | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 811 | \n",
+ " Carnival | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ " 913 | \n",
+ " Pakistan | \n",
+ " 1000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " interest_name mau_audience\n",
+ "2013 Tamil cinema 270000\n",
+ "972 Hacker (computer security) 250000\n",
+ "1585 Export 250000\n",
+ "1640 Call centre 250000\n",
+ "1737 China Central Television 240000\n",
+ "2083 Departments of France 240000\n",
+ "1289 Man (Middle-earth) 240000\n",
+ "2092 Storey 230000\n",
+ "1351 Bangkok 230000\n",
+ "1731 Zara (retailer) 220000\n",
+ "1822 Hard drives 210000\n",
+ "1659 Sale, Greater Manchester 210000\n",
+ "1296 Lenovo 210000\n",
+ "1688 Qatar 200000\n",
+ "2093 Ultras 180000\n",
+ "1745 4G 180000\n",
+ "924 Huawei 170000\n",
+ "2077 Reseller 170000\n",
+ "1808 Delhi 150000\n",
+ "1951 Turkish language 150000\n",
+ "1660 IPhone 5 150000\n",
+ "1656 Middle Eastern cuisine 150000\n",
+ "1055 Million 140000\n",
+ "1937 Multi-core processor 140000\n",
+ "460 URL shortening 130000\n",
+ "1704 Bangladesh 120000\n",
+ "791 truecaller 120000\n",
+ "2035 Chinese New Year 120000\n",
+ "2072 Prophets and messengers in Islam 120000\n",
+ "2028 Nescafe 120000\n",
+ "1190 Istanbul 120000\n",
+ "1793 Cairo 120000\n",
+ "1987 Holi 120000\n",
+ "2008 Indonesian language 120000\n",
+ "1403 Hijab 100000\n",
+ "1761 Jakarta 100000\n",
+ "1468 Arab world 93000\n",
+ "1722 Condominio 87000\n",
+ "617 Academia 85000\n",
+ "1980 African Union 84000\n",
+ "357 Government 83000\n",
+ "987 Cod 83000\n",
+ "1387 Sari 82000\n",
+ "1593 Wire transfer 81000\n",
+ "1705 Limited company 80000\n",
+ "1008 Indian Premier League 79000\n",
+ "2086 Urdu 74000\n",
+ "2097 Nokia 72000\n",
+ "552 Facebook for Every Phone 71000\n",
+ "1478 Heel (shoe) 55000\n",
+ "1297 Samsung Galaxy S III 52000\n",
+ "1698 My Talking Tom 41000\n",
+ "1644 Tamil language 37000\n",
+ "2041 Salman Khan 34000\n",
+ "1943 Legal personality 32000\n",
+ "950 Synthpop 17000\n",
+ "2053 Indo pop 16000\n",
+ "1911 Telugu language 14000\n",
+ "1861 Virat Kohli 13000\n",
+ "1558 Narendra Modi 11000\n",
+ "1915 BlackBerry Messenger 9300\n",
+ "1368 Vodafone 9000\n",
+ "1451 Flipkart 4700\n",
+ "1550 Supporters of FC Barcelona 4400\n",
+ "2003 Indian pop 4000\n",
+ "1948 CCTV News 3600\n",
+ "1527 British rock 3500\n",
+ "859 UC Browser 2900\n",
+ "1520 Value-added tax 2400\n",
+ "1729 Oppo Electronics 2100\n",
+ "810 Gender 1000\n",
+ "795 Leaf 1000\n",
+ "65 Books 1000\n",
+ "1847 Motor vehicle 1000\n",
+ "801 Card games 1000\n",
+ "1851 Mining 1000\n",
+ "789 People's Liberation Army Navy 1000\n",
+ "458 LG Optimus L4 II 1000\n",
+ "1854 Sydney 1000\n",
+ "1842 Songwriter 1000\n",
+ "1841 Gucci 1000\n",
+ "75 Woman 1000\n",
+ "79 Newspapers 1000\n",
+ "2055 India News 1000\n",
+ "87 WhatsApp 1000\n",
+ "1850 Venezuela 1000\n",
+ "792 Skiing 1000\n",
+ "91 Nature 1000\n",
+ "803 ITunes Store 1000\n",
+ "806 Source code 1000\n",
+ "903 Cinema of India 1000\n",
+ "908 Mumbai 1000\n",
+ "1629 Types of business entity 1000\n",
+ "174 Dogs 1000\n",
+ "784 Vegetarianism 1000\n",
+ "807 Musician 1000\n",
+ "1397 Franchising 1000\n",
+ "798 Hollywood 1000\n",
+ "811 Carnival 1000\n",
+ "913 Pakistan 1000"
+ ]
+ },
+ "execution_count": 123,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "expat_interests.loc[:, ['interest_name', audience_var]].tail(n=100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Looks like we'll need to filter out the max_pop and min_pop values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 124,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " interest_name | \n",
+ " mau_audience | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " Entertainment | \n",
+ " 34000000 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " Hobbies and activities | \n",
+ " 33000000 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " Business and industry | \n",
+ " 32000000 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " Shopping and fashion | \n",
+ " 32000000 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " Technology | \n",
+ " 32000000 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " Music | \n",
+ " 31000000 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " Sports and outdoors | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " Food and drink | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " Facebook | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " Sports | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " Entre Rios Province | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " Family and relationships | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " Social network | \n",
+ " 29000000 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " Consumer electronics | \n",
+ " 29000000 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " Food | \n",
+ " 29000000 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " Instant messaging | \n",
+ " 28000000 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " Facebook Messenger | \n",
+ " 28000000 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " Family | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " Shopping | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " Reading | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " Games | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " Arts and music | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " Love | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 41 | \n",
+ " Business | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " Movies | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " Travel | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " Televisions | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " Education | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " Time | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " Fitness and wellness | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " Vehicles | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 45 | \n",
+ " TV | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " Beauty | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " Automobiles | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " Video games | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " Clothing | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " Life | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " Friendship | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 43 | \n",
+ " Finance | \n",
+ " 22000000 | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " Instagram | \n",
+ " 22000000 | \n",
+ "
\n",
+ " \n",
+ " 94 | \n",
+ " Product (business) | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 51 | \n",
+ " Sales | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 97 | \n",
+ " United States | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " Online shopping | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 49 | \n",
+ " Live events | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " Computers | \n",
+ " 20000000 | \n",
+ "
\n",
+ " \n",
+ " 61 | \n",
+ " Pets | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 54 | \n",
+ " Politics and social issues | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 46 | \n",
+ " Design | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 44 | \n",
+ " World | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 47 | \n",
+ " Beverages | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 52 | \n",
+ " Online | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 68 | \n",
+ " Photograph | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 60 | \n",
+ " Child | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 53 | \n",
+ " Fashion accessories | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 42 | \n",
+ " Association football (Soccer) | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " Photography | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 154 | \n",
+ " Victory | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " Facebook for Android | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 77 | \n",
+ " Dance | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 64 | \n",
+ " Price | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 130 | \n",
+ " Sales promotion | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 151 | \n",
+ " IPhone | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 99 | \n",
+ " Home | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 95 | \n",
+ " Motherhood | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 92 | \n",
+ " Home and garden | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 165 | \n",
+ " Twitter | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 69 | \n",
+ " Mobile app | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 66 | \n",
+ " Video | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 63 | \n",
+ " Human | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 90 | \n",
+ " Restaurants | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 56 | \n",
+ " Cosmetics | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 88 | \n",
+ " Cooking | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 81 | \n",
+ " Personal finance | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 78 | \n",
+ " Image | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 67 | \n",
+ " Current events | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 55 | \n",
+ " Happiness | \n",
+ " 14000000 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " Mobile phones | \n",
+ " 14000000 | \n",
+ "
\n",
+ " \n",
+ " 412 | \n",
+ " Mexico | \n",
+ " 14000000 | \n",
+ "
\n",
+ " \n",
+ " 59 | \n",
+ " Shoes | \n",
+ " 14000000 | \n",
+ "
\n",
+ " \n",
+ " 70 | \n",
+ " Pop music | \n",
+ " 14000000 | \n",
+ "
\n",
+ " \n",
+ " 354 | \n",
+ " Viral video | \n",
+ " 14000000 | \n",
+ "
\n",
+ " \n",
+ " 82 | \n",
+ " Brand | \n",
+ " 14000000 | \n",
+ "
\n",
+ " \n",
+ " 89 | \n",
+ " Gratitude | \n",
+ " 13000000 | \n",
+ "
\n",
+ " \n",
+ " 103 | \n",
+ " Coupons | \n",
+ " 13000000 | \n",
+ "
\n",
+ " \n",
+ " 135 | \n",
+ " Rings of Saturn | \n",
+ " 13000000 | \n",
+ "
\n",
+ " \n",
+ " 62 | \n",
+ " Free software | \n",
+ " 13000000 | \n",
+ "
\n",
+ " \n",
+ " 119 | \n",
+ " Outdoor recreation | \n",
+ " 13000000 | \n",
+ "
\n",
+ " \n",
+ " 73 | \n",
+ " Rock music | \n",
+ " 13000000 | \n",
+ "
\n",
+ " \n",
+ " 93 | \n",
+ " House | \n",
+ " 13000000 | \n",
+ "
\n",
+ " \n",
+ " 148 | \n",
+ " Facebook for Iphone | \n",
+ " 13000000 | \n",
+ "
\n",
+ " \n",
+ " 86 | \n",
+ " People | \n",
+ " 13000000 | \n",
+ "
\n",
+ " \n",
+ " 158 | \n",
+ " Physical exercise | \n",
+ " 12000000 | \n",
+ "
\n",
+ " \n",
+ " 201 | \n",
+ " Freight transport | \n",
+ " 12000000 | \n",
+ "
\n",
+ " \n",
+ " 84 | \n",
+ " Website | \n",
+ " 12000000 | \n",
+ "
\n",
+ " \n",
+ " 80 | \n",
+ " Country | \n",
+ " 12000000 | \n",
+ "
\n",
+ " \n",
+ " 133 | \n",
+ " Alcoholic beverages | \n",
+ " 12000000 | \n",
+ "
\n",
+ " \n",
+ " 58 | \n",
+ " Music videos | \n",
+ " 12000000 | \n",
+ "
\n",
+ " \n",
+ " 410 | \n",
+ " Wish | \n",
+ " 12000000 | \n",
+ "
\n",
+ " \n",
+ " 116 | \n",
+ " Learning | \n",
+ " 12000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " interest_name mau_audience\n",
+ "0 Entertainment 34000000\n",
+ "5 Hobbies and activities 33000000\n",
+ "10 Business and industry 32000000\n",
+ "3 Shopping and fashion 32000000\n",
+ "4 Technology 32000000\n",
+ "16 Music 31000000\n",
+ "8 Sports and outdoors 30000000\n",
+ "15 Food and drink 30000000\n",
+ "1 Facebook 30000000\n",
+ "9 Sports 30000000\n",
+ "37 Entre Rios Province 30000000\n",
+ "13 Family and relationships 30000000\n",
+ "2 Social network 29000000\n",
+ "11 Consumer electronics 29000000\n",
+ "18 Food 29000000\n",
+ "6 Instant messaging 28000000\n",
+ "7 Facebook Messenger 28000000\n",
+ "21 Family 27000000\n",
+ "12 Shopping 27000000\n",
+ "22 Reading 27000000\n",
+ "17 Games 27000000\n",
+ "28 Arts and music 26000000\n",
+ "23 Love 26000000\n",
+ "41 Business 26000000\n",
+ "19 Movies 26000000\n",
+ "20 Travel 26000000\n",
+ "24 Televisions 26000000\n",
+ "30 Education 24000000\n",
+ "40 Time 24000000\n",
+ "36 Fitness and wellness 24000000\n",
+ "34 Vehicles 24000000\n",
+ "45 TV 24000000\n",
+ "31 Beauty 24000000\n",
+ "39 Automobiles 23000000\n",
+ "26 Video games 23000000\n",
+ "29 Clothing 23000000\n",
+ "38 Life 23000000\n",
+ "32 Friendship 23000000\n",
+ "43 Finance 22000000\n",
+ "35 Instagram 22000000\n",
+ "94 Product (business) 21000000\n",
+ "51 Sales 21000000\n",
+ "97 United States 21000000\n",
+ "33 Online shopping 21000000\n",
+ "49 Live events 21000000\n",
+ "25 Computers 20000000\n",
+ "61 Pets 19000000\n",
+ "54 Politics and social issues 19000000\n",
+ "46 Design 19000000\n",
+ "44 World 19000000\n",
+ "47 Beverages 19000000\n",
+ "52 Online 18000000\n",
+ "68 Photograph 18000000\n",
+ "60 Child 18000000\n",
+ "53 Fashion accessories 18000000\n",
+ "42 Association football (Soccer) 18000000\n",
+ "50 Photography 17000000\n",
+ "154 Victory 17000000\n",
+ "14 Facebook for Android 17000000\n",
+ "77 Dance 17000000\n",
+ "64 Price 17000000\n",
+ "130 Sales promotion 16000000\n",
+ "151 IPhone 16000000\n",
+ "99 Home 16000000\n",
+ "95 Motherhood 16000000\n",
+ "92 Home and garden 16000000\n",
+ "165 Twitter 16000000\n",
+ "69 Mobile app 16000000\n",
+ "66 Video 16000000\n",
+ "63 Human 16000000\n",
+ "90 Restaurants 15000000\n",
+ "56 Cosmetics 15000000\n",
+ "88 Cooking 15000000\n",
+ "81 Personal finance 15000000\n",
+ "78 Image 15000000\n",
+ "67 Current events 15000000\n",
+ "55 Happiness 14000000\n",
+ "27 Mobile phones 14000000\n",
+ "412 Mexico 14000000\n",
+ "59 Shoes 14000000\n",
+ "70 Pop music 14000000\n",
+ "354 Viral video 14000000\n",
+ "82 Brand 14000000\n",
+ "89 Gratitude 13000000\n",
+ "103 Coupons 13000000\n",
+ "135 Rings of Saturn 13000000\n",
+ "62 Free software 13000000\n",
+ "119 Outdoor recreation 13000000\n",
+ "73 Rock music 13000000\n",
+ "93 House 13000000\n",
+ "148 Facebook for Iphone 13000000\n",
+ "86 People 13000000\n",
+ "158 Physical exercise 12000000\n",
+ "201 Freight transport 12000000\n",
+ "84 Website 12000000\n",
+ "80 Country 12000000\n",
+ "133 Alcoholic beverages 12000000\n",
+ "58 Music videos 12000000\n",
+ "410 Wish 12000000\n",
+ "116 Learning 12000000"
+ ]
+ },
+ "execution_count": 124,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.set_option('display.max_rows', 100)\n",
+ "max_expat_audience = expat_interests.loc[:, audience_var].max()\n",
+ "min_expat_audience = expat_interests.loc[:, audience_var].min()\n",
+ "expat_interests_clean = expat_interests[(expat_interests.loc[:, audience_var] < max_expat_audience) &\n",
+ " (expat_interests.loc[:, audience_var] > min_expat_audience)]\n",
+ "expat_interests_clean.loc[:, ['interest_name', audience_var]].head(n=100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "These all look pretty reasonable! Who doesn't like `Coupons`?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's match the distribution with the American native interests, normalize for population size and then compare the distributions (overlapping histogram?? yes)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "original data has 4834 rows\n",
+ "clean data has 4834 rows\n"
+ ]
+ }
+ ],
+ "source": [
+ "US_MX_interests = pd.read_csv('../../data/query_results/US_MX_native_interests_top_3000_interest_new_tmp.tsv', sep='\\t', index_col=False)\n",
+ "US_MX_interests = clean_interest_data(US_MX_interests)\n",
+ "US_interests = US_MX_interests[US_MX_interests.loc[:, 'location'] == 'US']\n",
+ "MX_interests = US_MX_interests[US_MX_interests.loc[:, 'location'] == 'MX']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# get rid of max values\n",
+ "max_US_audience = US_interests.loc[:, audience_var].max()\n",
+ "max_MX_audience = MX_interests.loc[:, audience_var].max()\n",
+ "min_US_audience = US_interests.loc[:, audience_var].min()\n",
+ "min_MX_audience = MX_interests.loc[:, audience_var].min()\n",
+ "US_interests = US_interests[(US_interests.loc[:, audience_var] < max_US_audience) &\n",
+ " (US_interests.loc[:, audience_var] > min_US_audience)]\n",
+ "MX_interests = MX_interests[(MX_interests.loc[:, audience_var] < max_MX_audience) &\n",
+ " (MX_interests.loc[:, audience_var] > min_MX_audience)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " interest_name | \n",
+ " mau_audience | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2 | \n",
+ " Sports and outdoors | \n",
+ " 103000000 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " Automobiles | \n",
+ " 77000000 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " Politics and social issues | \n",
+ " 70000000 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " Live events | \n",
+ " 68000000 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " Home and garden | \n",
+ " 57000000 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " Li Ke | \n",
+ " 48000000 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " Homo sapiens | \n",
+ " 45000000 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " Imagem | \n",
+ " 41000000 | \n",
+ "
\n",
+ " \n",
+ " 1368 | \n",
+ " Walmart | \n",
+ " 39000000 | \n",
+ "
\n",
+ " \n",
+ " 58 | \n",
+ " Pinterest | \n",
+ " 37000000 | \n",
+ "
\n",
+ " \n",
+ " 904 | \n",
+ " Hu Ge | \n",
+ " 35000000 | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " Real estate | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 684 | \n",
+ " People (magazine) | \n",
+ " 30000000 | \n",
+ "
\n",
+ " \n",
+ " 604 | \n",
+ " U.S. state | \n",
+ " 29000000 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " Women's clothing | \n",
+ " 29000000 | \n",
+ "
\n",
+ " \n",
+ " 126 | \n",
+ " Meme | \n",
+ " 28000000 | \n",
+ "
\n",
+ " \n",
+ " 1314 | \n",
+ " Republican Party (United States) | \n",
+ " 28000000 | \n",
+ "
\n",
+ " \n",
+ " 1374 | \n",
+ " Mother's Day | \n",
+ " 28000000 | \n",
+ "
\n",
+ " \n",
+ " 3362 | \n",
+ " Pandora Radio | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 560 | \n",
+ " Donald Trump | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 498 | \n",
+ " Hollywood | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " Software | \n",
+ " 27000000 | \n",
+ "
\n",
+ " \n",
+ " 548 | \n",
+ " Symptom | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 98 | \n",
+ " Netflix | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 1302 | \n",
+ " Popular music | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 62 | \n",
+ " Wealth | \n",
+ " 26000000 | \n",
+ "
\n",
+ " \n",
+ " 52 | \n",
+ " Streaming media | \n",
+ " 25000000 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " Spotify | \n",
+ " 25000000 | \n",
+ "
\n",
+ " \n",
+ " 630 | \n",
+ " Patient | \n",
+ " 25000000 | \n",
+ "
\n",
+ " \n",
+ " 894 | \n",
+ " Democratic Party (United States) | \n",
+ " 25000000 | \n",
+ "
\n",
+ " \n",
+ " 82 | \n",
+ " Exhibition game | \n",
+ " 25000000 | \n",
+ "
\n",
+ " \n",
+ " 688 | \n",
+ " BuzzFeed | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 474 | \n",
+ " TV game shows | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 1404 | \n",
+ " Florida | \n",
+ " 24000000 | \n",
+ "
\n",
+ " \n",
+ " 1634 | \n",
+ " OMG (song) | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 862 | \n",
+ " National Football League | \n",
+ " 23000000 | \n",
+ "
\n",
+ " \n",
+ " 208 | \n",
+ " Virus | \n",
+ " 22000000 | \n",
+ "
\n",
+ " \n",
+ " 146 | \n",
+ " Trucks | \n",
+ " 22000000 | \n",
+ "
\n",
+ " \n",
+ " 1494 | \n",
+ " Real estate broker | \n",
+ " 22000000 | \n",
+ "
\n",
+ " \n",
+ " 158 | \n",
+ " High school | \n",
+ " 22000000 | \n",
+ "
\n",
+ " \n",
+ " 48 | \n",
+ " Vacations | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 1364 | \n",
+ " Texas | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 106 | \n",
+ " Military | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 218 | \n",
+ " North America | \n",
+ " 21000000 | \n",
+ "
\n",
+ " \n",
+ " 1058 | \n",
+ " College football | \n",
+ " 20000000 | \n",
+ "
\n",
+ " \n",
+ " 462 | \n",
+ " Grandparent | \n",
+ " 20000000 | \n",
+ "
\n",
+ " \n",
+ " 3478 | \n",
+ " The Weather Channel | \n",
+ " 20000000 | \n",
+ "
\n",
+ " \n",
+ " 2386 | \n",
+ " Variety show | \n",
+ " 20000000 | \n",
+ "
\n",
+ " \n",
+ " 290 | \n",
+ " President of the United States | \n",
+ " 20000000 | \n",
+ "
\n",
+ " \n",
+ " 782 | \n",
+ " Tasty | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 152 | \n",
+ " Hunting | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 102 | \n",
+ " Barbecue | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 1502 | \n",
+ " National Football League on television | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 312 | \n",
+ " Home (2009 film) | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 316 | \n",
+ " Truth | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 1628 | \n",
+ " County (United States) | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 276 | \n",
+ " Job | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 348 | \n",
+ " Fishing | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 1962 | \n",
+ " Limited liability company | \n",
+ " 19000000 | \n",
+ "
\n",
+ " \n",
+ " 370 | \n",
+ " Beyin | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 528 | \n",
+ " New York City | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 588 | \n",
+ " Nursing | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 762 | \n",
+ " California | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 124 | \n",
+ " Health care | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 230 | \n",
+ " Cancer awareness | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 92 | \n",
+ " Dinner | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 68 | \n",
+ " Renting | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 2056 | \n",
+ " County seat | \n",
+ " 18000000 | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " Short Message Service | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 3148 | \n",
+ " NBC | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 56 | \n",
+ " Music download | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 1338 | \n",
+ " Quiz | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 278 | \n",
+ " Farm | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 758 | \n",
+ " Swimsuit | \n",
+ " 17000000 | \n",
+ "
\n",
+ " \n",
+ " 2404 | \n",
+ " Groupon | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 532 | \n",
+ " National Basketball Association | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 3076 | \n",
+ " American folk music | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 222 | \n",
+ " Acting | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 1136 | \n",
+ " Boyfriend | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 1142 | \n",
+ " Food Network | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 3280 | \n",
+ " Genius | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 710 | \n",
+ " Internet meme | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 380 | \n",
+ " Camping | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 2650 | \n",
+ " Rugby league | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 994 | \n",
+ " Window | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 280 | \n",
+ " Bathing | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 972 | \n",
+ " Character (arts) | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 2756 | \n",
+ " America (band) | \n",
+ " 16000000 | \n",
+ "
\n",
+ " \n",
+ " 1198 | \n",
+ " Popular culture | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 734 | \n",
+ " Grilling | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 324 | \n",
+ " Day school | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 1694 | \n",
+ " Try | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 472 | \n",
+ " Lawyer | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 302 | \n",
+ " Sense | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 314 | \n",
+ " Performing arts | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 86 | \n",
+ " Phil Spector | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 4592 | \n",
+ " Old age | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " Men's clothing | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 70 | \n",
+ " Chef | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ " 3842 | \n",
+ " Medical sign | \n",
+ " 15000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " interest_name mau_audience\n",
+ "2 Sports and outdoors 103000000\n",
+ "12 Automobiles 77000000\n",
+ "16 Politics and social issues 70000000\n",
+ "14 Live events 68000000\n",
+ "20 Home and garden 57000000\n",
+ "24 Li Ke 48000000\n",
+ "28 Homo sapiens 45000000\n",
+ "26 Imagem 41000000\n",
+ "1368 Walmart 39000000\n",
+ "58 Pinterest 37000000\n",
+ "904 Hu Ge 35000000\n",
+ "38 Real estate 30000000\n",
+ "684 People (magazine) 30000000\n",
+ "604 U.S. state 29000000\n",
+ "22 Women's clothing 29000000\n",
+ "126 Meme 28000000\n",
+ "1314 Republican Party (United States) 28000000\n",
+ "1374 Mother's Day 28000000\n",
+ "3362 Pandora Radio 27000000\n",
+ "560 Donald Trump 27000000\n",
+ "498 Hollywood 27000000\n",
+ "18 Software 27000000\n",
+ "548 Symptom 26000000\n",
+ "98 Netflix 26000000\n",
+ "1302 Popular music 26000000\n",
+ "62 Wealth 26000000\n",
+ "52 Streaming media 25000000\n",
+ "36 Spotify 25000000\n",
+ "630 Patient 25000000\n",
+ "894 Democratic Party (United States) 25000000\n",
+ "82 Exhibition game 25000000\n",
+ "688 BuzzFeed 24000000\n",
+ "474 TV game shows 24000000\n",
+ "1404 Florida 24000000\n",
+ "1634 OMG (song) 23000000\n",
+ "862 National Football League 23000000\n",
+ "208 Virus 22000000\n",
+ "146 Trucks 22000000\n",
+ "1494 Real estate broker 22000000\n",
+ "158 High school 22000000\n",
+ "48 Vacations 21000000\n",
+ "1364 Texas 21000000\n",
+ "106 Military 21000000\n",
+ "218 North America 21000000\n",
+ "1058 College football 20000000\n",
+ "462 Grandparent 20000000\n",
+ "3478 The Weather Channel 20000000\n",
+ "2386 Variety show 20000000\n",
+ "290 President of the United States 20000000\n",
+ "782 Tasty 19000000\n",
+ "152 Hunting 19000000\n",
+ "102 Barbecue 19000000\n",
+ "1502 National Football League on television 19000000\n",
+ "312 Home (2009 film) 19000000\n",
+ "316 Truth 19000000\n",
+ "1628 County (United States) 19000000\n",
+ "276 Job 19000000\n",
+ "348 Fishing 19000000\n",
+ "1962 Limited liability company 19000000\n",
+ "370 Beyin 18000000\n",
+ "528 New York City 18000000\n",
+ "588 Nursing 18000000\n",
+ "762 California 18000000\n",
+ "124 Health care 18000000\n",
+ "230 Cancer awareness 18000000\n",
+ "92 Dinner 18000000\n",
+ "68 Renting 18000000\n",
+ "2056 County seat 18000000\n",
+ "50 Short Message Service 17000000\n",
+ "3148 NBC 17000000\n",
+ "56 Music download 17000000\n",
+ "1338 Quiz 17000000\n",
+ "278 Farm 17000000\n",
+ "758 Swimsuit 17000000\n",
+ "2404 Groupon 16000000\n",
+ "532 National Basketball Association 16000000\n",
+ "3076 American folk music 16000000\n",
+ "222 Acting 16000000\n",
+ "1136 Boyfriend 16000000\n",
+ "1142 Food Network 16000000\n",
+ "3280 Genius 16000000\n",
+ "710 Internet meme 16000000\n",
+ "380 Camping 16000000\n",
+ "2650 Rugby league 16000000\n",
+ "994 Window 16000000\n",
+ "280 Bathing 16000000\n",
+ "972 Character (arts) 16000000\n",
+ "2756 America (band) 16000000\n",
+ "1198 Popular culture 15000000\n",
+ "734 Grilling 15000000\n",
+ "324 Day school 15000000\n",
+ "1694 Try 15000000\n",
+ "472 Lawyer 15000000\n",
+ "302 Sense 15000000\n",
+ "314 Performing arts 15000000\n",
+ "86 Phil Spector 15000000\n",
+ "4592 Old age 15000000\n",
+ "30 Men's clothing 15000000\n",
+ "70 Chef 15000000\n",
+ "3842 Medical sign 15000000"
+ ]
+ },
+ "execution_count": 66,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "US_interests.sort_values(audience_var, inplace=True, ascending=False)\n",
+ "US_interests.loc[:, ['interest_name', audience_var]].head(n=100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " interest_name | \n",
+ " mau_audience | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2798 | \n",
+ " African Union | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 3682 | \n",
+ " Space age pop | \n",
+ " 120000 | \n",
+ "
\n",
+ " \n",
+ " 4248 | \n",
+ " Worldbeat | \n",
+ " 110000 | \n",
+ "
\n",
+ " \n",
+ " 2070 | \n",
+ " Franco De Vita | \n",
+ " 110000 | \n",
+ "
\n",
+ " \n",
+ " 4788 | \n",
+ " Public sector | \n",
+ " 110000 | \n",
+ "
\n",
+ " \n",
+ " 1444 | \n",
+ " Samsung Galaxy S III | \n",
+ " 110000 | \n",
+ "
\n",
+ " \n",
+ " 3586 | \n",
+ " Handball | \n",
+ " 110000 | \n",
+ "
\n",
+ " \n",
+ " 3724 | \n",
+ " International News Service v. Associated Press | \n",
+ " 110000 | \n",
+ "
\n",
+ " \n",
+ " 1798 | \n",
+ " Heel (shoe) | \n",
+ " 110000 | \n",
+ "
\n",
+ " \n",
+ " 3600 | \n",
+ " Ronaldinho | \n",
+ " 100000 | \n",
+ "
\n",
+ " \n",
+ " 4776 | \n",
+ " Ottoman Empire | \n",
+ " 100000 | \n",
+ "
\n",
+ " \n",
+ " 1778 | \n",
+ " Arab world | \n",
+ " 100000 | \n",
+ "
\n",
+ " \n",
+ " 2724 | \n",
+ " Legal personality | \n",
+ " 98000 | \n",
+ "
\n",
+ " \n",
+ " 4448 | \n",
+ " Comune | \n",
+ " 93000 | \n",
+ "
\n",
+ " \n",
+ " 3864 | \n",
+ " Member states of the Arab League | \n",
+ " 92000 | \n",
+ "
\n",
+ " \n",
+ " 3348 | \n",
+ " Tunisia | \n",
+ " 92000 | \n",
+ "
\n",
+ " \n",
+ " 3672 | \n",
+ " Jangle pop | \n",
+ " 91000 | \n",
+ "
\n",
+ " \n",
+ " 2242 | \n",
+ " Spain national under-21 football team | \n",
+ " 88000 | \n",
+ "
\n",
+ " \n",
+ " 1590 | \n",
+ " F.C. Porto | \n",
+ " 85000 | \n",
+ "
\n",
+ " \n",
+ " 4470 | \n",
+ " Juventus F.C. | \n",
+ " 85000 | \n",
+ "
\n",
+ " \n",
+ " 3680 | \n",
+ " Malaysian pop | \n",
+ " 85000 | \n",
+ "
\n",
+ " \n",
+ " 3178 | \n",
+ " Argentina national football team | \n",
+ " 85000 | \n",
+ "
\n",
+ " \n",
+ " 3480 | \n",
+ " Deepika Padukone | \n",
+ " 81000 | \n",
+ "
\n",
+ " \n",
+ " 3196 | \n",
+ " Kuwait | \n",
+ " 79000 | \n",
+ "
\n",
+ " \n",
+ " 3522 | \n",
+ " Sheikh | \n",
+ " 78000 | \n",
+ "
\n",
+ " \n",
+ " 3518 | \n",
+ " States and union territories of India | \n",
+ " 77000 | \n",
+ "
\n",
+ " \n",
+ " 1432 | \n",
+ " El Clasico | \n",
+ " 76000 | \n",
+ "
\n",
+ " \n",
+ " 4270 | \n",
+ " Sport Club Internacional | \n",
+ " 75000 | \n",
+ "
\n",
+ " \n",
+ " 4478 | \n",
+ " Ali | \n",
+ " 73000 | \n",
+ "
\n",
+ " \n",
+ " 3788 | \n",
+ " Renault | \n",
+ " 70000 | \n",
+ "
\n",
+ " \n",
+ " 4010 | \n",
+ " Audi A7 | \n",
+ " 69000 | \n",
+ "
\n",
+ " \n",
+ " 3198 | \n",
+ " Thai baht | \n",
+ " 68000 | \n",
+ "
\n",
+ " \n",
+ " 4122 | \n",
+ " A.C. Milan | \n",
+ " 66000 | \n",
+ "
\n",
+ " \n",
+ " 3008 | \n",
+ " Urdu | \n",
+ " 66000 | \n",
+ "
\n",
+ " \n",
+ " 2234 | \n",
+ " My Talking Tom | \n",
+ " 66000 | \n",
+ "
\n",
+ " \n",
+ " 3086 | \n",
+ " Shah Rukh Khan | \n",
+ " 65000 | \n",
+ "
\n",
+ " \n",
+ " 4476 | \n",
+ " Quezon City | \n",
+ " 65000 | \n",
+ "
\n",
+ " \n",
+ " 3896 | \n",
+ " Cable | \n",
+ " 65000 | \n",
+ "
\n",
+ " \n",
+ " 3954 | \n",
+ " Vivo (telecommunications) | \n",
+ " 61000 | \n",
+ "
\n",
+ " \n",
+ " 1452 | \n",
+ " Peso | \n",
+ " 58000 | \n",
+ "
\n",
+ " \n",
+ " 2892 | \n",
+ " Nescafe | \n",
+ " 58000 | \n",
+ "
\n",
+ " \n",
+ " 4386 | \n",
+ " 100 metres | \n",
+ " 57000 | \n",
+ "
\n",
+ " \n",
+ " 3534 | \n",
+ " SMS (hydrology software) | \n",
+ " 56000 | \n",
+ "
\n",
+ " \n",
+ " 3326 | \n",
+ " Algeria | \n",
+ " 53000 | \n",
+ "
\n",
+ " \n",
+ " 3378 | \n",
+ " Atletico Madrid | \n",
+ " 53000 | \n",
+ "
\n",
+ " \n",
+ " 4338 | \n",
+ " Xiaomi | \n",
+ " 51000 | \n",
+ "
\n",
+ " \n",
+ " 3866 | \n",
+ " Rede Globo | \n",
+ " 49000 | \n",
+ "
\n",
+ " \n",
+ " 3578 | \n",
+ " Russian pop | \n",
+ " 48000 | \n",
+ "
\n",
+ " \n",
+ " 3890 | \n",
+ " Frases | \n",
+ " 47000 | \n",
+ "
\n",
+ " \n",
+ " 4352 | \n",
+ " Shraddha Kapoor | \n",
+ " 47000 | \n",
+ "
\n",
+ " \n",
+ " 3560 | \n",
+ " Languages of India | \n",
+ " 43000 | \n",
+ "
\n",
+ " \n",
+ " 4148 | \n",
+ " New Delhi | \n",
+ " 40000 | \n",
+ "
\n",
+ " \n",
+ " 4576 | \n",
+ " Alia Bhatt | \n",
+ " 38000 | \n",
+ "
\n",
+ " \n",
+ " 4578 | \n",
+ " Urdu poetry | \n",
+ " 37000 | \n",
+ "
\n",
+ " \n",
+ " 3044 | \n",
+ " Puma SE | \n",
+ " 36000 | \n",
+ "
\n",
+ " \n",
+ " 2918 | \n",
+ " Salman Khan | \n",
+ " 33000 | \n",
+ "
\n",
+ " \n",
+ " 3746 | \n",
+ " Chord names and symbols (popular music) | \n",
+ " 32000 | \n",
+ "
\n",
+ " \n",
+ " 4052 | \n",
+ " Bengali language | \n",
+ " 32000 | \n",
+ "
\n",
+ " \n",
+ " 4332 | \n",
+ " 200 metres | \n",
+ " 29000 | \n",
+ "
\n",
+ " \n",
+ " 4792 | \n",
+ " God in Islam | \n",
+ " 29000 | \n",
+ "
\n",
+ " \n",
+ " 4714 | \n",
+ " Passion (Christianity) | \n",
+ " 28000 | \n",
+ "
\n",
+ " \n",
+ " 2126 | \n",
+ " Tamil language | \n",
+ " 28000 | \n",
+ "
\n",
+ " \n",
+ " 1954 | \n",
+ " Narendra Modi | \n",
+ " 28000 | \n",
+ "
\n",
+ " \n",
+ " 1744 | \n",
+ " Flipkart | \n",
+ " 28000 | \n",
+ "
\n",
+ " \n",
+ " 3914 | \n",
+ " Orange S.A. | \n",
+ " 27000 | \n",
+ "
\n",
+ " \n",
+ " 3292 | \n",
+ " Maharashtra | \n",
+ " 26000 | \n",
+ "
\n",
+ " \n",
+ " 3356 | \n",
+ " MercadoLibre.com | \n",
+ " 22000 | \n",
+ "
\n",
+ " \n",
+ " 3792 | \n",
+ " Cifras | \n",
+ " 21000 | \n",
+ "
\n",
+ " \n",
+ " 4710 | \n",
+ " Peugeot | \n",
+ " 21000 | \n",
+ "
\n",
+ " \n",
+ " 4050 | \n",
+ " India national cricket team | \n",
+ " 19000 | \n",
+ "
\n",
+ " \n",
+ " 4250 | \n",
+ " Indian Army | \n",
+ " 19000 | \n",
+ "
\n",
+ " \n",
+ " 4590 | \n",
+ " Arab League | \n",
+ " 18000 | \n",
+ "
\n",
+ " \n",
+ " 2560 | \n",
+ " Virat Kohli | \n",
+ " 17000 | \n",
+ "
\n",
+ " \n",
+ " 2660 | \n",
+ " Telugu language | \n",
+ " 17000 | \n",
+ "
\n",
+ " \n",
+ " 3462 | \n",
+ " Paytm | \n",
+ " 15000 | \n",
+ "
\n",
+ " \n",
+ " 3670 | \n",
+ " Sunshine pop | \n",
+ " 15000 | \n",
+ "
\n",
+ " \n",
+ " 4518 | \n",
+ " Egyptian Arabic | \n",
+ " 14000 | \n",
+ "
\n",
+ " \n",
+ " 2942 | \n",
+ " Indo pop | \n",
+ " 13000 | \n",
+ "
\n",
+ " \n",
+ " 4684 | \n",
+ " Musica sertaneja | \n",
+ " 12000 | \n",
+ "
\n",
+ " \n",
+ " 1584 | \n",
+ " Vodafone | \n",
+ " 12000 | \n",
+ "
\n",
+ " \n",
+ " 3524 | \n",
+ " Bikin | \n",
+ " 9900 | \n",
+ "
\n",
+ " \n",
+ " 2668 | \n",
+ " BlackBerry Messenger | \n",
+ " 9200 | \n",
+ "
\n",
+ " \n",
+ " 3346 | \n",
+ " Carrefour | \n",
+ " 9100 | \n",
+ "
\n",
+ " \n",
+ " 2296 | \n",
+ " Oppo Electronics | \n",
+ " 8900 | \n",
+ "
\n",
+ " \n",
+ " 4460 | \n",
+ " Bandung | \n",
+ " 8800 | \n",
+ "
\n",
+ " \n",
+ " 3662 | \n",
+ " Operatic pop | \n",
+ " 8300 | \n",
+ "
\n",
+ " \n",
+ " 3276 | \n",
+ " Mahendra Singh Dhoni | \n",
+ " 7200 | \n",
+ "
\n",
+ " \n",
+ " 4172 | \n",
+ " BBC News Online | \n",
+ " 7100 | \n",
+ "
\n",
+ " \n",
+ " 3038 | \n",
+ " Grand Prix of Portland | \n",
+ " 6900 | \n",
+ "
\n",
+ " \n",
+ " 1938 | \n",
+ " Supporters of FC Barcelona | \n",
+ " 6700 | \n",
+ "
\n",
+ " \n",
+ " 2734 | \n",
+ " CCTV News | \n",
+ " 6300 | \n",
+ "
\n",
+ " \n",
+ " 3556 | \n",
+ " Wonky pop | \n",
+ " 6100 | \n",
+ "
\n",
+ " \n",
+ " 608 | \n",
+ " UC Browser | \n",
+ " 4300 | \n",
+ "
\n",
+ " \n",
+ " 4382 | \n",
+ " Dari (Persian dialect) | \n",
+ " 4200 | \n",
+ "
\n",
+ " \n",
+ " 3690 | \n",
+ " Sophisti-pop | \n",
+ " 4000 | \n",
+ "
\n",
+ " \n",
+ " 1882 | \n",
+ " Value-added tax | \n",
+ " 3900 | \n",
+ "
\n",
+ " \n",
+ " 2842 | \n",
+ " Indian pop | \n",
+ " 3500 | \n",
+ "
\n",
+ " \n",
+ " 2096 | \n",
+ " Types of business entity | \n",
+ " 2600 | \n",
+ "
\n",
+ " \n",
+ " 2946 | \n",
+ " India News | \n",
+ " 2100 | \n",
+ "
\n",
+ " \n",
+ " 3602 | \n",
+ " V-pop | \n",
+ " 1900 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " interest_name mau_audience\n",
+ "2798 African Union 120000\n",
+ "3682 Space age pop 120000\n",
+ "4248 Worldbeat 110000\n",
+ "2070 Franco De Vita 110000\n",
+ "4788 Public sector 110000\n",
+ "1444 Samsung Galaxy S III 110000\n",
+ "3586 Handball 110000\n",
+ "3724 International News Service v. Associated Press 110000\n",
+ "1798 Heel (shoe) 110000\n",
+ "3600 Ronaldinho 100000\n",
+ "4776 Ottoman Empire 100000\n",
+ "1778 Arab world 100000\n",
+ "2724 Legal personality 98000\n",
+ "4448 Comune 93000\n",
+ "3864 Member states of the Arab League 92000\n",
+ "3348 Tunisia 92000\n",
+ "3672 Jangle pop 91000\n",
+ "2242 Spain national under-21 football team 88000\n",
+ "1590 F.C. Porto 85000\n",
+ "4470 Juventus F.C. 85000\n",
+ "3680 Malaysian pop 85000\n",
+ "3178 Argentina national football team 85000\n",
+ "3480 Deepika Padukone 81000\n",
+ "3196 Kuwait 79000\n",
+ "3522 Sheikh 78000\n",
+ "3518 States and union territories of India 77000\n",
+ "1432 El Clasico 76000\n",
+ "4270 Sport Club Internacional 75000\n",
+ "4478 Ali 73000\n",
+ "3788 Renault 70000\n",
+ "4010 Audi A7 69000\n",
+ "3198 Thai baht 68000\n",
+ "4122 A.C. Milan 66000\n",
+ "3008 Urdu 66000\n",
+ "2234 My Talking Tom 66000\n",
+ "3086 Shah Rukh Khan 65000\n",
+ "4476 Quezon City 65000\n",
+ "3896 Cable 65000\n",
+ "3954 Vivo (telecommunications) 61000\n",
+ "1452 Peso 58000\n",
+ "2892 Nescafe 58000\n",
+ "4386 100 metres 57000\n",
+ "3534 SMS (hydrology software) 56000\n",
+ "3326 Algeria 53000\n",
+ "3378 Atletico Madrid 53000\n",
+ "4338 Xiaomi 51000\n",
+ "3866 Rede Globo 49000\n",
+ "3578 Russian pop 48000\n",
+ "3890 Frases 47000\n",
+ "4352 Shraddha Kapoor 47000\n",
+ "3560 Languages of India 43000\n",
+ "4148 New Delhi 40000\n",
+ "4576 Alia Bhatt 38000\n",
+ "4578 Urdu poetry 37000\n",
+ "3044 Puma SE 36000\n",
+ "2918 Salman Khan 33000\n",
+ "3746 Chord names and symbols (popular music) 32000\n",
+ "4052 Bengali language 32000\n",
+ "4332 200 metres 29000\n",
+ "4792 God in Islam 29000\n",
+ "4714 Passion (Christianity) 28000\n",
+ "2126 Tamil language 28000\n",
+ "1954 Narendra Modi 28000\n",
+ "1744 Flipkart 28000\n",
+ "3914 Orange S.A. 27000\n",
+ "3292 Maharashtra 26000\n",
+ "3356 MercadoLibre.com 22000\n",
+ "3792 Cifras 21000\n",
+ "4710 Peugeot 21000\n",
+ "4050 India national cricket team 19000\n",
+ "4250 Indian Army 19000\n",
+ "4590 Arab League 18000\n",
+ "2560 Virat Kohli 17000\n",
+ "2660 Telugu language 17000\n",
+ "3462 Paytm 15000\n",
+ "3670 Sunshine pop 15000\n",
+ "4518 Egyptian Arabic 14000\n",
+ "2942 Indo pop 13000\n",
+ "4684 Musica sertaneja 12000\n",
+ "1584 Vodafone 12000\n",
+ "3524 Bikin 9900\n",
+ "2668 BlackBerry Messenger 9200\n",
+ "3346 Carrefour 9100\n",
+ "2296 Oppo Electronics 8900\n",
+ "4460 Bandung 8800\n",
+ "3662 Operatic pop 8300\n",
+ "3276 Mahendra Singh Dhoni 7200\n",
+ "4172 BBC News Online 7100\n",
+ "3038 Grand Prix of Portland 6900\n",
+ "1938 Supporters of FC Barcelona 6700\n",
+ "2734 CCTV News 6300\n",
+ "3556 Wonky pop 6100\n",
+ "608 UC Browser 4300\n",
+ "4382 Dari (Persian dialect) 4200\n",
+ "3690 Sophisti-pop 4000\n",
+ "1882 Value-added tax 3900\n",
+ "2842 Indian pop 3500\n",
+ "2096 Types of business entity 2600\n",
+ "2946 India News 2100\n",
+ "3602 V-pop 1900"
+ ]
+ },
+ "execution_count": 67,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "US_interests.loc[:, ['interest_name', audience_var]].tail(n=100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "No more `Coupons`. Let's see how different these distributions are."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 125,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "interest_vars = ['interest_name', audience_var]\n",
+ "expat_interest_normed = expat_interests_clean.loc[:, interest_vars]\n",
+ "US_interest_normed = US_interests.loc[:, interest_vars]\n",
+ "MX_interest_normed = MX_interests.loc[:, interest_vars]\n",
+ "expat_interest_normed.loc[:, audience_var] = expat_interest_normed.loc[:, audience_var] / max_expat_audience\n",
+ "US_interest_normed.loc[:, audience_var] = US_interest_normed.loc[:, audience_var] / max_US_audience\n",
+ "MX_interest_normed.loc[:, audience_var] = MX_interest_normed.loc[:, audience_var] / max_MX_audience"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 126,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1447 shared interests\n"
+ ]
+ }
+ ],
+ "source": [
+ "shared_interests = list(set(expat_interest_normed.loc[:, 'interest_name'].unique()) & set(US_interest_normed.loc[:, 'interest_name'].unique()))\n",
+ "print('%d shared interests'%(len(shared_interests)))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 127,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " interest_name | \n",
+ " mau_audience_expat | \n",
+ " mau_audience_US | \n",
+ " mau_audience_MX | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1090 | \n",
+ " 1,000,000,000 | \n",
+ " 0.024211 | \n",
+ " 0.028105 | \n",
+ " 0.006000 | \n",
+ "
\n",
+ " \n",
+ " 1234 | \n",
+ " 1080p | \n",
+ " 0.017105 | \n",
+ " 0.010458 | \n",
+ " 0.011273 | \n",
+ "
\n",
+ " \n",
+ " 1340 | \n",
+ " 20th Century Fox | \n",
+ " 0.010000 | \n",
+ " 0.005686 | \n",
+ " 0.076364 | \n",
+ "
\n",
+ " \n",
+ " 461 | \n",
+ " 3D computer graphics | \n",
+ " 0.057895 | \n",
+ " 0.037255 | \n",
+ " 0.021818 | \n",
+ "
\n",
+ " \n",
+ " 1390 | \n",
+ " 4G | \n",
+ " 0.004737 | \n",
+ " 0.003791 | \n",
+ " 0.004909 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " interest_name mau_audience_expat mau_audience_US \\\n",
+ "1090 1,000,000,000 0.024211 0.028105 \n",
+ "1234 1080p 0.017105 0.010458 \n",
+ "1340 20th Century Fox 0.010000 0.005686 \n",
+ "461 3D computer graphics 0.057895 0.037255 \n",
+ "1390 4G 0.004737 0.003791 \n",
+ "\n",
+ " mau_audience_MX \n",
+ "1090 0.006000 \n",
+ "1234 0.011273 \n",
+ "1340 0.076364 \n",
+ "461 0.021818 \n",
+ "1390 0.004909 "
+ ]
+ },
+ "execution_count": 127,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "combined_interests = pd.merge(expat_interest_normed.rename(columns={audience_var:'%s_expat'%(audience_var)}), \n",
+ " US_interest_normed.rename(columns={audience_var:'%s_US'%(audience_var)}), on='interest_name')\n",
+ "combined_interests = pd.merge(combined_interests, \n",
+ " MX_interest_normed.rename(columns={audience_var:'%s_MX'%(audience_var)}), on='interest_name')\n",
+ "combined_interests.sort_values('interest_name', inplace=True, ascending=True)\n",
+ "combined_interests.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 139,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXl8VNX5/z93ZpJMdkgI67AIUUyQxZqUKrZqNzRqtNXyBau1WkUt37Zf+631141S2n6hXy1VS/1arNa2FOJWK6JEI7IoAmFCCJB9mSyTdTJZZ5+59/z+mH3mztyZJDMJ8LxfL15k7j333Odu5znPc57zHI4xxkAQBEEQAGSTLQBBEAQxdSClQBAEQXggpUAQBEF4IKVAEARBeCClQBAEQXggpUAQBEF4IKVAEARBeCClQBAEQXggpUAQBEF4UEy2ANEyY8YMLFq0aLLFIAiCuKBobW1Ff3+/ZLkLTiksWrQIarV6ssUgCIK4oCgoKIioHLmPCIIgCA+kFAiCIAgPMVUKpaWlWLp0KXJzc7F9+/ag/e3t7bjppptw9dVXY8WKFXjvvfdiKQ5BEAQhQczGFHiex6ZNm1BWVgaVSoXCwkIUFxcjPz/fU+Y3v/kN1q1bh8ceeww1NTUoKipCa2trrEQiCOISwW63Q6vVwmKxTLYocUepVEKlUiEhIWFMx8dMKZSXlyM3NxeLFy8GAKxfvx5vv/22n1LgOA4jIyMAgOHhYcydOzdW4hAEcQmh1WqRnp6ORYsWgeO4yRYnbjDGoNfrodVqcdlll42pjpi5jzo7OzF//nzPb5VKhc7OTr8yW7Zswe7du6FSqVBUVIQ//vGPsRKHIIhLCIvFguzs7EtKIQDOjnZ2dva4LKSYKQWxBd0CH9DevXvx7W9/G1qtFu+99x7uu+8+CIIQdNyuXbtQUFCAgoIC6HS6WIlMEMRFxKWmENyM97pjphRUKhU6Ojo8v7VabZB76KWXXsK6desAANdeey0sFovo5IqNGzdCrVZDrVYjJycnViITUaDXMxgM0a/kqtcLMBppBViCmKrETCkUFhaisbERGo0GNpsNJSUlKC4u9iuzYMECHDx4EABQW1sLi8VCjf4FQnk5j48/5sdwnICjR6M/jiAIL6+88gq6urpiUnfMlIJCocDOnTuxdu1a5OXlYd26dVi2bBk2b96Mffv2AQB+//vf48UXX8TKlSuxYcMGvPLKK5esyUcQBBEpsVQKMU1zUVRUhKKiIr9tW7du9fydn5+PY8eOxVIEgiCISWH37t147rnnYLPZsHr1avz0pz/Fl7/8ZRw/fhxZWVm44YYb8Itf/AJXXHEFbr75ZqxevRqVlZW44oor8Pe//x0pKSnYunUr3nnnHZjNZlx33XX485//jDfffBNqtRrf/OY3kZycjOPHjyM5OXnC5L7gch8RBEFEQ20tD1fk+4SRkQHk5cnDnLMWr776Ko4dO4aEhAR897vfxZEjR/Dkk0/i0UcfxerVq5Gfn4+vfvWraG1tRX19PV566SWsWbMGDz74IJ5//nn86Ec/wn/+539i8+bNAID77rsP+/fvx913342dO3fi6aefjjifUTRQmguCIIgJ5uDBg6ioqEBhYSFWrVqFgwcPoqWlBQ899BBGR0fxwgsv4Omnn/aUnz9/PtasWQMAuPfee/HJJ58AAA4dOoTVq1dj+fLl+Oijj1BdXR1z2clSIAjioiZcjz5WMMZw//33Y9u2bX7bTSYTtFotAMBgMCA9PR1AcBgpx3GwWCz47ne/C7Vajfnz52PLli1xmaFNlgJBEMQE86UvfQlvvPEG+vr6AAADAwNoa2vDk08+iW9+85vYunUrHn74YU/59vZ2HD9+HIBz/tb111/vUQAzZsyAwWDAG2+84Smfnp6O0dHRmMhOSoEgCGKCyc/Px29+8xt89atfxYoVK/CVr3wFra2tOHXqlEcxJCYm4q9//SsAIC8vD3/729+wYsUKDAwM4LHHHsO0adPw8MMPY/ny5bjzzjtRWFjoqf/b3/42Hn30UaxatQpms3lCZeeY2NTjKUxBQQEtsjMFOHDAAQC45ZboPJBjPY4goqG2thZ5eXmTLUZEtLa24rbbbsP58+cnrE6x64+07SRLgSAIgvBASoEgCGISWbRo0YRaCeOFlAJBEAThgZQCQRAE4YGUAkEQBOGBlAJBEAThgZQCQRDEBNPa2oqrrrrKb9uWLVvw9NNP48SJE1i9ejVWrVqFvLw8bNmyZXKEDAEFixMEQcSR+++/H6+99hpWrlwJnudRX18/2SL5QZYCQRBEHOnr68OcOXMAAHK5HPn5+ZMskT9kKRAEcVHD19YiFrmz5WOcMf34449j6dKluPHGG3HzzTfj/vvvh1KpnFj5xkFMLYXS0lIsXboUubm52L59e9D+xx9/HKtWrcKqVatwxRVXYNq0abEUhyAIIi6EWkGS4zhs3rwZarUaX/3qV7Fnzx7cfPPNcZYuPDGzFHiex6ZNm1BWVgaVSoXCwkIUFxf7mUp/+MMfPH//8Y9/RGVlZazEIQjiEmWsPfrxkJ2djcHBQb9tAwMDuOyyywAAS5YswWOPPYaHH34YOTk50Ov1yM7OjrucYsTMUigvL0dubi4WL16MxMRErF+/Hm+//XbI8nv37sWGDRtiJQ5BEETcSEtLw5w5c3Dw4EEAToVQWlqK66+/Hu+++y7ceUgbGxshl8unlJckZpZCZ2cn5s+f7/mtUqlw8uRJ0bJtbW3QaDT44he/GCtxiAkmvf4kHKmZAK6SLEsQlyJ///vfsWnTJvz3f/83AOCXv/wllixZgp/97Gd4/PHHkZKSAoVCgX/+85+Qy+O/EFAoYqYUxDJyh/KzlZSU4O677w55Y3bt2oVdu3YBAHQ63cQJSYyZBMMgEgyDiFYpyGxmMJkCFONAXOzk5+fj0KFDQdtLSkomQZrIiZn7SKVSoaOjw/Nbq9Vi7ty5omVLSkrCuo42btwItVoNtVqNnJycCZeViB/Tzh1BZvXHky0GQRAhiJlSKCwsRGNjIzQaDWw2G0pKSlBcXBxUrr6+HoODg7j22mtjJQoxxZA5bJMtAkEQIYiZUlAoFNi5cyfWrl2LvLw8rFu3DsuWLcPmzZuxb98+T7m9e/di/fr1IV1LBEEQRPyIqWO3qKgIRUVFftu2bt3q93uq5f0gCIK4lJG0FDQaTUTbCIIgiAsfSaVw1113BW27++67YyIMQRAEMbmEdB/V1dWhuroaw8PD+Ne//uXZPjIyAovFEhfhCIIgLlQ4jsO9996Lf/zjHwAAh8OBOXPmYPXq1di/fz927NiB6upqvPTSSwCAf/7zn9izZw/efffdyRQ7tFKor6/H/v37MTQ0hHfeecezPT09HS+++GJchCMIgrhQSU1Nxfnz52E2m5GcnIyysjLMmzfPs//73/8+CgoKcOzYMSxbtgw///nPPTOgJ5OQSuGOO+7AHXfcgePHj1O4KEEQxBi45ZZb8O677+Luu+/2pPL5+GPnPB2FQoHnn38e3/3ud/HZz34WDz74IBYvXjzJEkcQffTWW29h2bJlSE5Oxs0334yqqio888wzuPfee+MhH3GR0Z3RhxTb1EkTTFz81PK1GMHEps7OQAby5NKJ9tavX4+tW7fitttuw9mzZ/Hggw96lAIAXHfddcjLy8OHH36I2traCZVxrEgONH/wwQfIyMjA/v37oVKp0NDQgKeeeioeshEXIa3ZHaiZ0zjZYhBEXFixYgVaW1uxd+/eoPB8ADAYDFCr1bDb7VMmhY+kpWC32wEA7733HjZs2ICsrKyYC0UQBDFRRNKjjyXFxcX40Y9+hMOHD0Ov1/vt++Uvf4l7770Xs2bNwuOPP47XX399kqT0IqkUbr/9dlx55ZVITk7G888/D51ON6VWCSIIgpjKPPjgg8jMzMTy5ctx+PBhz/Zz587h3XffxZkzZ5CYmIiXX34ZZWVl+MpXvjJ5wiIC99H27dtx/PhxqNVqJCQkICUlJey6CMSlAc8JECBMthgEMeVRqVT4wQ9+4LeNMYbHHnsMf/jDH6BUKiGTyfD888/jBz/4AWy2yc0NJqkUTCYT/vSnP+Gxxx4DAHR1dUGtVsdcMGJqU76oEufm1U22GAQxZTEYDEHbbrzxRuzfvx8cx+GTTz7BLbfc4tlXUFCAmpoaJCYmxlPMICSVwgMPPIDExER8+umnAJxa7+c//3nMBSOmPqZE82SLQBDEBCOpFJqbm/HjH/8YCQkJAIDk5GTRBXQIgiCICx9JpZCYmAiz2exJbd3c3IykpKSYC0YQBDEeLtXO63ivWzL66Fe/+hVuvvlmdHR04Jvf/CaOHTuGV155ZVwnJQiCiCVKpRJ6vR7Z2dmX1FotjDHo9fpxRYiGVQqMMVx55ZX417/+hRMnToAxhmeffRYzZswY8wkJgiBijUqlglarnTITwuKJUqmESqUa8/FhlQLHcbjzzjtRUVGBW2+9NerKS0tL8YMf/AA8z+Ohhx7C//t//y+ozGuvvYYtW7aA4zisXLkSe/bsifo8BEEQviQkJOCyyy6bbDEuSCTdR5/73Odw6tQpFBYWRlUxz/PYtGkTysrKoFKpUFhYiOLiYuTn53vKNDY2Ytu2bTh27BimT5+Ovr6+6K+AIAiCmDAkB5oPHTqEz33uc1iyZAlWrFiB5cuXY8WKFZIVl5eXIzc3F4sXL0ZiYiLWr18fNOntxRdfxKZNmzB9+nQAwMyZM8d4GQRBEMREIGkpHDhwYEwVd3Z2Yv78+Z7fKpUKJ0+e9CvT0NAAAFizZg14nseWLVtw8803j+l8BEEQxPiRtBQWLlyIjo4OfPTRR1i4cCFSUlIgCNLpDcTCogKjABwOBxobG3H48GHs3bsXDz30EIaGhoKO27VrFwoKClBQUHBJDhwRBEHEC0ml8Ktf/Qq/+93vsG3bNgDOrKmRrKWgUqnQ0dHh+a3VajF37tygMnfccYdnUGjp0qVobAxOq7xx40ao1Wqo1Wrk5ORInpsgCIIYG5JK4a233sK+ffuQmpoKAJg7dy5GR0clKy4sLERjYyM0Gg1sNhtKSkpQXFzsV+bOO+/EoUOHAAD9/f1oaGiYEisPEQRBXKpENKOZ4ziP68doNEZUsUKhwM6dO7F27Vrk5eVh3bp1WLZsGTZv3ox9+/YBANauXYvs7Gzk5+fjpptuwlNPPYXs7OxxXA5BEAQxHiQHmtetW4dHHnkEQ0NDePHFF/Hyyy/joYceiqjyoqKioNWGtm7d6vmb4zjs2LEDO3bsiFJsgiAIIhZIKoUf/ehHKCsrQ0ZGBurr67F169ZJXwSCIAiCiA2SSuHJJ5/E7373Oz9F4N5GEARBXFxIjimUlZUFbRvr3AWCIAhiahPSUvi///s/PP/882hpafGbwTw6Ooo1a9bERTiCIAgivoRUCvfccw9uueUW/OQnP8H27ds929PT05GVlRUX4QiCIIj4ElIpZGZmIjMzE3v37gXP8+jt7YXD4YDBYIDBYMCCBQviKSdBEAQRByQHmnfu3IktW7Zg1qxZkMmcQxAcx+Hs2bMxF44gCIKIL5JK4ZlnnkF9fT1NKiMIgrgEkIw+mj9/PjIzM+MhC0EQBDHJSFoKixcvxo033ohbb70VSUlJnu0//OEPYyoYQRAEEX8klcKCBQuwYMEC2Gw22Gy2eMhEEARBTBKSSuGXv/xlPOQgCIIgpgAhlcJ//dd/4ZlnnsHtt98etDgOAE+mU4IgCOLiIaRSuO+++wA4E+IRBEEQlwYhlcI111wDALjhhhviJgxBEAQxuUiGpBIEQRCXDjFVCqWlpVi6dClyc3P98ie5eeWVV5CTk4NVq1Zh1apV+Mtf/hJLcQiCIAgJJKOPxgrP89i0aRPKysqgUqlQWFiI4uJi5Ofn+5X7j//4D+zcuTNWYhAEQRBRIKkUGhoa8NRTT6GtrQ0Oh8Oz/aOPPgp7XHl5OXJzc7F48WIAwPr16/H2228HKQWCIAhi6iCpFL7xjW/g0UcfxcMPPwy5XB5xxZ2dnZg/f77nt0qlwsmTJ4PKvfnmmzh69CiuuOIK/OEPf/A7hiAIgogvkkpBoVDgsccei7pixljQtsD5Drfffjs2bNiApKQkvPDCC7j//vtFLZBdu3Zh165dAACdThe1LARBEERkhBxoHhgYwMDAAG6//XY8//zz6O7u9mwbGBiQrFilUqGjo8PzW6vVYu7cuX5lsrOzPfmUHn74YVRUVIjWtXHjRqjVaqjVauTk5ER0YQRBEET0hJ2nwHGcp8f/1FNPefZxHIeWlpawFRcWFqKxsREajQbz5s1DSUkJ9uzZ41emu7sbc+bMAeCcIZ2XlzfmCyEIgiDGT0iloNFoAAAWiwVKpdJvn8Vika5YocDOnTuxdu1a8DyPBx98EMuWLcPmzZtRUFCA4uJiPPfcc9i3bx8UCgWysrLwyiuvjO9qCIIgiHEhOaZw3XXX4fTp05LbxCgqKkJRUZHftq1bt3r+3rZtG7Zt2xaprARBEESMCakUenp60NnZCbPZjMrKSo8baWRkBCaTKW4CEgRBEPEjpFJ4//338corr0Cr1fotqJOeno7/+Z//iYtwBEEQRHwJqRTuv/9+3H///XjzzTdx1113xVMmgiAIYpIIqRR2796Ne++9F62trdixY0fQflqOkyAI4uIjpFIwGo0AAIPBEDdhCIIgiMklpFJ45JFHAABPPvlkUEgqQRAEcXEiGZJ61VVXYdasWfj85z+PL3zhC1izZg0yMzPjIRtBEAQRZyTXU2hqasLevXuxfPly7N+/HytXrsSqVaviIRtBEAQRZyQtBa1Wi2PHjuHjjz9GVVUVli1bhuuvvz4eshEEQRBxRlIpLFiwAIWFhfjpT3+KF154IR4yEQRBEJOEpPuosrIS3/rWt7Bnzx5ce+21+Na3voWXXnopHrIRBEEQcUbSUli5ciWWLFmCJUuW4OOPP8bu3btx9OhRfOc734mHfARBEEQckVQKBQUFsFqtuO6663D99dfj6NGjWLhwYTxkIwiCIOKMpFI4cOAALWxDXFBYrQwKBSCXc9KFCYLwQ3JMgRQCcaHx0Uc8Pv2Un2wxwqIX9BhhI5MtBkEEIakUCOJCZKpnZykXynGMPzbZYhBEEDFVCqWlpVi6dClyc3Oxffv2kOXeeOMNcBwHtVodS3EIgiAICSTHFADg008/RWtrKxwOh2fbt771rbDH8DyPTZs2oaysDCqVCoWFhSguLkZ+fr5fudHRUTz33HNYvXr1GMQnLiTcCzURBDF1kVQK9913H5qbm7Fq1SrI5XIAAMdxkkqhvLwcubm5WLx4MQBg/fr1ePvtt4OUwi9+8Qv8+Mc/xtNPPz3WayAIgiAmCEmloFarUVNTA46LLpKjs7MT8+fP9/xWqVQ4efKkX5nKykp0dHTgtttuI6VAEAQxBZAcU7jqqqvQ09MTdcVirgJfxSIIAh5//HH8/ve/l6xr165dKCgoQEFBAXQ6XdSyEARBEJEhaSn09/cjPz8fn/3sZ5GUlOTZvm/fvrDHqVQqdHR0eH5rtVrMnTvX83t0dBTnz5/HjTfeCADo6elBcXEx9u3bh4KCAr+6Nm7ciI0bNwJA0D6CIAhi4pBUClu2bBlTxYWFhWhsbIRGo8G8efNQUlKCPXv2ePZnZmaiv7/f8/vGG2/E008/TY0+QRDEJCLpPrrhhhtw5ZVXYnR0FKOjo8jLy8MNN9wgWbFCocDOnTuxdu1a5OXlYd26dVi2bBk2b94saWUQBEEQk4OkpfDaa6/hiSeewI033gjGGL73ve/hqaeewt133y1ZeVFREYqKivy2bd26VbTs4cOHI5OYIAiCiBmSSuG3v/0tTp06hZkzZwIAdDodvvzlL0ekFAhiUmAMiDJajiAIJ5JKQRAEj0IAgOzsbAiCEFOhCGI8ZJ1+H7bMmQA+O9miEMQFh6RSuPnmm7F27Vps2LABAPDqq68GuYQIIhLiOaE5cbgvficjiIsISaXw1FNP4c0338SxY8fAGMPGjRvxta99LR6yEQQRYzqEDnSxLqyWU5oZwklEuY/uuusu3HXXXbGWhSCIOHNeOD/ZIhBTjJAhqddffz0AID09HRkZGZ5/7t8EES2UEI8gpj4hLYVPPvkEgHPmMUEQBHFpIDl57b777otoG0EQBHHhI6kUqqur/X47HA5UVFTETCCCIAhi8gipFLZt24b09HScPXvWbzxh1qxZuOOOO+IpI0EQBBEnQiqFn/zkJxgdHcUTTzyBkZERjIyMYHR0FHq9Htu2bYunjARBEESckAxJ3bZtGwYHB9HY2AiLxeLZ/oUvfCGmghEEQRDxR1Ip/OUvf8Gzzz4LrVaLVatW4cSJE7j22mvx0UcfxUM+giAIIo5IDjQ/++yzOHXqFBYuXIhDhw6hsrISOTk58ZCNIAiCiDOSSkGpVEKpVAIArFYrrrzyStTX18dcMOLigwk0eY0gpjqS7iOVSoWhoSHceeed+MpXvoLp06f7LatJEJcibGQEUCrBJSZOtijEBUZjo4DhYYaCAvlkiyKKpKXw1ltvYdq0adiyZQt+/etf4zvf+Q7+/e9/R1R5aWkpli5ditzcXGzfvj1o/wsvvIDly5dj1apVuP7661FTUxP9FRDEJMAfOwbeNeufIKKhqUmATjd1reaQlsLAwEDQtuXLlwMADAYDsrKywlbM8zw2bdqEsrIyqFQqFBYWori4GPn5+Z4y99xzDx599FEAwL59+/DDH/4QpaWlY7oQgog7VutkS0AQE05IpXDNNdeA4zjRJGYcx6GlpSVsxeXl5cjNzcXixYsBAOvXr8fbb7/tpxR8E+sZjUZwtFrWRQ0lxCOIqU9IpaDRaMZVcWdnJ+bPn+/5rVKpcPLkyaByf/rTn7Bjxw7YbDYKcyUIgphkJAeajx49KrpdavJaKAsjkE2bNmHTpk3Ys2cPfvOb3+Bvf/tbUJldu3Zh165dAJxrRBMEQRCxIaKV19xYLBaUl5fjmmuukezVq1QqdHR0eH5rtdqwUUvr16/HY489Jrpv48aN2LhxIwCgoKBASmSCAAAwQQAn84+lMJkYEhKAhITxuSqtVgaFIsJVqoiYYTIxJCYCCgW5nicKyXf6nXfe8fvd0dGBH//4x5IVFxYWorGxERqNBvPmzUNJSQn27NnjV6axsRGXX345AODdd9/1/E0QseLIER4pKcANN4yvOT9/XoBSCay8bYIEI8bEkSM80tKAz3+e1PNEEfWdVKlUOH9eegk/hUKBnTt3Yu3ateB5Hg8++CCWLVuGzZs3o6CgAMXFxdi5cyc+/PBDJCQkYPr06aKuI+LiYaqMM5tME1OPTyowYhIxGCZbgosLSaXwve99zzMWIAgCzpw5g5UrV0ZUeVFREYqKivy2bd261fP3s88+G42sBEEQRIyRVAq+PnyFQoENGzZgzZo1MRWKuEiJk6nAwMCBfMwEMRYklcL9998Pm82Guro6cByHpUuXxkMu4iKEIT5K4cRlpzHdlInPxuVsBHFxIakU3nvvPTzyyCNYsmQJGGPQaDT485//jFtuuSUe8hHEmBhMGRa1TDJqPoUtazaAK+IvFEFcAEgqhR/+8Ic4dOgQcnNzAQDNzc249dZbSSkQUxKpWdMK8wgUnSMgpUAQ4kgmxJs5c6ZHIQDA4sWLMXPmzJgKRRATgUCpugkiaiQthWXLlqGoqAjr1q0Dx3F4/fXXUVhYiH/9618AgK9//esxF5IgxsRUiYG9AGCMXZC5xwYTepDMpwGYNtmiRIzCMAiZ1QRg4WSLIoqkUrBYLJg1axaOHDkCAMjJycHAwADeeecdcBxHSoEgiEmjJf0MAOBruHBmEWbUu3PAXaBK4a9//Ws85CAIYhxcqD19YuohOaag1Wrxta99DTNnzsSsWbNw1113QavVxkM24iIjHstx+nqMLhXvUUeHgNJSHhbL+C+YmUxgEzXlmxgTBw448Mknjkk7v6RSeOCBB1BcXIyuri50dnbi9ttvxwMPPBAP2YgpygWzLsKFIuc46epyXqfROPbrdc8h4Y8cAe9yFY8HQWAXznsyBRkdnbxzSyoFnU6HBx54AAqFAgqFAt/+9rcpfTVxwXJyUSVas8jSjTXvv8/j3DlhssUgxoCkUpgxYwZ2794NnufB8zx2796N7OzseMhGEOOCsWCrRuAEdGf2TpJElxadnZNjKZCVMj4klcLLL7+M1157DbNnz8bs2bPxxhtv4OWXX46HbMRFRjzSXPg1BiYj+NJSCF1dMT/vxYLRyMblhpoKvP8+j08/5SdbjAsWyeijBQsWYN++ffGQhSAmFDYyCg4A6+4GwizwNJUQBIZTpwRcfrkMWVnxjyaqq3O6fFbH/cwTy8jI+I6329m4F2K6UJG0FFpaWnD77bcjJycHM2fOxB133IGWlpZ4yEZMUaayaR4P0cZz/WYzQ19faF+7yQQMDDCcO0c93bFilA/DIjOO+fj2dgEffsjDYJi673kskVQK99xzD9atW4fu7m50dXXhG9/4BjZs2BAP2Qhi3NjtU+vD/vhjHhUVU28ANl4ZbONBXeZxVE/7eMzH63Tjj+a6kJFUCowx3HfffZ7oo3vvvTfiSTKlpaVYunQpcnNzsX379qD9O3bsQH5+PlasWIEvfelLaGtri/4KiAuH+HTjPX8aRhnOnhXQ3TN1Pm4+QgOA5qERk4WkUrjpppuwfft2tLa2oq2tDf/7v/+LW2+9FQMDAxgYGAh5HM/z2LRpEw4cOICamhrs3bsXNTU1fmWuvvpqqNVqnD17FnfffXdEaz8TRKSYzE5lMDQ0sUphKrvPiPFzqT9eyYHmV199FQDw5z//2W/7yy+/DI7jQo4vlJeXIzc3F4sXLwYArF+/Hm+//Tby8/M9ZW666SbP35/73Oewe/fu6K+AIEIRq4/7Um81pgiknGODpFLQaDRjqrizsxPz58/3/FapVDh58mTI8i+99BKt0UCMG792Ygo2GrqkDuiSOpAvXfSChRrryOB5hiNHeKxYIcOMGZJOm7gRM0nEXoxQYxG7d++GWq3GE088Ibp/165dKCgoQEFBAc2mngKM9ZuPd1vhOd8EO+jHcx3tqdUwK0YmteFkw8NwTmCSAAAgAElEQVRwlJaCWSzebRNsVmWe/xhJfe0TWudYaW8XRPNCCQJDc7MwaetuGAyA1QrU10+twIOYKQWVSoWOjg7Pb61Wi7kiseIffvghfvvb32Lfvn1ISkoSrWvjxo1Qq9VQq9XIycmJlchxwWplKC11YHDw0utNxT3CJaDhnUo92PGI0t8v4IMPHHA4Aq8vsuOFtjaAMbD+fsmyw8PO9zXaZHtyqxGpHTXSBWOMzcZQXS3g1KngEf7mZoaGBgEdHWN7GEYjA3M4wMzm8YrpB2e3gnPYJ7TOaAipFI4dOwYAsFqtY6q4sLAQjY2N0Gg0sNlsKCkpQXFxsV+ZyspKPPLII9i3b98ls5rbwAADY0Br69TqHUTDVGpcg5jKsk0QDQ0CeN7Z04w17e0CGPOGaUZCvB5BJOdxlxFrxnjeudMxhoSkvb0Cjh7loTtwAvzhw9FXgNDyTz97CNOrDo6pzokgpFL4/ve/DwC49tprx1SxQqHAzp07sXbtWuTl5WHdunVYtmwZNm/e7Jkh/cQTT8BgMOAb3/gGVq1aFaQ0CGI8xKxxGkfFMqsJiiFd2CqU3c3grKF7n4HHChBglA9HL0wE1zER95AxBr6hAcw+eb1fMcbjVXRnMTX3DonuH2ChIzOnOiEHmhMSEvDAAw+gs7PToyB8ee655yQrLyoqQlFRkd+2rVu3ev7+8MMPo5H1gkcQnObqBc8U7o2Lieb+9ifKdzyey0/pqHX9NUu8bqMRKV2NUFh6Yb/x82htZcjN5cLODWpPqkdjZisK8HnMQKakDDzP0NMlYN6yyC5kKKEXJxQNULEbx7SQD9PpwJqbIZhMkK9aFfXxsSbU8xyr0tAKWpwTzmGlbCXmyi6M9Cq+hFQK+/fvx4cffoiPPvoI11xzTTxlumhpb2eY6uuXOD75BJxSCXlBwYTWa7UyHD4c39QNwhRWXiFxycwJPOrqBGi1DGlpMsyZE7qFMsqciX5ssEV0itZWhsFuhoQ+BrjarHDjPa2p56HiHLDDjkQkRnghPrifQ6Qz9yKuliG16TTs0ybP9Sz2ipmYCUYjgyl9bB/7iHIUckE+TsnGTkilMGPGDKxfvx55eXlYuXJlPGWaFOzMDgUUMV3S8IJoo0ZHwWKwwsdETyALic9NjtnANmPoS9Mj1ZY8niokt7vb0KCyggCFYRjt7VmYNi36xkNwGasCk37XmcAgN48CiPxa4zmmwIEhcWhsqdBlxhFw9kREc22BmExAX58AX3ugTyegrk2AahFDrrhB6EFhGATS/K276jkNAIAvjlmq8SEZfZSdnX3RL8dpZmZ8yH+INnbxp9mY6Kgnh4NhdDTSOidZK05Qa8UY0JzTirPzaqULT4AogWWVrTXIqD+J7ubxjTTX1wkwmcILouhqRYq2Htzo8NiV7BTtDSWePobM6rHlSHL3HUdHERS9ZHLlTJL0CphNyKg/CWXr5Edp+ULLcQIYZs5BOj3Tx/Q8k53PRqux4lzJGfRoI3MzRIL6oB4Vr469cYwl8W6LtFoBer0Au52htpYf0xhGJDKbbb2on9UMxjufoyzCF0vQ6SAETEaVsuBsVj0ccgcQQYikhVlQzpfDJkzugLJiqA9yg3cAOKWjFnKTeC5tGe+I2XsiWa9r4F1uHGee7wlGUin09fVd9Mtx8nDa6QrpCd7jZxJ7Tdb6ZiTpO2FpnLhJRdypE0juiSyV+lh7mgcOONDYGNkAvW+4LGNCwL4xnT5izp0TUF4uoK5OQGsrQ3d36BOGDOuNQMim6S0YSBmCWRGdpSCo1RDq6qI6pj25Q7qQWy6hCXqmRzeLz6JGod4nZX8HknuanWWsVij72pDWoA5Zj9XKcOCAI2xK80DC6mHXTrd8IyPO+uPmQh0nkkohJyfnol+O0wFnoLIcsR3ckY0OIev0+1CMxNYiiRarlaGmJvKe7Zgad7MJ088eiv44OKNfaloiy4/vn+YicN8EuY8k7pPbZx/udKFkmaKelpiOtY2VaOYpiBV2X9Nop9OqGOskNin6+pjr/wsj8jCq5TjnzJlzUS7H6bYUfJVCmaMMJxwnJvQ8suFBAEDCyNSytGpqBLS1Meh0zsVd6utjECVkGPvgdXN6JWoyPo2scLiB5ji1uA440K1sDq88JQ0F/0ZY6OqSVmr6PrCxzMRCGEU/hnsmpTSnGu5O2lRVyPGGluOEc/IP4K8UHHBgEIOTJVJc8e3Z2mzOfxPNeDuavCwyP7Vf4xaU5mJ8MkRKW0I9ulLa0celYj5U4oWiEIbr64HQUwWZ0Qju8svFy9jMkFWfhWCyQX711WMRWxRv/qgojpmws4+fSG6z+92M5v0I9T4PDjK0twvRBTRNMSNs6qTmmwLEOjfPFLTAJwxBkDCNx3jxkbp8mF4Pvrzc78sWAp5n2cGx9aKjhckE1/lD35NQvWnRy3UN8noT2AXXywkCRkcZ+NGxL0MpKo/rHnIY+/dRU82jomLirc/xzEM5csQRNOYTVXU2KzLqgj0JJ06IXKfNioza44DVErxvCkJKAfFP1MZd4HaqmPiTFsHhgq+qAtPrAVuYXF0TGJIaUbkw75W7DiYI/ukfRKdkc+jo4DEyHEbxCjx0uljk1Br/Pevpnbz3PdSzkgoX5RzhzWVZtxYKo0iKC0EAxztc53aeXN6jhcI0DHm3M8CjM7MH9TOn7jr3pBSihDGG3t4xfniyqWkqTIgFEyOtEO3gsH9559+DiUMwsInJHnfggAPlJybO4rCqz2DorTLPb7f4+uQBWDlnz9JkBvr6gJZmZy+UuR4Y55p8Jtd1IaWrEYwDzBLzDtyYEswon33Ye16pxj+Cl4Rz+UEutDEF95W5772iux3Tqz4CjKHfGU7hH5Tifu/SNFXIqDse9nztWZ0YSJ26rumIlcKJEyfwxS9+EWvWrMG///3vWMo0afh+GD29zpjzQFo7HDh9WkBHR/SKYaLcR6bhHmj6z4z5+HG33yIVxMpS4EdH/GLOpfB9hm6Zzk+vwcf82BdyD8Q4AalKBgcEdHUJqDvS5Z8PiwkQIKB+RhNqlKcAAFabq/GXuS4ooNFVjHobmEifgz7CRsk3qpeBgZnNELriE3LqJwdjQR0EgUl/g1IKiucEz3c5IhtEr9AL+ZArEMQUxhUX4mNOGOoB4xgUQ72SD2OqOgxCDjT39PRg9uzZnt87duzAvn37wBjDddddhzvvvDMuAsYT3walU+v622eaupVZcZCVQa5cisutS+IsnZfy6t0wyC2Ym52HJE58DYq4E6M3nP/kEyQPN8OQK55/S68XkJbGiQYT+ysIBi6CRiRedHcJQAITSenMwDgAHAcL59Q+Dt7ZAIkZmtFYUlYrc86XisI/4LmHrkaQP3ECsFjAzZkTfZjqOHpFpaU8srI4rF49cWHjg8nDqJvdhFWKOQCA88kn4BDkUCGCkHuZ+E1symlFf9oAlP2APL0byL0SPHhosjswDQsnTPZYEvL1ePTRR/HrX/8aFtfg1rRp07Bnzx68+uqryMjIiJuA8cD3wzIyI+xMPNLFDDM4mxWOtnfQfG7Uk489UibKUrBxod0XzGSCo6wM5tF+WFh0A1vjadelemSyqoox1SvliSgvF/wH94aCrQpmtqJ9/2lw1si6+HxFBfha5yzthgYeXV1OZTIw4BTGd1JczR/fg0U/cbmifPWW2x3D8wGWAhdwUyJ8sc6fF8awylfAQLNF+p0SBAGa7HYMKyd2pq77/nski8RNFealHkl2PrcRbgDTK8sgM0cxSC/3KqeRJAPOOc4CAPrTfFJm8852pDOpCz0ZfdAqOyOvfxIJqRT+/e9/Y9WqVbjtttvwj3/8A8888wxkMhlMJtMF7z5ijHk+dF9aWSuO8kdxnA/tE+SG9OAEAYmDPejtdY4v2GwCmDHyF0puNoCzmsccUx4O1tsLOBw4qHsDh/jIJotxNqvkwNq4ZBL5MGv4GtTx0rNrmU8DaDSyoIZBZjXBZPAqBb7Fm8bB3Xhbh02wmHgkDYq7Pex2/3Ei1tcH1toKwLk6V1WVc5/Y6l2jwwI6K8RzgYXz03MB+8TGQgSOh52zgued55fJffcCMrslri6IcOG+gfRk6FAzpxEAPAOvk5G1NtzkNTfWvhFwAg+Fvtt/Rzhl62MpVM+tR4fQEfSee4IJXPdtVDGKw47DwbK56O4Wou5oxoKwhuTtt9+O999/H0NDQ/j617+OpUuX4vvf//4FvySm+0N3Kwb3QxMEBkFgMCJMA+/unXAcDAaG06cF1L1TB/7oUTCJkAb3O5Ywqkey+jB41+p20SAwATZZGGWSnOx8saz+jXyf0AeLTLyXl6L+yDmwFoBWK6CmJnwooS7NNfEnXK/N9fb7lmhjbdAwjXj54EMBAEeP8jh5kvfZxzDt/FGkN512LuTCM3Row8nh3xEYYkMYYkOoqhJw+rR0cjhPNRKDsu4B4GgCd9wNChOYnyKszTgO5lIKge6adM05UemipbWVR3eP/3P+1PEpqvlqT3ViCVX7+gScOSPyfgS0dmlt513n8QkXdn1r48H3OdiZHV2CiNIXefdC1udpxSOZ3BCBD86dBt1l8fXLBmGG2We39zyDgwxnzgioqZl8F2fIK9u3bx+uv/56fPGLX8RVV12FkpISvPXWW9iwYQOam5sjqry0tBRLly5Fbm4utm/fHrT/6NGj+MxnPgOFQoE33nhj7FcRJVar82EELgRVWSng7Fmph+KdzeNObezQuUxGEdPayqzQCBrXEQFEsLgCz/w/umYmfu/NzIwDjgPoZjqcOSMELZ9YIVSgIqNS8ny+nDvnnOkcjqacVowm+UdpCE1N/uvWCgKGh8fWAEQS1pkwqkdnp/OjMvusJSzlbz/OH8dx/rhHGUxUuv++Ptf5A9w8RmOYnraPUvDA8+CGmsHcc0Amyv8YUI1eD4815GYYw2hn7fC4jwJPzRgqKgS/WH9mMkLo7Q35xHzHTw4d4vH++5Hf8ER9pzPNtK8IPvfqnHAOVUIVRllkrrwE33TbMq8S7+8XJHVCZ6cQ5NZkTLqzMDDAYLOJl3FbCBO83POYCKkUfv7zn+P999/Hm2++iSeffBLTpk3Djh07sHXrVvzsZz+TrJjneWzatAkHDhxATU0N9u7di5oa/xSxCxYswCuvvIJ77rln/FcSBYHfmO/DlGwYPD0nLuxsT8YY7HaGGqEGdUIdBthAxH04nnf2etuENnzAfwAz874pVmYVNTHdmV5bHU4TeGQkuIwjzFhEOCor/W9K4MvPywTPB8oMBgiNjeArK+FwOHuDTBAQwRrxAJxrAp875z1fuM6kb0+zv99l7fmI2qGNrNEJbPA6OnicPs0HJeHjAmMXo+ToUR4sxPRV3yrdfyr6tEgc7MGosdpPAI9HhGOhdIskXKTTaD0uEC6k+6i21nmfhcozYAFp9buELljlNtc5vbhnzZ88yXuUt1bQol/od+0PsDZazyGj/mSAbN4y7vEzdx4zsTK+pDf7dpCcklktDG1tzNOB8X0v3O+yXs9w9qyApkbpd8t34p8bv2wBUzT8KKRSyMzMRElJCUpKSjBzpndlo8svvxwlJSWSFZeXlyM3NxeLFy9GYmIi1q9fj7ffftuvzKJFi7BixQrIQozkxwpueBBZFaXgXANLfE01+PPnIzvY9SBTtXVh15ytqhJwfFcFWIXz5TMxf6tgZAQwm0Ua7uPH8eY/X8Xrh3rQLTgbeBO8x/b3M2g0AsxmJtozcSu1aG6p73CIMTHYeunpkX55Pb02l8a1GB0oK+NRWSlEFbdeXe1cbcyNxafnn6o5i8yzh4PPCZ8POHAQ1lfGENsTdFpkVZSC2Z0NSl+f8zE3NYWyGgNbYv+fkTW44tIIgoDmnFZYrYDD1TA6BFdDJ2IpmJgJ9jDuRIOBob9/7C4Jqd6vg7PhYP9pZ3CGx1XjPaZKqMLpBefQn+q/ZnFaoxoZNZ9iYIB5DOxzwjmcEk6hq0vAwYN8VFlFQ93zSNpdY6I5RGFvnWVlPD75hEdbW5hZ6lG67pq4Jv8NvANpxw/4beoRetAoNEZV73gJ2XS89dZbMJlMUCgU2LNnT9QVd3Z2Yv78+Z7fKpUKnZ1TY/Rd3uvszchHnC+qMKCHSGxgEAz+DTHnmtzCca6ehM9L1d3NkDTYA8Fg9Rw7KjN4ek2CAFH/Ycc5Pbrk9WhOOoYm12Ql3xd+2PWhuF1gvjQ28tC5MjIGKgU2MgJ3Q9Sh9T+vW7fp0Iez82rRlx5ht95dt2/op8v+rTrLYJAPoUtnhRDB4Fk9Xx808MwGB9HY7JU1aaALcrvXRSelbGqyz2AgRXqOQ1KXa2zDEt52ZwyQWQzgHJbgHWLlRRoJ97MM1F3ua7ExKwZTnFaf290UTsUc4Y/AmOCjyP1ShzN8/DGPU6fEGzK52QDGGGRWE3gh/OQ+3uG8HoE5B+a17c53s1fZiqHEXv8FqkRCf0eV/uN0iSP9UJhHPCK7LWsA6O63wiAfQk2lCWeOhX5+ganRAZF7HoFW6E/th00unVvLaAR63bOzIzHRRDOzev/WyP3H1GR2CwIXPawUKtEkBCiPGBN2Oc7vfe97Y65YzJ871vS7u3btwq5duwBgQtZyYA5XY6twXr7JxGASBCAluOzAAENWlo/cvpfl6pYbjU7LIDFVwNUBa+g1NAiY/gXn3+UpFdAtaMe1mtBrXvf1AbgMSG2vRmuiEtkh0nnr9QxDwwJmT3OLxTAyAiTqARWcvkmDgQHTAEHfD6GpEbJ+HoAqpIvM5BpgNyWEDzsMaow57zaHusI1nsGhPvMEEvlkrBWuC1sfALQw97T/XOc5TCZnTLzrhiuGdQACAhwkPjq73Ib6We1hywOIeKY5Y8D06k/AczywKKJDwtUWXDnEv5vgbZH1SGtrw1sICaN6cEMZSOnQoE3eBOCnIud2/q/VMvBLGNpaBQwMMAxyAhA4q1cAhoYE0TxYHAuMt/I/x7lzAs6aBVx9tQznlafQkTmC+QflsAo8TFffKn5c2KsLuAAJeI4PWVY0AIEJ6EvTI8eQ5SOPfzl3dSEtx8DPaIq4k2Lmt1GpVOjo8C7QodVqMXfu3DBHhGbjxo1Qq9VQq9UTE/lkc/YKuASnUmjVMHR1+T8QxbAOyq5mVL4XsCCN74Oz2wHegQRXDhS3XxsAlN2RDcYfOeIY8wpdvpE4YvK5Y9KtBjM0Gj5sWiAA4Lq9/uCj/3fGO/giJYvP2103MILXE9SwOXqRMNgLm9wMwRG+HkdfP+xaZ+RIwrAOSb2tQVEAMrtX+Hq+HgccB8TdR2E+rCS9+IIxNpkdPek6yQaEMWeSu8ABZD8EAcmdTYA9OMQ3SdcRFIrqW7fzj+B9nGtlLrGmJZzIvu80z3gcv6wCxy+rQFuK9z5wrpeC40P1lH3H2xj0A97tcsMQlH1trl8MfToB/f0MTU3RjdgzBvQ0DiOxX4uqKgEdg87rFVzzhY4dk67Pk2LDz1r3DhrzvPNbc7ukBL90if69/3LVcQwlj4BrqAUzGHD8vX4kdzVCZjEgo+YYlN3N0CV3ozmnFT0ZfT61+D8Mk1HAoUOOkKlHIk72KAjgz5/3SYgYW2KmFAoLC9HY2AiNRgObzYaSkhIUFxfH6nRR4YnmcPlYxD5ypa4dCtMQ0loDwv4YYFPYPfW4P4pAUrqC/YBi74DJFD4ISRCYX0/Df0AyuEKZyDkGBhh43plDJ6QgALhWryJL0muRONQjWq69XaQ3KzB0C92oznSaxCNKA5L0Ws++cNT84wRajjnLpjdVIFXrdCPpdD4frk8IoNuq8L2MsaQ/dlOf3QjNjHYYWfhoMAE8Tl5WiVMLq4L2uceHEkZ0SBzuhVLX4ZG9VWjFIBtEanu19wDmbZzsMoePPz5YgboHJ4PtBeZscHwu2re3KTAGO+ds9K3wKtX2lAlYeY8xZNafgNlwHmAMg3rBo8cHB3zmfPjIMxIQgdYxrQtWmQmMARl1J5A41AvBIYBjzmctcM56xKbzWK0MHe3hAyfOnBE894ZjDCYT0NwsgDGGk5dVojuz17UvuDffldkLmIzgT59GWt1JJHc3I72pEgrzKFK6Gj2p3G1yV/I7kXd81OAMSBzwWVPL15KNdKyNjQyDdXRAqK6WLjwBxEwpKBQK7Ny5E2vXrkVeXh7WrVuHZcuWYfPmzZ71GU6dOgWVSoXXX38djzzyCJYtWxYrcfzxvKgCRph31mVqyxmktIkPONtsDIcP8bCYGWxyGwaThwG73b/xd9XLV/qHfvoOlgJAY44GNrm3J2k2O5fr0+mCGwSeDzOIBq/LwWwRPFtDlZNCbB2F1JYqKM6/gVreOcN3cJAFReUwOBumM8IZ9I4GVyJmCflGUImF4Q0MCGhv98bsM5+v6fx55yxjv4/KvZ/zypY4KK7U3BiNDJWVPCyusN9wqa4BgA8RvdXVxXD4MI+silKfqBavbLVCLU7wzjTL7jkMKS7F1zhLA/XCKs8r6ed6EXG3MsZg8bH4Gur5kI2LJrEWZ6cfAh8YkRMC0SVPfeoWe4+MSSakNZ+G6dARtCudvWbf++hrPfO8M+TzwAEHzAkWaKd3oznNeb98U5C433eBC/08zpwRoGkJ/7yStXVeF44rLE2hCN1xkNtMSGuqgMxixHDyCAxys19hudVnXMS9BgkX+v4EuoMSB3sCLGDnfqtuaq3RHNNFiYuKilBUVOS3bevWrZ6/CwsLodWKzwaNFQ69DoPoQwIS0KRowig/ArPLh84JvOflCWRggMHhAEwWIAHOjwEhZjGzHm9jxMBQf6Ifc5d66+1PGwDjGK7oWwwAUKudb1hdnYDEwLoiaM9rawVUdvOQJZiRpBsCMAe+jVLgTFK51QSjkWFwkEGl8vYLdDoGZPkUZAxJg904fVk9HCwTecgT9SgxLlhO3+bMPfnK9wM6e1bA1VeHzmNTUSEgEz4fmo+lYLU6B/JZRvDNSUgIPT4QaBH29QkQBJ+eaOB9Mo2ATwmf0mU0yYD6rDNY5BoLAZwNv8I0DCNG/cKJR5IMQQ1d4EA4c2fmDDH+Zrc7n589wXk9oWaiW60MQ4m94OxWcKZ++D9Yb8RNv4553rmmJiGglG9DFxD+GnCv+pIHYXG1bd3JzUh1bQ8cv6qrtiFhyNt1Fjj/eQEJwzooHDLYEwBBlg7wwedijOFT68eYZ1F6tnEcBzD/dz25txVgKrTMaIfSnoT0wR4o5s30pA3xvUpfOFcnwayw+s8tgXPs4fzcBsjkVzmPdHdaEA7v+axGH40u0qeZClwyqbMZY/jA8QFeLv0L1AlnMZJkwIhsGEYjg13u35MKjOz56KPgnlZfuh683Yb+1EF0Z/SG7Y0rezUwNvib7GKlRRtc5oz1PuA4gBGbCb29fnsBAN06GwYTe5HSUQOZPbjbHShbkr4Tx47xOHfOeUKeE4JCBgOpqvLGkwdfa3AGS7+9ItFHvteqndYdtD+oDpGvxrdX7ZDbMZAyJDo/Qwzf8RhPz5T5X0dmrXcJ0KEh8RBgTXYHjAmjMMuDo3fUdedwyHEI1dU8Wlt5VM+tDylPKV8KAzOAaxUJP3Q1PBwA3ubwU26p7dUBL5PLWuUBu8yK1LbzyGgoD6oyVOrmhpktaAiR6z+wc+E7adEi9x2w8uk9u/4cduUZUjafQ3pzpd+99H0XkvRaJA10Qdnf7lGgyl6N33lHrBbw+ip02z7wbHPPa/Ctdyh5BObRPvSm69CWpUV6yxn0f1qLPl2Apgr17rJgK384eRSmRBP0Sc5ISs+zYGEscp/6XdlTXBfO0J86CIfM4SwSQg7eDlRU8BG/2+PlklEKdtjBg4cJzp6VTWGHwMRnL3a2+fe+rFZAsDmQ1ngKMpvTqrAqrGhIqUfjzBa0ZmvRldmLxGGn+SwWrWDqOwuINI6akb+gs+dPsDX8A1bmPxKs7GpEv07whPupR/xDNhN1TiurMeUMhhLd/lEONrkdCtMIIDhzqYhdo7sHxxhDe1YnGmdqMKwMPRvU4YjcDQV4mwW5Ycjj3hhRioc9dkwPTk8gdyevc+kChclrYqc1VSC1pQqCIIB3NRxVac2on9UMRwShhYDT8gsK2/Vxz1fNq0XVvFoMD5YhQa9FW5sA+WhwqC7jAIVxCNPOBafm5gQHBMHpV9brg3Yjkfdfs7GbdXuGP+VWo+ea3fddm9wFG+99Rzx9eE+75L0AMyLN7+3/TPWpg5602kJXF6w6pyUjtxhhrSxHT4bTCk5o/gjnQyg5X4PMLZsp0YTEoV5YB/3lSu5sCApEcLg6aYYkI/Qpg55vzrdOmc3s9z6ernDW0arxcdvNbsSnMv88Zsr+DtTWBEdciL7bLLS+cHsUwn0TCuNwyH2u6tE4swXNM9rBHDzSm/yTRnZ2CjAaGQyu9qSzi5TChOMfKsdCjuYb2vzDXjmbBdD3I8E07OdXtHDeXnl7Vif4IaffXSwUsDdlABDJwmhz9MKQOATNjHY0Jp/xe8kUphH0aL0KSifz71GPjjobIitncgaSu2jKaQUAyKxGDA8DdWKZMQUBnMOOoSHApnCeg/exmGxyW5BPtN2hRUNvJ7gA3zvjQn89yT3NaGSNMCss0PtmkBSCk3+549QBQNnj31tVmPw/ME5wQGAM5Ysq0ZijgUXhmg8ihEvsF+Am4AAw5unlN9rboLM6G0FTogmmRBN6WDnM+sPgOCBVE5wmhHECZHYr5A47+tL04plBeYeoGeg7VnT2LA+D0T8NgjsiqGWGM+NoS5rGmY8oAKvJqwjdlo7vWgNtWZ14r0x8DgYXJimjvd2rrBOHelFaX4XWbC0Gk4dxbla4lCni74JD5vC8U+4edoJxCMwg3llomdGOhlnBVgvHQTQN+ugoQ0urvxVgsARfXxcC4v5DvLtWKyc25cIpg3uJVE/kEnBK7X+u4WTndTlCrC/e3u6KDlRYYe7U+0XYAU4Xa11d/HMhxXRMYXwDMOkAACAASURBVKrh6xpgHMNojQbDtjnBMwECXBXTzx2GoLo66FWXGfwbqrPzapHfE+otYt40l+7fAdiYLajnobAY4F4FvLeXwXf1BHc4XKJOi7SBVs92h2uGq8xhR2en4DyXq1qr3AYOQM/Iv7CkNREnFMWwKPwbUl26Ht2ZvVjR6YB78obcMIj3O87CXFmBlf1fAGZ4yzOEj6RoYi0Ymt2GFJu3Z5zSVo2mjOWAT2zB2bMCvuL62yK3IJnjPffD3YD6zrh2T17qTxtAkiMJDgXAWJhGzkfpJfVrYcgcQZrG6645qe3EqeEh3BRwHM/x6OxwIJkFjzcJnLeRa3Yp47nDzkU4lH1tYGwm0jRV4JPTQ8rluf4qHvN7GTAveJ/AOe+EnbcjsNH1NCYcwNy9bsaBs7nGDdIGgKSzoudMELF+AGcD29XmP8bgvn9iA8ADg16ZEkIM8NtlDiS6vsGmHG/U3mh/dKGWAi8EhdDaZFZnNGBXA3w/6N4ue9A43cigf7oMudUoGu/b08NgZky055ww6jT9dOmu/3UCmN7/uZjQg+TaQ+haqkGiyBw8t4LkwKGh3oGQbwhjTutfFrtMxr5cMkqBgcFq9v3tHCe21LWASwz4yBzBmt0u2IN8wnYb5xx19uHMKSumi5w/kpB/nhdgSQhwIfVq4HDMgMXiTI0xUySePGFkEL5HBUYr+ZnZC1whtgLQnJOOaZzTR+qLW6mYE6yeQfjknhbo0q5BGgBNmn8vcUQ5itPcaf9z+ii9liYHMmWCN3soABlvg8EANL3rDflN7mwAcAUAoGruGaQZZcjVLfTsdy+K4qa723svPHWHTXPh03BpT0OYNhTQIWCi4Y8AkNzVKNoYhp2zAG8nVG6WSNTGmKSLzmJmsNt58DJ38q4AS0vmAO/2rTMgRdvg2ZfSooYpsHUMwDfhXEODgDT4jz1E6j5MMIRY1Y1z1nL8Mq+bhAFoagzTIAJBPXlB5Pu0yo2A0Yik/iG/hbESh3qDyiYYh+AI+G5DzT4Pmrgc4h50dzNYUuqBADchsw9BbvF6CDgf2X3vd7gFoNraGPoWnIUyZxquwZqQ5SaKS8Z9xMA8ibsAAJxzhSuxyUQJw31B2wa4YKew2Mzg6VUHPX+bFRZPTwIAmFjMZ4CMVaqaoO1NTd7FUdJaRHp8AS+UX+QPAxKGxHuDdjmP6szQy1RyDGic6R3kk7m06kjA2IMuXY82Y+iZ5u4XngvMvywI0Fd6e4z+DSfzU1YMDEMp/pZZa53XVeOuWQjTSPvuq1hwDkweaCOGcYP1topudzcSvI/C6MoMbojE4PhgDRRKyVgSLLBagbpah0dpB9Kc0wrB4Y2G4QRvOd97aRgVP4dvwjnOHnqmozUh8h6rbziywAmQWf1dqJYEC07NPBSUadeXQDemNkSiQyYwzzNOTg7eXzWvFt0Z4s8m1H3vTGnEictOwy5z3vfuzOC2wVkBg2koeB0WDhzkFu+1JXd7OzUK16RXDoBZ6A/KO5ZVUYqkHu/3Z5i4tZzCcklZCkGhbWHioIOO5yPIsxKwz1chGI1AUqK3ERtIGfLrMQHOgWWx1904ZIPCYoCyVwOZfabbm+TBYYPHZO5PG4DS7grVYwJqG9SYM9QNiERW8jKHn0IZTfL/YAMtjpSOYIXlprt+CNOmifcxlL0aMCTAEJD/RtnTAgb/ZU0FCBhJNnji48/Oq/Xs68nwVzwJHWpn9C0QNOFJDEEWOBbiL6/cbABTJAJICijnlIsPYyloRQbLgdADlQCQ1lwJi6vHysE5Q1ifKp7rpzVbCyDbr0Kx988zphBmrMDBBxm4zmN8xoqUIZQgEDpySYzeHoY0t2xgos+HExzozgwd/TZgr0D7oi5kGafhM3YGTYu4UmjRCFjpuidiCSFNiSa0Zke+wHbtbK9rsSWnDcZEE6yK0ArR7VLyZTREcEUgTbJ3gHlAYdtK/zoNA+CVzgBfhWkIjLExpwuKlEtLKfjQmqUFL4t8Ov5wRR2Q6b8t1AO3yxxoz+oMSizn63cVg7eJ90LS2rwuFveAqpuOjuCPzOJy+Sj72tCNNuTI88TllIsPgLoJVBLhSBroQu+R0Au62+V22AMigxSm4aBw4JOXOV1TkTyaphzvDGx3xErXtNAT1gIbpMCBvaSBLiQO9sImD55EWbmg2m/CoRvPqlpK8XsliHQmPMf6hpa2nUfaoB7a6aGtjIRRPRRs2DMVrTU7OMGk2yrjJaxSMdz3HoDofB33PbbJQyucQOQ+ETjn5tVh3tDsoDLOrABiTlcnToXo7PB8WGpCesNJIKCa5M5G2FMzIHDOJk2WlAQYpZNcuukM894AwfNJAgnl/tGlhQ/1BgC7z8uuyQ5OxaLs927ju7qhmDe2dEGRckm5j3x7WZEqhKp5NdBkt2NIiHwwTL2wKupMo5ES6EIxGBikps749rZ9ETghZC4eIHwDK4bRrxMWmf/5jGrsU/etCpsnJsDdYIdTZIHPXKxnxzEeFQuCXXRiCgHwNuyhLJTqc6EbUGuAgu/NkH5nknTe+S6BY0G+dLIwk0IjmBEps4XOGBsodziSdP6NXG+I7yLSYMuBzr9CFpilFoDcPAJlvxZmdxrsadMilhGAJwx3rPilMIkSi08CSt81nnkuuI3S9U7QSlBhuKQshVCzlcNhSjTDlBj5ckiRpOCdSITRYch4HiGSqUoi5teeCEyJkSnRaKw1MaLJddQxXXqSXLSEc1c5C0Tuogy0pMSQGtgGgAq+ArWm1pD7Ay2kWCLjI7NYjEmRuXX0aYOYMzIz5H73eI5MPoWmCI+R2jnBExnlCbHvx19SlsJ4tHmkRJK/fyI533skKqUViDsHz0QTK0tpPETTw/VlKHnsuWnCWWJjwSGhRM0JFnQNNKK7NbRSllsjdwtGS4LYYIUPjhCup0ifjcAJnueRmuq/z5HqtQ58JzteqIhZvfFQCpeUpRAPNDMmIANlFPRx4pN7liyRY2hQQL8+Ptc9WWRkyjAyHHlvXC6Pfi3m4fEohSgshUjgw6yyBrjccR8ExSLEjXjk8GnPco6lJCdzcDiY6PpYGUnWwOjQSWHi253Y3+BLxlLgO8Rz6cebif5o7ObgFm7OHOdjnTZdJhqaF465c8cuoCN1GhISACbz72skSsTHj4cZOdH5zRRx7gYpe4LX1Qjs4UZDuOiXqYBCAcwbmo006zguMlIYMGuWTxPmM9grlwHz5k1+8xZp9FGkCIFh3TFg8u9anOjqjK+vHwAyRcJAJ1opcCKLufgO27kVRCDp0hNso4cBNlkKkpX+vaPMzNi9yNH6jiMdg8jMlC4TCYH+++xsTtLFMhnMnctNSCOalSXD/MG5Yfuzs0dmIr/78nGfi5MBCUpvp8AvZcfMmRP2rSmV0mXiBZtgy1OMS0YpQBH+UgMffEqK+PZo4EROKfaihmokFi4M3Qt2N1qcT+oFt8zuDlO+cT5kIZaaTFs0CwuvTAvazs+eL1I6MuRWIwQG8A5vy5uSAmTOjr7XOHOmuNy+VkdODhdR671Ir/L8HalSSFA4zy9j0p9IasAyrsu6rwhZlgnAdBaHXrQLd7z+nNmhW8hZozlISZEh9bMrxt2QKpXOCnz94WkBr1muaQ4WKjOg4EObbYHHBDJjBofM3JmQL13q2Sa3OQerFy2SQTZv3oQphenTYtOpSUl2vudz5kjXn5PjWlkugvXOx8sloxSS0sQbWHebkp0t82tf0tI45M5W+punIvhOirWnZ3v+nj2bQ1aWLOjl5kRm1aSncUi3BH8F8jCujhwRt4n7I3BPIs2yh1kLIDUFissXB22WpYT3N82ezTkbejEriLcDHIeZPiumyuUI0oSBt4ADh4UL/TcmJYl/KH5VZWRCtnChaDlfZo14BZqeE1k3PSWVw8qkWbjcGhxXH4gyw9nIJ/KJWMrNxGfmhzbDGBgKk+ZhTYq/8k1NjTqKEoC05anIdL5X4SyqOUMzscQ8B/+/vTMNjuK69vi/e3aNpNk0WkfSaBatowUJIWQkjBSzGZ6wjdiC45dAjCuxy8/Ji53KF0IoY3CCK44rScUvAQeqMDhQcUGMwZSx4/AQq1mMwTEgJNCGJKTRoG3WPu/DoB4NkjDwEBLm/qpUpe6+3fPv033vuUvfc5MVFphMPHSDpgwkJ/OiI5ZIAHNqKJ+MVGG6edLjzc/SkS6H1SpBYUPuiJoSH82GLib0rJKT+bDWrVbLg5PJh9SoOA6QSrl72ySPC8XNSE6+N0VmVBRgTlCgjLcO+66nlZvDHPnA7bhw68ir94JRdQp79+5FRkYGbDYb1q1bN+S4x+PBokWLYLPZUFJSgvqwYOP3Fplq+BJWo+GRmspDpQp/MHZXCir9ORgSCeEmBEnwpUxM5KEblKkjI3kYdGZYjBHiixTpiwh2dt6EoSwHOj5UGGu1QKHeAP6mhdEHa5nROQGWNF5s8hMvAVTBwimQZIakqAiqiGDuTk7mEVsRmimZ05yBEn8JJDIJ4uLC73uKKgvx8RzM5uC1k+LCNURkmpGYKIExVoLYWE4syOQBOXR9GoDjoEoyiC90gleHKX3hszTVasDRnAGTiUdsLIfMBBX0XER4Ps7MRvQtut8SXHGYIpmL2bLHhya6CX7Qay6T8WGF2Ui11XJ6BGXqFKSnhZomtljVsOMB0TpzUJNMjek6MzTRIZupbxrE0NrjEGnORr48Ho7mUC1XpeQQExM675veu9B5of8TEoZ2TWk9eiQ7E1GpexpyORCVGA29LvyZK/0K2IU05EpyEWtIgsEgQWpq8PkrM9LEhZh0ainUEjmMRgnMlelIyo/DSJicCeL/gysBSmXo3iTEj7iqYKXmP1AmnQttnwZxkXIoFNyQPAq1GtPk3wnb9R19MqSCBJXSSky8PnIX1R0V7hFqUfvgAvzmvHO7JCXxMMbLwOXnITagH3b2tTwxFupUo2irgTQ+Gv1u8FFzCoFAAM8//zz27NmDc+fOYevWrTh3LjxMwoYNG6DT6XDx4kX85Cc/wc9//vPRkgNeHd4XN5BXuRwHEjOKAYR/Up4sj4KqrALfMT8N28x0JD6aGXa+Jlj+iTVmpU6FCH+oYE9xG1Gqn4mpLgdkMkAqAaapU8DdlNtL6iZgdtSTeNRaCADQWw0wGHg4JAmAwRCWVqoMFTA8eDx2vQDlPcHZyjzPQWsOOoFMTRpKJaVQlE/DY70lUCg4aAc1gaM9kdDL9SiXPYppSEexNy2oOYUHr4pAZCSP+OgUVBb9J57wFaLsShGyW+woSFOjnCvB4+ZnMSf7v/BEYAKme4K1PVOvEZmtNkSoOfBmM6Im58GYpESGVoMoIULshpHLgccj8zAhOQrz+oqQI4/FZJ8NMpKKBZxUkMIo0SE23YDERA4qFaDpD1YTBVWw5qvv00AG2YhT/nk+6HyMPUEbEhe0e3JcJmS+UEHvlfPD1tAVhnhw4KBSharNUwPpUMhDvzcQTiRFEiwA4/tvXrcM0CjDncJ02zOItueD5znIhVAJbvHZwKWkiE4vYphmotXKw1x00zf6g24/OacQ0TnmsMNlyIKpKwERhkgUPvYIEialQZ8eajklOxORnyeBtLIyqCNjBvi8PCRI9DDIlSiNfgyTEh9HWhqPmBgOZa5spOTNhsKohSTOiOGwWjkUyROR0pkEvVSJsswZ4jGTSQLuhmfNzhq5+FFySmiilMhqtaGkK5j3IiM5KJVASr4BvMOBR3QzECFRo0odcq6ZvAkz0lcEz/eEt74rFKGW8Wzb04jp0SNxmBnWN5OttMPQq0OUTg7e4UBylgZmM48ni390y/P0Om7YbjuVigNvjAHkMkg5Kcq7gzPoB1pkkR411FCDNxhEZzBwFf8ozSsazKh9i3H06FHYbDZYLMEHsXjxYuzcuRPZ2dlimp07d2LVqlUAgOrqarzwwgujFtvDEz38NW1kQ5YQg+aeDnwUCAarmqGwIUYWAU6thjzCBElAiygA6U9NwPm/B0MBVMsKQAaCRBGB/ZYjkKbbYTzIoQ2NkMmAhPKnwPNGCAgW2OY0Ccyd0eACwcKp2FuICZYY8Ale8BwPnT0V5YhBa24ShCYOqi45ylMW4mLN7wAAjkgDSlQ2bOgNBS2TkxTKsnJg91mA5zDLvhBfGmtQoCuF9MZ0f3neBKDlzJDPbpSREsilGkROnIX4aZFw9bwPCAKMkWZE5BYjSzUZGk4DP84iL48Hp4oH59KBF9TgE2+Ehs7OR0xTK4o/5WFLkUEdz8ERPQkeaTaOcEegm5QJ/rALfGIihBvr6T5T9SLUvYTAkeB95JpnA2o10k59jGsJ15HXmgGDOgEq7WTUapPgxb+R0S8FxXPYZ72IbokWbceCX3So1CNXp1dkz4UkKhon3g1Gth0Ye7GYinDuVBMQCM6j4ANexFYUwOD1o3Z3cH3uKHckZKY0SKxWxClkKO1qQZxPgwhSADo94OyAyZmAzhtxipJ1Biz0T4QhKxacWgFqakKeUYsv2ruQqU2HV3EG/W7ClIoFiOBCAxCT85Q4cWMCqyQhBVojh2R7K9QtCuga4tEoXEejrkWcIJclyUKDzQB8HgyHEhvLwdehQB/ciIoCHombi2J3A+pdp7FbE4yrlZTIIU7GQ67iMUn7HbjgQktaC3ou74DPB8yOTApbwjRJakKCJBECdxTockICDSjQB4svDkkeA2QkRZ6qCLLAV6hX1Q+xe1G3DdpUHbQuF5KRBElpNTitFgmuU7iu7MY0Zzokj04CfD6oDh4E5x46m9mSECwd9XEKSNJ5RDkyEK1KRef1KyhK4uFJteC60g8dF3TYSYooJGo42CgWUEWBv1GZUsh45NSl41xWKxILEpDszQBqgp9wRySm4YnkbAj9Hmx0B2fup6byuHxZAMcFW/6qlDhMNVYhKsKIrGwfeEcOjinPozNPAT2nh4KPCdMdE8OFrUmtT40Odm9dDc3ZUSiA2fn/jVpZA+L4OHApVxF16RKSknhES+TQfhZ0ECXSqdgTtQcROiVcbW4oMrKAq+fgv0Vo+HvFqDmFpqYmJCeH+k1NJhOOHDkyYhqpVAqNRoOOjg7ExIQb+15glttQVfIfOLv7C/AywjWHC84GF9LkyZCo5EiUmpAV6cXxviuIVoZqcDJOhgw+A9GIRpu8Ddd0pyAQIbK0Ilgd5TiUtcSgXxmHi/JgSyjKlggjf6MWxfPI7DXB+Mhc8N2EqQ0RON51FJPmT4M0KlIc+eQTElAY/2O0UAuupF2GMmUCVBIlUrQx6BWceFRqgaRwIvgDp0H9oYlJCkUweFuWKR9RfBRK9TPD7puPiYFJV4kWasFCWR68AYKpSAKJOljL5W5Uk6WRGgQQgIyToTIidA3JtGmQcByoqQnC+fNhzSk+JQXypCSU9Hdj4GNxTh0FNaeHg3fgS/mXiHn0CfCSaPAHeAicgEiFLize3MCYgNGnweNdEyF9YrZ4LAMZQEYG/B01gMsFqd0OHYDUVDNyvtRBkxmsocsCMvgkPiiVwVXO8vpTocwvAgBYLeeh1EfgslEH77UuxKqSEa/V4npbMKPG6bXIURagVdGKntRL6Kr1w9GSAblSCk4hhwTApClLEDh4EACQHlWAw9gPQ7QEMn0U6lz9UGoM0MbWgU+MBWcygeLiUBE5FTlf1yA2bSJS5Y9AoAB0kaGYNZLJkyGRy6H77Dh6eoBEqxEJEis8eTlQpfnR39AOw5FaRPVLcDYiOPfFVlyNNAogvtuFYylfIDqah73JjsO+K5ipCy7CIE1OgqWiBzhxI9iiSgWJhANksmDlAzroJDr4J06Hy++E/OjQyhLP8eAKC0FtbeBUKsBkQrazCEiIAt1YDzZLkgU72dEYcRTxCg2UualQXHfDeEUDPi0NwqlT4CdMEN+vaaWPQ52ggdoQAU4mA1Qq8DYbtKdPo/OmiQaPZ/9n8F0ymRDd3Q3eZkOMXI4YFA7RCgDyklLMPSOHrM8HThfqT5PJOEwtNqGg/DGcFE4iWuIAanaKx9WzKgAi5K/vRZ/cjaT4PlzGVciUKqgnZ4GTSqGWGMFxEkjLygAAJSiBj3yQQDKk8jpnyrPYtPN/Qs84IwN6To+Lx/aK+0yaHEiUKqTfCBGPDA3IbkfZJy5okhz4KsUHT1tw3EABBYzZcXjCowWvLsNm+dcQJPdh0R0aJf72t7/R8uXLxe3NmzfTCy+8EJYmOzubGhoaxG2LxULXrl0bcq23336bioqKqKioiFJSUv5fugLd3RTo6SGvp4/arn4Vdszn81BT0wkS+vtJ8PmGPd973UluZ+uwxzz9bjrw6X7yeUPnCm43Cdevh7YFgYTu7jvSLPj94v/OgJM6Ah1h1+3z95IgCN98ne5uEq5dI2EYG/sEH3kF78jnBgIUqKsjIRAY9nigoYECly+T4HaL+wZfr7GhkU58fjx0va4uElyu0LbPN6LNBZ+PhN5ecgtu6hF6hhzvbe+k7qvt5PRco+7uNhI6OkLnulwkeDzk8ndRrzdoL6+7j65cOEE1//sxBQbdj+DxUKC9nQSnc6iG3t7gnyDQ6ZPHyO/zUb+3lxo6vhI13g1+v4/qvZdGfH6e63105uP/pVNfhGwXaGsjf+c18vt9FPB4yH116PM8fOwA1V+uI8Hvp0Bb24i/L3R3U6Cp6a60ExF5nG3k7+sdet0R3pOb6ehupSPHPqK6r89QZ+tFarl+6a50CIJAgfp6EnpDWoSeniHP5cKF83Tqi8/D9vVd7aTOM5eJiOjwkc/oWkcbuQU3tQfav/F3+9o76ODHH5PX5yEiopaGL+mr08fo3Okz1CP0kF/wU23deTp55FP65J8fUm/v0Pd3yH0Egu+CX/CLeSggBKg10Ep9Qt83ahqJoqKi20rHEd1J9Jjb59ChQ1i1ahU++ugjAMDatWsBAL/4xS/ENDNnzsSqVatQWloKv9+P+Ph4tLe337L7aOLEiTh+/PhoSGYwGIxvLbdbdo7aQHNxcTEuXLiAuro6eL1ebNu2DVVVVWFpqqqqsGnTJgDAjh07UFlZOeqxwhkMBoMxMqM2piCVSvH73/8eM2fORCAQwLJly5CTk4OVK1di4sSJqKqqwvLly/G9730PNpsNer0e27ZtGy05DAaDwbgNRq37aLRg3UcMBoNx54x59xGDwWAwHjyYU2AwGAyGCHMKDAaDwRBhToHBYDAYIswpMBgMBkPkgfv6KCYmBmaz+a7ObW9vh9E4fBCv8caDopXpvPc8KFqZznvPaGqtr6/HtWvfvHb6A+cU/j88SJ+zPihamc57z4Oilem894wHraz7iMFgMBgizCkwGAwGQ0SyamBBg4eEoqKisZZw2zwoWpnOe8+DopXpvPeMtdaHakyBwWAwGLeGdR8xGAwGQ+ShcQp79+5FRkYGbDYb1q1bN6ZaGhoaUFFRgaysLOTk5OB3vwsuudnZ2Ynp06fDbrdj+vTpcDqdAAAiwosvvgibzYa8vDycOHHivuoNBAKYMGEC5s6dCwCoq6tDSUkJ7HY7Fi1aBK/XCwDweDxYtGgRbDYbSkpKUF9ff191dnV1obq6GpmZmcjKysKhQ4fGpU1/+9vfIicnBw6HA0uWLIHb7R43Nl22bBliY2PhcDjEfXdjw02bNsFut8Nut4vh8Udb58svv4zMzEzk5eXhySefRFdXl3hs7dq1sNlsyMjIENd4AUa/XBhO5wDr168Hx3HiZ6Jjac8w7noZnwcIv99PFouFamtryePxUF5eHp09e3bM9DQ3N9PnnwdXf7p+/TrZ7XY6e/Ysvfzyy7R27VoiIlq7di298sorRES0e/dumjVrFgmCQIcOHaJJkybdV71vvPEGLVmyhObMmUNERAsWLKCtW7cSEdFzzz1Hf/zjH4mI6A9/+AM999xzRES0detWWrhw4X3V+cwzz9Cf//xnIiLyeDzkdDrHnU0bGxvJbDZTX19wBa0FCxbQO++8M25s+tlnn9Hnn39OOTk54r47tWFHRwelpaVRR0cHdXZ2UlpaGnV2do66zo8++oh8N1Zae+WVV0SdZ8+epby8PHK73XTp0iWyWCzk9/vvS7kwnE4ioitXrtCMGTMoJSWF2tuDK7yNpT0H81A4hZqaGpoxY4a4/dprr9Frr702horCqaqqon379lF6ejo1NzcTUdBxpKenExHRihUr6N133xXTD0432jQ0NFBlZSXt37+f5syZQ4IgkMFgEDPfYNvOmDGDampqiIjI5/ORwWC4rWVC7wUul4vMZvOQ3xtvNm1sbCSTyUQdHR3k8/lozpw5tHfv3nFl07q6urBC7E5t+O6779KKFSvE/TenGy2dg/n73/9O3/3ud4loaH4fsOn9KheG0zl//nw6deoUpaamik5hrO05wEPRfdTU1ITk5GRx22QyoampaQwVhaivr8fJkydRUlKC1tZWJCQEF6NPSEhAW1sbgLHV/9JLL+HXv/41eD74qnR0dECr1UIqlQ7RMlinVCqFRqNBR0fHfdF56dIlGI1G/OAHP8CECRPwwx/+EL29vePOpklJSfjZz36GlJQUJCQkQKPRoKioaFzadIA7teF4yG8bN27E7Nmzx6XOXbt2ISkpCfn5+WH7x4vOh8Ip0DAfWI2HZT97enowf/58vPnmm4iOjh4x3Vjp/+CDDxAbGxv2idyttIylnf1+P06cOIEf/ehHOHnyJNRq9S37iMdKq9PpxM6dO1FXV4fm5mb09vZiz549I2oZr+8uMLK2sda8Zs0aSKVSLF26FMD40tnX14c1a9Zg9erVQ46NF50PhVMwmUxoaGgQtxsbG5GYmDiGigCfz4f58+dj6dKleOqppwAAcXFxaGlpAQC0tLQgNjYWwNjpP3jwIHbt2gWz2YzFixfjk08+wUsvvYSuri74/f4hWgbr9Pv9cLlc0Ov1o65z4LdNJhNKSkoAANXV1Thx4sS4s+nHH3+MtLQ0GI1GyGQyPPXUU6ip3bLu0AAABjdJREFUqRmXNh3gTm04lvlt06ZN+OCDD7Blyxax4BxPOmtra1FXV4f8/HyYzWY0NjaisLAQV69eHTc6HwqnUFxcjAsXLqCurg5erxfbtm1DVVXVmOkhIixfvhxZWVn46U9/Ku6vqqoSvyzYtGkT5s2bJ+7fvHkziAiHDx+GRqMRm/Ojydq1a9HY2Ij6+nps27YNlZWV2LJlCyoqKrBjx45hdQ7o37FjByorK+9bDTE+Ph7Jycn4+uuvAQD79+9Hdnb2uLNpSkoKDh8+jL6+PhCRqHM82nSAO7XhzJkzsW/fPjidTjidTuzbtw8zZ84cdZ179+7F66+/jl27diEiIiJM/7Zt2+DxeFBXV4cLFy5g0qRJY1Iu5Obmoq2tDfX19aivr4fJZMKJEycQHx8/fuw5aqMV44zdu3eT3W4ni8VCr7766phqOXDgAAGg3Nxcys/Pp/z8fNq9ezddu3aNKisryWazUWVlJXV0dBARkSAI9OMf/5gsFgs5HA46duzYfdf86aefil8f1dbWUnFxMVmtVqquria3201ERP39/VRdXU1Wq5WKi4uptrb2vmo8efIkFRUVUW5uLs2bN486OzvHpU1XrlxJGRkZlJOTQ08//TS53e5xY9PFixdTfHw8SaVSSkpKor/85S93ZcMNGzaQ1Wolq9VKGzduvC86rVYrmUwmMU8NfLVFRPTqq6+SxWKh9PR0+vDDD8X9o10uDKdzMIMHmsfSnoNhM5oZDAaDIfJQdB8xGAwG4/ZgToHBYDAYIswpMBgMBkOEOQUGg8FgiDCnwGAwGAwR5hQY3woiIyO/Mc2bb76Jvr6+UdVx6tQpfPjhh8MeO378OF588cU7ut6qVauwfv36eyGNwbgtmFNgPDTcjVMIBAJ3lP5WTmHixIl466237uh6DMb9hjkFxreKf/7zn5g2bZq4rsLSpUtBRHjrrbfQ3NyMiooKVFRUAAD27duH0tJSFBYWYsGCBejp6QEAmM1mrF69GmVlZdi+fTtqa2sxa9YsFBUVoby8HP/+978BANu3b4fD4UB+fj6mTp0Kr9eLlStX4r333kNBQQHee++9IdoG1qRYtWoVli1bhmnTpsFisYQ5izVr1iAjIwOPPfaYOEMbwIg65s2bh82bNwMA3n77bTHmD4NxV4zq1DgG4z6hVquJKDjzOjo6mhoaGigQCNDkyZPpwIEDRBQ+e7S9vZ3Ky8upp6eHiIjWrVtHv/rVr8R0r7/+unjtyspKOn/+PBERHT58mCoqKoiIyOFwUGNjIxEROZ1OIiJ655136Pnnnx9W4+BZ4b/85S+ptLSU3G43tbe3k16vJ6/XS8ePHyeHw0G9vb3kcrnIarXSb37zm1vquHr1KlmtVvrXv/5FdrtdnHHMYNwN0rF2SgzGvWbSpEkwmUwAgIKCAtTX16OsrCwszeHDh3Hu3DlMmTIFAOD1elFaWioeX7RoEYBgJNuamhosWLBAPObxeAAAU6ZMwfe//30sXLhQDGp4J8yZMwcKhQIKhQKxsbFobW3FgQMH8OSTT4qxewZi8dxKR1xcHFavXo2Kigq8//779z1gHuPbBXMKjG8dCoVC/F8ikYjRRwdDRJg+fTq2bt067DXUajUAQBAEaLVanDp1akiaP/3pTzhy5Ah2796NgoKCYdPcjc7hAt7dSgcAnDlzBgaDAc3NzXekgcG4GTamwHhoiIqKQnd3NwBg8uTJOHjwIC5evAggGOf+/PnzQ86Jjo5GWloatm/fDiDoTE6fPg0g2MdfUlKC1atXIyYmBg0NDWG/cTdMnToV77//Pvr7+9Hd3Y1//OMf36jj6NGj2LNnD06ePIn169ejrq7urn+fwWBOgfHQsGLFCsyePRsVFRUwGo3461//iiVLliAvLw+TJ08WB25vZsuWLdiwYQPy8/ORk5ODnTt3AgguFJ+bmwuHw4GpU6ciPz8fFRUVOHfu3LADzbdDYWEhFi1ahIKCAsyfPx/l5eW31OHxePDss89i48aNSExMxBtvvIFly5YNuzALg3E7sCipDAaDwRBhLQUGg8FgiDCnwGAwGAwR5hQYDAaDIcKcAoPBYDBEmFNgMBgMhghzCgwGg8EQYU6BwWAwGCLMKTAYDAZD5P8Ajz0aRJ7kc0gAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = plt.subplot(111)\n",
+ "x = pd.np.arange(combined_interests.shape[0])\n",
+ "ax.plot(x, combined_interests.loc[:, '%s_expat'%(audience_var)], label='expat', color=[0.05,0.05,0.95,0.3])\n",
+ "ax.plot(x, combined_interests.loc[:, '%s_US'%(audience_var)], label='US', color=[0.95,0.05,0.05,0.3])\n",
+ "ax.plot(x, combined_interests.loc[:, '%s_MX'%(audience_var)], label='MX', color=[0.05,0.95,0.05,0.3])\n",
+ "ax.set_xlabel('Interest index')\n",
+ "ax.set_ylabel('% of population with interest')\n",
+ "ax.legend(loc='upper right')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Looks like pretty close overlap on the whole, although the expat counts seem spikier (consistently higher than the other categories on maxima)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 140,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAIUCAYAAACZwR/HAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8VOW9+PHPObNmsq9AyE4UCAVkFXepC4pK6wLFulWraGtt66219qeicK21V+ttrbftxbrWK1i11p2qqFitsgi4EJYIgRAg+z7JrOf8/jiZIYGQnCQzMAnf9+vly8zkzDlPwpOZ73me7/N9FF3XdYQQQggh+qAe7QYIIYQQYmiQoEEIIYQQpkjQIIQQQghTJGgQQgghhCkSNAghhBDCFAkahBBCCGGKBA1CCCGEMEWCBiGEEEKYIkGDEEIIIUwZkkHDeeedd7SbIESPpG+KWCb9UwzWkAwa6urqjnYThOiR9E0Ry6R/isEakkGDEEIIIY48CRqEEEIIYYoEDUIIIYQwRYIGIYQQQphyzAQNpftaaG73H+1mCCGEEENW1IOGlStXMnbsWIqLi3nggQcO+X5FRQWzZ89mypQpTJo0iTfffDPibdA0nbmP/Itz/nt1xM8thBB9afXIDYsYHqIaNASDQW6++WbeeustSktLWb58OaWlpd2Oue+++1iwYAEbN25kxYoV/PCHP4x4O6paPADUtHrZ19QR8fMLIcThtHr81LZ6j3YzhIgIazRPvnbtWoqLiykqKgJg4cKFvPLKK5SUlISPURSFlpYWAJqbm8nOzo54O8rr3OGvX964l5tnF0f8GkKIY4em6WyoaKSspo1gUMNiUTguK5GpeamoqhI+rsXjp67VS4PbR1HmUWywOCaE+uWO2jYKM+IB4/NvTGbCIX1zoKIaNOzdu5fc3Nzw45ycHNasWdPtmHvvvZdzzz2XP/zhD7jdbt59990ez7Vs2TKWLVsGQG1tbb/asbNL0LCry9dCRMJg+qYYejRN51dvbmFNeT1VzR7c3iAuu4VRyU5OLErnzrnjUVUlHDDUtnr52Quf89EvvnlU2iv989gQ6pdryxvQdZ39zR4UBUYmO1FQmFmYFu6bgxHV6Qld1w95TlG6N3j58uV873vfo7KykjfffJOrrroKTdMOed2iRYtYv34969evJzOzfyH7rjo3TpvKpJzk8FSFEJEymL4php4NFY2sLW+g3RfE7Q0C0O4L0u4Lsra8gQ0VjeGAYV9TBz9ZsYnKxqM3LSr989gQ6pdwoD+6vcb/gXDfHKyoBg05OTns2bMn/LiysvKQ6YfHH3+cBQsWAHDSSSfh8XgiXuq0vM5NQXo8I5OcVDVL0CCEGLgdtW0AeP3db268AePx5n0t1LV6qWho56fPb6KqxYPTeswsVBNHSahfwoG+CN376c7awY+0R7Unz5gxg7KyMsrLy/H5fKxYsYJ58+Z1OyYvL49Vq1YBsGXLFjweT8Sj4fI6N4UZ8YxKdspIgxBiUMZkJgDgsHV/+3RYVYKaTqrLxs7aNm59fhN1bT7i7Rb+67JJR6Op4hgS6pdg9MXw1136aVFm/KCvE9WgwWq18uijjzJnzhzGjx/PggULmDBhAosXL+bVV18F4Le//S2PPfYYkydP5vLLL+epp546ZApjsOravIxIcjIi2UmrJ0C7LxDR8wshjh1T81KZWZiGy24h3mEBwGW34LCqlGQnYVEVbv3b5zS2+0lyWnlo/mS+MTr5KLdaDHehfglGfwz1T5fd6KMzC9OYmpc66OtENRESYO7cucydO7fbc0uXLg1/XVJSwscffxy16+u6Tps3QKLTysgkJwBVzR6KukRlQghhlqoq3Dl3PBsqGvm6po1AUMMf1ElPsKPpOre/+AVuX5BUl40HL5sk7zXiiOjaL3fWuinIcAGwq66dosz4obF6Iha4fUF0HQkahBARo6oK0wvSmF6QRnOHn/o2Lxt2N3LXP77CE9DISLDz0PzJ5KW5jnZTxTGka78MmVmYHtFrDPugoc1jTEUkOGyMTO4MGiSvQQgRAc3tfurdXj7dWc89r27GH9QZmeTkofmTyE6JCx9nVSURUgwPwz9o8BrlWxOcVgkahBAREwoYPtxey31vbCGg6eSkxvHb+ZPJTHSEj7NZVEZ1vvcIEWuCmk6HP0iCw1w4MOyDhpbOkYZEpxWX3UqczUJDm+8ot0oIMZSFAoZ3Sqv5zcqtaDoUZsTz4GWTSIu3h49z2CyMTHJiicBcshCR5g9qVDV7cNktEjSEhKYnEjt/IWnxdhraJWgQQgxMKGB4/Yv9/Pc729GB40ck8JtLJ5EcZwsf57JbGZHkiPhqMCEiweMPUt3iIajpgMX064Z/0OANjTQYf8yp8TYa3RI0CCH6r6ndR4Pbx0sbKvmf93cAMCE7iV9fMrHbnVqC00pmggQMIja1+wLUtHjReqja3BfT2Tle76G7tPX0XKwJbUmb4DT+oFNddhraZZtaIUT/hAKG59ZUhAOGKXkp/Nelk7oFDCkuO1mJTgkYRExq9fipHmDAAP0IGk466SRTz8Wa1vDqiQPTE00yPSGE6Iemdh/1bV4e/6icv3xUDsCJhWnc/+1vEGc/MLSbHu/oltMgRCxpdPuobfX2uC+UWX1OT1RVVbF37146OjrYuHFj+GItLS20t7cP+MJHSmh6IhQ0pLrsNMj0hBDCpEa3jwa3lz+v3skLn1UCcNpxGdx1wXhsFuO+S1EUMhMdppPJhDjSalu94ZH3weizh//zn//kqaeeorKykv/4j/8IP5+YmMj9998/6AZEW5snQLzdEs5eTou30+oJ4A9q4T94IYToSaPbR73by+9XlfHa5/sBOGtcFnecPy78nqIqCiOSnN1GHISIFbquU9Pqxe2NzPYJfQYN11xzDddccw0vvfQSl156aUQueiS1egLhfAaAVJeRENnY7iMrUdZOCyF61uj2Udfm5cF/buPt0moA5k4cya1nHx8OGCyqETA4bRIwiNgT1HSqWzx4/MGIndP0WNqll17KG2+8webNm/F4DhRHWrx4ccQaEw3GvhMHlkGlds43Nrr9EjQIIXrU6PZR0+rh/je3snp7LQAXTxnNzbPHoHYmONosKiOSnNhl22sRg0I1GPxBre+D+8F00HDTTTfR3t7O+++/z/XXX8+LL77IzJkzI9qYaGj1BrrNM6a5jKBB8hqEED1pcPuoafFw72ub+XRnAwCXz8zl+lMLwysi7FaVkUlOrDLFKWKQNxCkutlLQItswAD9WD3x73//m2eeeYbU1FTuuecePvnkE/bs2RPxBkVaq8dPYtfpic6RBllBIYQ4WIPbx/7mDu58+ctwwHDdKQXccFpROGCIs1vITo6TgEHEpA5fkP1NnqgEDNCPoCEuzth8xeVysW/fPmw2G+Xl5VFpVCS1eQLdgobQciipCimE6KrB7WNvYzt3vPQFn1U0AfCDM4q4clZ++Jh4h7FbbiS2GBYi0tq8AapaPAOuwWCG6emJCy+8kKamJn7+858zdepUFEXhhhtuiFrDIqXdF8Rl71p4pTMRUqYnhBCdGtw+Kurd/OLvX7KtqhWAn559HPMmZ4ePSYqzkZHgONwphDiqQuXNo8100HD33XcDRkLkhRdeiMfjITk5OWoNixRvIIjTdmBAxWG14LSpNHdIVUghBNS3edlV7+bnL37Bzlo3qgI/nzOWORNGho9JddnDU5tCxJr6Nu+gPtOqmj2kmwyITU9PeDweHn74YS655BK++93v8sQTT3RbRRGrPH4Nh7X7cqiUOLsEDUII6tu87Kht49bnP2dnrRuLqnDXBSXdAoaMRIcEDCIm6bpOTYtnUJ9nb31VxSV/+rfp402PNFx99dUkJiZyyy23ALB8+XKuuuoqXnjhhf638gjyBoI4DloSlRxno0n2nxDimFbf5mVbdSu3vfA5+5o82CwK91xUwsljMgCjymNWooN4qfIoYpCm6VQNogaDxx/k96vK+Ofm6n69zvRfw7Zt2/j888/Dj2fPns3kyZP7dbEjLajp+IP6ISMNyXE2GWkQ4hhW3+Zl875mbnvhC2pavTisKv/5rQlML0gDjCqPI5OlaJOITYGgRlWLB19gYCskKurbWfJ6KeV1bgDOOD7T9GtNT09MmTKFTz/9NPx4zZo1nHLKKf1o5pEX+oV2zWkASHZJ0CDEsaquzcumPU389PnPqWn14rJb+M2lE8MBg1VVGZUiAYOITd5AkH1NAw8YVm2p4ab/+4zyOmM67qYzivjt/EmmX286aFizZg0nn3wyBQUFFBQUcNJJJ7F69WomTpzIpEmHv+DKlSsZO3YsxcXFPPDAAz0e87e//Y2SkhImTJjAd7/7XdON70to2Kan6QkJGoQ49tS1eVm/q4Fbn99Eg9tHgsPKg5dNYlJOCmBUeRyV4jxkdFKIWODxD7wGgy+g8bt3y/jVm1vw+DUyEuz894LJLJie269t3E1PT6xcubLfjQwGg9x8882888475OTkMGPGDObNm0dJSUn4mLKyMn7961/z8ccfk5qaSk1NTb+vczjezkjMYTs4EVKCBiGONXVtXj7ZUccdf/8StzdISpyNBy+bxJisBMB4nxiZ5AzvKyFELGnzBga8rfW+pg6WvFZKWU0bADMKUvnl+eNIcfU/wdd00FBWVsbZZ5/d7bmnn36aa6655rCvWbt2LcXFxRQVFQGwcOFCXnnllW5Bw2OPPcbNN99MamoqAFlZWf36AXrjDRx+pKHdF8QX0KRuvBDHgNpWL/8qq+X/vfwlHr9Gerydh+ZPIj89HgCX3UpWokOKNomY1Nzhp75tYDUY/lVWx3/9cytubxBVgWtOLuCKE/PCe6j0l+lPzKVLl/KDH/wAt9tNdXU1F110Ea+99lqvr9m7dy+5ubnhxzk5Oezdu7fbMdu3b2f79u2ccsopzJo1a0AjGocTHmk4OBGys8CTjDYIMfzVtnpZtaWaO/5uBAxZiQ5+t/CEcMCQ4LQyIkkCBhGb6tu8AwoYAkGNP37wNfe8uhm3N0iqy8ZD8ydz1az8AQcM0I+RhtWrV/Pb3/6WE044ATCCiMsvv7zX1/Q0jHLw3EkgEKCsrIwPPviAyspKTjvtNL766itSUlK6Hbds2TKWLVsGQG1trak2e/2HSYSMCwUNPjITpcKbGJyB9E1xZNS2ennry/0sfb2UgKYzOiWOh+ZPYkSSscNtcpzNdFGboUr659Ck6zq1bV7aPIF+v7amxcPS17dQur8FgBNyk7nrgpLwNgqDYXqkobGxkTVr1jBmzBgcDge7d+/uc24lJyen26ZWlZWVZGdnH3LMt771LWw2G4WFhYwdO5aysrJDzrVo0SLWr1/P+vXrycw0tzzEE56eOHTJJchIg4iMgfRNEX21rV5e2bSXe1/bTEDTyU938bvvTA4HDOnxjmEfMID0z6EoVINhIAHDmvJ6Fv31s3DAcMWJeTx42eSIBAzQj6Bh1qxZnH/++axcuZJ169axb9++Ppdczpgxg7KyMsrLy/H5fKxYsYJ58+Z1O+bb3/4277//PgB1dXVs3749nAMxWKGRBsdBIw2h5A8JGoQYnmpaPfxt/R5+9cYWNB2KMxP43YITSE9woCgKmYmO8DSlELEkENTY19xBh69/RZuCms7jH5Xzy79/RYsnQJLTygOXTOT7pxZGNLnX9PTEu+++S15eHmDsePnII4/w4Ycf9n5yq5VHH32UOXPmEAwGue6665gwYQKLFy9m+vTpzJs3jzlz5vD2229TUlKCxWLhwQcfJD09fXA/VafeEiEBqQopxDBU0+rhr5/s5g/vfQ1AyahEHrhkEglOK6qikJXk6LaJnRCxwhfQqG7x4A/2b0llfZuX+97YwueVzQCUjEpi8YXjyeocVYsk0385ubm5PPvss+zcuZPFixdTUVGB09l3g+bOncvcuXO7Pbd06dLw14qi8PDDD/Pwww/3o9nmeMPFnQ5dcgky0iDEcFPT6uEv/ypn2Yc7AWMu975vfwOX3YpFVRiRJEWbRGzy+INUt3gIav1bUrmxopH73thCY+dN8PxpOdxwWiFWS3RWBpoOGn74wx+iqirvvfceixcvJjExkUsvvZR169ZFpWGRcLjiTkky0iDEsFPd3MH/fLCDZz7ZDRhr0ZfMm4DTZsFmURmR5JQl1iImub0BavpZg0HTdf7v0wqe/mQXmg7xDgu/mDOOU4/LiF5D6UfQsGbNGjZs2MCUKVMASE1NxefzRa1hkXC4JZcWVSHRYZWRBiGGiermDh5+ZzvPr68E4JQx6dx9YQl2q4rdqjIyyRm1Oy8hBqPF46eutX9LKpvafdz/5lbW724E4LisBO65qITslLhoNLEb00GDzWYjGAyGl0zW1taiqrH9R+g9zEgDyP4TQgwHuq5T3eLh129t5ZVN+wCYPTaTX54/DqtFxdlZ5VFqMIhY1Oj20djev5vvr/Y2s/T1UurajNd9a3I2PzhzzBEbRTMdNPz4xz/m4osvpqamhjvvvJMXX3yR++67L5ptG7QDZaR7CBqklLQQQ5qu61Q1e1jyWikrN1cBcN6Ekfzs3OOxqArxDqPKY3/q6gtxJOi6Tl2bj1aP+c8gXdf52/pKHvvXTjQd4mwWbjv3eGaPi1wVZTNMBw1XXHEF06ZNY9WqVei6zj/+8Q/Gjx8f/n5jY2O4FHSsONz0BECKjDQIMWTpus6+pg7u+sdXvL/NKFj0rcnZ3HJWMaqikOi0SeE2EZM0Taem1Uu7z3wNhlaPnwfe2sYnO+sBKMqI556LSshNc0WrmYfVr3VH48aNY9y4cT1+76yzzmLDhg0RaVSkePxBbBalxzWqyXE2qppbj0KrhBCDoes6lY0d3PHSF3y8w3gTXTA9hxtPL0JRFFJddlIjVMhGiEgKdhZtCk2dm7G1qoUlr5VS3WLkPZz/jZHc8s3io7YKKGKLlQey81a0eQPaYbe4NaYn+l9tSwhx9Oi6TkVDO7e98DnrdhlJYFeflM81J+WjKArpCY5wHRYhYok/qFHVbL4Gg67rvLxxH39evYOApuOwqvz07OOYM2FklFvau4gFDbE4b+gNBHtMggRIjrPT3OFD1/WYbLsQojtd1ymvc3Pr85vCRWwWnVbIwpl54SqPCQ4p2iRiT39rMLi9AR56ezurtxtTb3lpLu65qITCjPhoNtOUYf0X5vVrhx3CSY6z4Q/qdPiDUh1OiBin6zpl1W385PmNbNlvTCve8s1iLp4yGlUxijbF2aVok4g97b4ANS1eNJOj8Ttq2rj3tVL2NnUAcNa4LP7jnONjpn8P6+kJT0A77EhDiutAgScJGoSIXbqus7WqlVue28jXtW0owM/OPZ65E0dhVVVGJDsOOw0pxNHU6vFT1+Yz9fmo6zpvflnFH97/Gl9Aw2ZRuHl2MRdNGhVTo+H9+rT86KOPKCsr49prr6W2tpa2tjYKCwsBWLVqVVQaOBhef/Cwa1e77nR5JApiCCH6T9d1Nu9r4ebnNrC7vh1VgV+eP56zxmdhs6iMTHZik6JNIgY1tftocJurwdDhD/L7d8t4u7QagFHJTu65qITjRyRGs4kDYjpoWLJkCevXr2fbtm1ce+21+P1+rrzySj7++GMA0tLSotbIgfIGNByHmZ5IkVLSQsQ0Xdf5fE8zNz+3gb1NHdgsCndfUMKpx2Xg6CzaFMnd+4SIlNpWr+kaDLvr3dz7Wim769sBOLU4g9vnjCXBGZsj4KZb9fLLL7Nx40amTp0KQHZ2Nq2tsb1ksbdEyCTZtEqImKXrOut3N/Cj5zZS3eLFblVZOm8CMwvTiLNbGJEoVR5F7NF1owaD22tuZd67W6p5+J3tePwaFlXhxtOLuHTq6CM+HWHtR3Vn00GD3W5HUZTwD+N2u/vfsiPMG9BIdPa8/Co0PdEiQYMQMUXXdT7dWc+Plm+kvs2H06Zy/8UTOSE3hQSHlUyp8ihiUFAzSpp7TNRg8AU0Hn3/a17/Yj8AWYkOFl9YQkl2UrSb2Y3dqpIe7+hXkqXpoGHBggXceOONNDU18dhjj/HEE09www03DKihR4rHr5GR0EciZEdsb7olxLFE13X+VVbLj5dvoqnDT7zDwgOXTGRCdjLJcTbSE6TKo4g9/anBsLexgyWvlfJ1bRsAJxamccf5445ofRGrqpIabzvsTXWvrzV74G233cY777xDUlIS27ZtY+nSpZxzzjn9vuCR1Nv0RILDikVVZHpCiBih6zqrttZw6/ObaPUESHJa+a/LJnH8iETS4u2kuKTKo4g93kCQ6mYvAa3vgGH19loe/Oc22n1BVAWuO6WQhTNzUY/QyJmqKKS4bCTH2QY8Wmc6aCgvL+e0004LBwodHR3s2rWLgoKCAV34SPD6D18RUlEUkuNskggpRAzQNJ2Vm6u47YXPafcFSXXZeGj+ZIoyE8hIsA/ojkiIaOvwGUWb+qrB4A9q/O/qnfx9414A0uLt3H3BeCbnphyJZqIoColOK6ku+6CTh01nP8yfP7/bVtgWi4X58+cP6uLR5g1oOHvY4TJEdroU4ujTNJ3XvtjHrc9vot0XJDPBwe++cwJFmQmMSHJIwCBiUps3QJWJgKGqxcNPVmwKBwxT81JYdtW0IxYwxDusjE6JIyPBEZHVRqZHGgKBAHb7geFBu92Ozxfb+QBef7DXoi9JEjQIcVRpms6Ln1Vy5z++xB/UGZXs5LfzJzM6NY4RSc6jtimPEL1pbvdT7/b2edynO+v59VtbafUEUICrZuVz1Un5R2SpsMNmIT3eHvG/IdNBQ2ZmJq+++irz5s0D4JVXXiEjIyOijYk0o07D4UcaUuJsNLbHduAjxHCgaTobKhrZUdvGmMwEpualAvDc2grueXUzQU0nL83Fg5dNYlRyHCOTnYctzCbE4fTUzyK9NLe+zdvnzWZQ03n8o3JWrNsDGJ81v5w7jhkF0a9nZLOopMbbo7YPi+mz/vnPf+aKK67gRz/6Ebquk5ubyzPPPBOVRkWCpun4gocvIw3G9MSu+thfOirEUKZpOr96cwtryxvCz80oSCU7JY7739yCpkNRZjwPXjaJrEQno5KdWKXKo+innvrZzMI07pw7PiKBg67r1LZ6aeujBkNtq5f73tjCl3uNTdUmjk7irgtKyEyM7sofi6qQEmcnKc4a1SXJpoOGMWPG8Omnn9LW1oau6yQmxl55y658nUtfepueSHFJIqQQ0bahorHbG7mu67zxxX6qW43h3bEjE/nNJRPJSnIyQqo8igE6uJ8BrC1vYENFI9MHeYevaTpVJmowfLa7kV+9sYWmzpGIhTNy+f6phVHt04qikOS0khKBJEczTAcNXq+Xl156iV27dhEIHIi0Fi9e3OvrVq5cyU9+8hOCwSDXX389d9xxR4/Hvfjii8yfP59169Yxffp0s806fHv9RtDQVyJki8ePpulSXU6IKNnRuR4djIChusVLbZsRMEwcncT9F08kM9HJiCQp2iQGrms/62pnrXtQQUMgqFHV4sEXOPySyqCm89dPd/PXT3ajA4lOK3ecN46TxqQP+LpmJDispMbbj+j+K6aDhm9961skJyczbdo0HA5zwyzBYJCbb76Zd955h5ycHGbMmMG8efMoKSnpdlxrayuPPPIIJ554Yv9a3wtPwIgIextpSI6zoevQ6gmQ7JIMbSGiYUxmAgCaplHd4qWucxOfsSMSeOBSY0oi2kO3YvgL9bODFWXGD/icvoBRtKm3GgyN7T7uf2MLn1U0AcbI2T0XljAy2Tng6/bFabOQFoUkRzNMBw2VlZWsXLmyXydfu3YtxcXFFBUVAbBw4UJeeeWVQ4KGu+++m9tvv52HHnqoX+fvTWikoa+cBjD2n5CgQYjomJqXyvT8FF7ZtJ+GzsTjUclO/vs7JzAyOY60eCnaJAZval4qMwvTDslpCCXd9pfHH6SqufcllV9UNvGfr2+hvjMQvnjKaG46oyhqd/42i0pavJ34KCU5mmH6yieffDJffvklEydONH3yvXv3kpubG36ck5PDmjVruh2zceNG9uzZw4UXXthr0LBs2TKWLVsGQG1tbZ/X9oZGGvqYngCjlHQerj7PKURP+ts3jzW6rtPmDYYDhhNyk/n1JRPJTnEd0dK5x6pjpX+qqsKdc8ezoaKRnbVuijLjB7x6wu0NUNPqRT9MwKDpOs+v28PjH5Wj6eCyW7jt3LGcOTZzsD9GjyyqQorLTpIzukmOZpgOGj766COeeuopCgsLcTgc6LqOoih88cUXh31NT7/wrj+wpmnceuutPPXUU31ef9GiRSxatAjAVM6Dt3P+ydlrIqRxhyO1GsRg9LdvHkt8AY2fvbCJ1z43NuY5t2QEt583lpHJcVFbEia6O5b6p6oqTC9IG1QOQ3OHn/q2w9dgaO7w85uVW/l0pzGiMSYznnsuKiEnNfI3nqHKxSlxtpjJuzP9V/vWW2/1++Q5OTns2bMn/LiyspLs7Ozw49bWVr766ivOPPNMAKqqqpg3bx6vvvrqoDt3v0YaZAWFEBHn9Qe5ZflG3i6tBuCiyaO49ezjGZUc169d9YQ4UhrcPpp6qd2zZX8LS14rpaZz5c8FE0fxo9ljcEQhtyDBaSXNZY+55cemW5Ofn8+ePXt47733yM/Px+VyofWxQceMGTMoKyujvLwcn8/HihUrwsWhAJKTk6mrq2PXrl3s2rWLWbNmRSRgAGOHS+g9ETIpzoiZWj3m9j4XQpjT4Quy6K+fhQOGy6aN5mfnHM/oVAkYROzRdZ2aVs9hAwZd13lpQyU/WbGJmlYvTqvKL88fx8/OPT7iAUOc3cLo1DiyEmOzXonpkYYlS5awfv16tm3bxrXXXovf7+fKK6/k448/PvzJrVYeffRR5syZQzAY5LrrrmPChAksXryY6dOndwsgIi080tBLImSopn2rR0YahIgUtzfA9U+v45PO4dsrZ+Wx6LQiRqXEHdGlYUKYoWk61a0eOnw912Bo8wZ46J/b+LCsDoD8NBf3zCuhIH3gqzJ6YrOopCfYcdlje9rOdOtefvllNm7cyNSpUwHIzs6mtbW1z9fNnTuXuXPndntu6dKlPR77wQcfmG1On8KrJ3qZnoi3W1AVaJGgQYiIaOlI30+UAAAgAElEQVTwc+1Ta/lst7H87PpTC/neKQWMSo6Tok0i5vRVg6GsupUlr5eyr8kDwNnjs7j1nOOJi+DoglVVSYm3kTRENmYzHTTY7XYURQknMrrdsV1+2UwipLFdqE2mJ4SIgKZ2H1c9voYv97YA8MMzx3DVSfmMSHTGTBKXECG+gEZ1iwd/8NCAQdd1Xv9iP4++/zX+oI7NonDLN4/jgokjI7Z6Qe1MckyOoSRHM0wHDQsWLODGG2+kqamJxx57jCeeeIIbbrghmm0blFC5z95GGsDIa5CgQYjBqWvzcuVf1rC1qhUFuPWc41g4I4/MRKnyKGKPxx+kusVDUDt0hV+HL8jD72xn1dYaAEanxHHPRSUUZ/VcPGogEp02Ul22mMxZ6IvpoOG2227jnXfeISkpiW3btrF06VLOOeecaLZtUEIjDb0lQgIkOmy0yJJLIQasutnD5X/5lJ21blQFbj9vHJdNyyEjQao8itjTWw2G8jo3S14rpaKhHYDTj8/g5+eOjVgxJZfdSmq8rc/PpVjWr9/EOeecE9OBQldmEiFBRhqEGIw9DW6u+MtaKhrasaoKd10wnm9PGR2ugSJELGnx+Klr7bkGw9ubq/jvd8vwBjSsqsJNZ4zh4inZERkps1tV0uMdw2LlUJ9Bw6mnnspHH31EYmJit19eqLhTS0tLVBs4UGbKSIMxTLSnM6oUQhg0TWdDRSM7atsYk5nQY2W98to2vvuXNexv9mCzKCyZN4ELJ2cPmYQuceSZ6VfR0uj20djDkkqvP8gf3vuaN7+qAmBEkoPFF5YwflTSoK9pVVVS423hlXrDQZ9Bw0cffQRgaqVELAlFi33NGSVJIqQQ3Wiazq/e3HJIDf87544Pv8GXVbfy3cfWUNtmrFm/7+KJnP+NkUe1Jr6IbWb6VTTouk5dm6/HpfV7GtpZ8nopO2uNxP5ZRWnccd44kgZZ3lxVFFJcRpLjcMvp6fMvvKGhodfvp6UNbp/yaPH4g32OMoCxhaksuRTigA0Vjd3e2AHWljewoaKR6QVpbN7bzFVPrKXB7SPebuGBSydxTsmIo7Ljnhg6+upX0aBpOjWtXtp9h94YfrCthgf/uZ0OfxBVMZYHL5iRizqID3ljRZ6VVJd92C4x7jNomDZtGoqioOs6FRUVpKamous6TU1N5OXlUV5efiTa2W/egGaqUleS00qbN4Cm6UNq2YsQ0bKjtq3H53fWurGqClc/sZYWT4BEp5Xfzp/MmWOzsJsI0MWxrbd+FY2gIajpVLV48Pq7F23yBTT+vHoH/9i0D4D0BDuLLyhhYk7yoK4X7zCCheH+t9Bn0BAKCm666SbmzZsXLtT01ltv8e6770a3dYPgDZgbaUiKs6Hr0OYLyFysGJb6O488JvPA0jIdnXZfEK9fY1tVC0te24zbFyTVZePhBSdwyph0vqhsOipz1GJo6dqvuirIcLF+V4PpPtS1PxdmGFUZy+vc3V7rD2pUNR9ag2F/cwdLX9vCtmpjun1afir/b+44UgeRuOuwWUiPtx8zI22mJyDXrVvHn//85/Dj888/n7vvvjsqjYoEb0Az9Y+Y6DR+BS0dfgkaxLAzkHnkqXmpzCxMY015PVXNHtzeIFYVnvh4FzqQkWDnkcunMCM/jQdWbj3ic9RiaAr1q679ZUZBKiu/qmLdrsbwc731oa79Wdd19jd7UBQYmexEQWFmYRq3nXM8NW3eQ2owfPx1Hb9ZuY02bwAFuObkfK44MX/A0wg2i0pqvP2Y263V9E+bkZHBfffdx5VXXomiKDz77LOkp6dHs22DYjanISm8/4QkQ4rhZyDzyKqqcOfc8Ty3Zjd/Wr0Ti6IY69oBq6pw69nHcVJROp/tPvJz1GLoCvWrDRWN7Kx1U5QZj6br/OfrW7od11sf6tqf231B2jv3i2j3BYm3W/l0Rz3v5lYzIfvAVEMgqPHYv8p54bNKAFJdNu6cO56p+akD+zkUhVSXnaQ467BLcjTD9OTL8uXLqa2t5eKLL+bb3/42NTU1LF++PJptGxRvQDOZCClBgxi+eptH7o2qKtisKqoC1Z0Bg82ikJ/uwqqqKIoy4HOLY5eqKkwvSGPBjFymF6RRXtdzXzlcH+ra57xd9ovw+jWCmo5f06io7wg/X9vq5da/fR4OGCblJLPsqmkDChiUzrLPuWkukl3Db1WEWaZHGtLS0vj9738fzbZElNevmaq6Fdoeu1mqQoph6HDzyEWZfe/Qt6ehgz2Nxhuw3aKSnxaH026lMDOe9bsa2FXnxu0L4LJbUDjwBmrm3ELAgf7ZNXfGYVMpyHD1ejx0r8FjtSgEOvMXctPiAFi3q4H739wafm//7sxcrj2lcEDTEQkOK6nxdtmllX4EDbNnz+4xsnrvvfci2qBI8QaCptaMhxJgeir6IcRQ19M88szCNKbm9X6n9X+f7uZ/3v8aMN6c89NdOKyWbnPQuq7T3O6npcPfbU65r3MLETI1L5UZBam8+vk+3F5jqsFlt7Dyqyqm56cdktfQtT+77BZcdgu6rmO3GMdNyk1h7MhEnvi4nP/7tAIdY4XcHeePY1ZR/6fTj7UkRzNMBw0PPfRQ+GuPx8NLL72E1Rq7CSDegEZafN//0GnxRtDQ4JagQQw/Pc0j95Wd/pd/7eS+N4x55pJRSdzyzTG0eoKHzEErisKoZCftviCnHZfJWeOyZPWE6BdVVTjvGyP5YFstDqsFh1XFZbewbldjj3kNXfvzjpo2kl02PP4gexs95KbFMTLZyS9e+pJNe4yt2cePSmTxhSWMSHL2q13HapKjGaZ/I9OmTev2+JRTTuGMM86IeIMixeMP9rnDJRhRrd2q0ihBgxjiDre0MjSPPDUvlQ0Vjbzw2Z7DLm179L0yHnp7OwBTclN47OrpZCQe2Hjq+XUV3Y5XFIV4h5XC9HhJfhQDUl7nDo8YtHj8tHj8JDqsfF3T1mOfUlWFKXmpZKfEhXcznpQDm/Y0ceNfP6Ox3ZiOuHTqaBadXtSvKQWLqpASd+wmOZphOmjoWhlS0zQ+++wzqqqqotKoSDCbCKkoCunxdhlpEENaX0srQ99fU14fnjuekpfC7xacgNWqous6D/5zG3/8YAcAJxam8b9XTTtk46nB5EiIY1NfdUIKM+LZ3+yhqcOP1rnzZGO7n3+V1bJgeu4hgW0gqLG/Sw0GTddZvraCJz/ehaZDvMPC7XPGcdpxGabbqCgKSZ2VHGWkrHf9GmkIVYa0Wq0UFhby+OOPR7Ntg2IEDebmoVJdEjSIoa2npZVrdtbz3Jrd2Kwq/oDGmp31VLV4wnPHq7bU8NO/beL33zmBX725hSc+3gXA6cdl8McrppLQQ92SgeZIiGOT2TohAU0PBwwAClC6vyU8RREKPLZVtZDisjN2ZCKqotDc7ufXb21hbWedh+KsBO65qITRKXGm2yhJjv1jOmiI1XLRh+P1B3GamJ4AI6+hQRIhxRB28PLHUOGbP63eSVq8nXq3l+YOP76AhqIoqAooKGzY3chNz37GO1tqADhn/AiuPaWAN77c3+Nd4UByJMTwdvBIwgk5KWzqrBLqD2isKa/vtrrm4DoM5XVuEhxWOvzB8O7JqgK+gM7OWjdT81L51Ztb+HRHPX5NA91IeDztuHTue30rtW3GVtcXTR7FzWcWmy7j7LRZSJMkx37rV5bHV199RWlpKR6PJ/zc1VdfHfFGRYKnHyMNafF29jTK9thi6BqTmYCudy5bC2jouo7bGyDZZUNHp80TCI8wKBj7rFhVYw45FDBcOHEUGYl2fv3W1vB5e7orDOVISA6DCE977TSmvTyBIA6LkcyoqioNbh/eQDC8uiak634TYzITcNhULIoCXfII7FYFXyDIg//cyqot1disCopujHav3lbD3zdUoungtKn87JzjOWv8CFNttllU0uLtsiPrAJn+rS1ZsoQPPviA0tJS5s6dy1tvvcWpp54ak0GDruv4TOY0QOdIg0xPiCHshJwUdGB/sxHQBzQNi6oQZ1Np9wZxew8UL9MxNvNRUPAGjEBi/rQcvpGdyLJ/7cJhU8O1F6TCo+hJaHRh1ZZq3ttaTUtHgHZfkKCu4w9qJDms5Ka5cFiNwCFUsTGkaw7M1LxUzjw+85Bll3E2CyvW7aG+zUdDuw+X3UKqy0Z1ixd3ZyXIgnQX9140gbz0nus6dGVRFVJcdpKckuQ4GKYncV588UVWrVrFyJEjefLJJ/n888/xer19vm7lypWMHTuW4uJiHnjggUO+//DDD1NSUsKkSZM466yz2L17d/9+gh6EKoWZWT0BRk5DqydwyOYmQgwVmyqbUBQYleIkLd5OZoKx4qHDp9Hq8RPq2V3fKgOdtfmvnpVPotPKsn/tosHtY3+Th6pmDzrG96XCo+gqNLqw5LVSXv18P3sbPTR3+NHR0TvzEtr9RonnUC0Fr//Ae+vBOTCqqnDXBSX88YqpfO+UAq49uYCfnFWMqigENR1LZw2GNm+A3Q0d4YBhZkEq/3PF1D4DBkUxgoXcVBfJccduJcdIMT3SEBcXh6qqWK1WWlpayMrKYufOnb2+JhgMcvPNN/POO++Qk5PDjBkzmDdvHiUlJeFjpkyZwvr163G5XPzpT3/i9ttv5/nnnx/4T0SXoMHs9ERCZ4Ent4+sfq7nFSIW7KhtQ0Eh3m4l3m5U2PMFNTz+IP6ghq6DqoAFCOgQSjn7wRlFfHNcFktf39JtZM7tDYbvDmVlhOiqa9Kt3aIQ1DWCGqAcCEoVRcEb0Ih3WBmV7GThjFzsVsthc2BUVWFmYTozC40CTCvW7jaSIzUdp9XIcfAGjF6rAFPzU7n/komofQQACU4raS47VklyjBjTQcP06dNpamrihhtuYNq0aSQkJDBz5sxeX7N27VqKi4spKioCYOHChbzyyivdgobZs2eHv541axbPPvtsf3+GQ4SGXE0nQnYuK2tol6BBDB1dE9D8Ac0YGdAJzy3bVAUdPXxnpunQdSztO9Nz+MX548O1F0J3haFNgLx+jdljZWWEMIT62/K1Fbi9AeJsKi2eAKFFD4GgjgKoqrEMUu/878SidBbOyAsnRwLhwCEQ0FixroKNe5qYkpvCwhl5qKqxIZTWGTRUt/ro6BypSHRa+eGZYzinZESvAUOc3UhyNHvjKMwzHTT88Y9/BOCmm27ivPPOo6WlhUmTJoW/v3nzZiZMmNDtNXv37iU3Nzf8OCcnhzVr1hz2Go8//jjnn3++6cYfTmgozPSSy3hjaVl9m+Q1iKHh4KVsum4sWTPmewP4g/ohWwN3NbMglV9fYvz9hmovdK3w6A1o/OCMIr57Yr6sjBDd+pvbF2B/swebRcEX1LBbVbx+DZ1QvoyRxKgoUJARzy/OHcuve9hC/RfnjuXiP/87PP315pdVPLe2gj99dxpjshLIz4jng201+INGP85JjeOPV0whwXHoUuAQu9VIcnTZJckxWgb0my0oKDjkuauuuooNGzZ0e07XD33TOtx80rPPPsv69etZvXp1j99ftmwZy5YtA6C2trbX9oVGGswmQmYlGqMLta1952gIcbD+9M1IWb+7gfe31oSLmLnsFjp8xnbwqmKjqcNH8DCvzUlxcvHUHDZUNDI1L7Vb7YVQhcfZ49IkYBgmBtM/uyY8vr+tBpfNAjpYVHD7gqgK6Lqx6MGqKAQ0Y2WOqhg3baX7W7j971/wxd7mbhubrS1v4MG3t3XLl9F1nR21bl7eVInNamH1tlr8QR2LonDx1GxuPL0Ii9rze7pVVUmJt5HUQ20REVkRC8d6ChBycnLYs2dP+HFlZSXZ2dmHHPfuu+/yq1/9itWrV+NwOA75PsCiRYtYtGgRYEyV9MYTHmkwFzSMTDaChqoWTx9HCnGo/vTNSNA0nUdWlbGvqQNNN/IXnFYVu1UlqBk7/oXuznpS0+rjsQ934rJbOLEonTvnjpfaC8PYQPtn1+WUVS1GsqOCgqp2jmxpOkHA0hk4BNFBwVg6CdS0eglqOg1tvs78Bku3pZcbKhrD1wqNlGmazlP/3k1T586Uo5KdLL6whLEjE3tso6oopLhskuB4BEUsaOjpH2zGjBmUlZVRXl7O6NGjWbFiBc8991y3YzZu3MiNN97IypUrycrKikhbQomQZot2JDisxNstVEvQIGKQpunhkQVd1/FrsHV/K76gRmgGwh8MovqCWC0qmvfwAQOAphtleF12C2t21oeXVErtBdHVhopG1uysZ3+zh2aPn0DQmIBQOoewQr0sHJ92jjioipE/4wtqWBTFWD0R0GjzBmho86EoirFz6qhEvtjbHH5xIGicMxQwZCc7+Z8rppAc172UORifN4mdZZ8HstW1GLioTvxYrVYeffRR5syZQzAY5LrrrmPChAksXryY6dOnM2/ePH7+85/T1tbG/PnzAcjLy+PVV18d1HW9/v5NTwCMSHZK0CBiTiCg8ZPnN7J6ey3egNaZYGZ87+CUBV0HqwqeQO9BQyiTvN1nrJDoWmhHiJAdtW24fQGaO/zh5blwIFg4mA7E2VR0XcGuKgQ0LVxbweMP0tThp7rFg0U18h0a3R7oDIIPlpFgJ95uYU9DB8mjuwcN8Q4jWDBb+VFEVsSCBrv90GgQYO7cucydO7fbc0uXLg1//e6770aqCWEH6jSYz5wdkeikukVyGkRsCI0u3Pd6KVuqWgloB4IFBeMNOvT/EB1jaq63aiMH35V5A5osqRSH0DQdf0CjttXbLWA4HAVjhOHs8SOYWZBGZVMHb2+uxmU33oND/VdVFSNZMqjTHAii0L0fW1UjGTeu8717T0MH3xidDEjZ51hhOmj48MMPe3z+9NNPB+DTTz+NTIsioL+JkGDkNRy84Y8QR0NoLvn9rTXsaWwnENQPCQ66/r/ba/t4f9c0nQBgtRh7T0zJS5EllaKbrrkMvl5yY7rSMaYpSve2cOWsfBbOyMMf1I3VFt4AHX4jaVIJ5T/0cFoFyEx0hAMGgNy0OCn7HGNM/ys8+OCD4a89Hg9r165l2rRpvPfee1Fp2GAcKO5kPmjISnJQ0+oJb5gixNESKp7jDWidSWPm3rjNsKgKqqqQ6LBxYlEav1twgiQ8im5C+TOhRMb+KK93c8dLXzJ7XBa/PG8cmyqbWL62gupWj1Fm+jBBiEUBp1Xtdr3JuSmcdlwmKS5JcowlpoOG1157rdvjPXv2cPvtt0e8QZEQqtPQn2GskUlO/EGdBreP9ISeV3AIcSSU1bTi9gY6R8z0iIYNLrtKotPGtyaP5rY5YyVgEN0YK3O+prKpwyir38+OF9ShptXDmp31bKpsYnpBGlv3t/DGl/tRocdlwBYVEh02MhLsXDhpFDaLhXGjEjn9uExskrcQcwY83pOTk8NXX30VybZEjGcA0xMjkg4su5SgQRwtmqbz8ddGxrqOUaApEgGDqhiFb/xBY/38N8dnScAgDrGhopG9Te1omj7gSLXNG+Tr2jbeKa1iR20blY3tuGwWWjUNLXjgtKE8CLUzLJ6cm8J3ZuSRnuCQJMcYZjpouOWWW8JDRJqmsWnTJiZPnhy1hg1GuCJkP0YaslPiANjX5GFCdnJU2iVEbzRN57k1u9lY0YTNouDxaz3O/Q7o3Dr4AsbOlwlOKyfkpETmxGLY0DSdd7dUU9PiMVbpDOJcHr/Gkx/vIiPBgd1i5Jl1HbhQFRiV5EBRVXwBDadV5eIpoxnV+T4sYle/9p4Iv8hq5fLLL+eUU06JSqMGayCJkHlpxk5pFQ3tUWmTEL0JJZ+t/KqKulYPfk3vM6mxP0IJaACtHj+/XrmVO+eOl9EGARzof299uZ92v0YPtfr6zRfU2dfsQeXAnidGpUgVi6IQZ7diUVWSnAoWVWFfkyx5HwpMBw3XXHNNNNsRUd7OOypbP3Y2S3XZSHBY2SNBgzgKQsmPdosS+YChyxd2q0q83cra8oZwUSchuu5cqSoKwUhEDZ1CAYPTZvQ9iwpN7X7q3T6yk53hwFWW/g4NpoOGsrIyfvnLX1JaWorHcyAi7Gt77KPB4w/2a5QBjApjOalxEjSII6LrDpWFGfG8t6WaBrcPTdMiFjAoGFnp8U4r7b4gCgpZiY7wNKMUdRIhod0nnTYLNlVBQSfQW8GPAVDRibOr+IM6TptKhy9Ih18j3qEyszCNE3JSWL+rgR21bYzJTJBS5jHKdNBw7bXXsmTJEm699Vbef/99nnzyyR73m4gFoU18+isvzUV5nbvvA4UYoEBA47l1FTzzyW7avQFSXFZqWn34AxregGZkrEdIqstKh1/HZlGxqjrxDku3te5yZydCQjuduuxGH2lwR37H33a/jqfRg9ViVIR02ixMyU1mSl4qqqLw079tYledOxzUzixMkym0GGQ6aOjo6OCss85C13Xy8/O59957Oe2001iyZEk02zcgXr82oH3U89JcfFhWK7UaRFQEAhrf+uPHbK9uDW8oVdVifC+0S2CkEh/BWCWR4rJy7oQRVDZ2sKveHd4saGZhmhR1EmGhnU7XlNfjDwYjWBmkOw0j18GigtsbYFNlMxv3NOPxB6lt8+KyW8hJjUNV1JidQus6SngsjoiYDhqcTieapnHcccfx6KOPMnr0aGpqaqLZtgHzBoI4bAMYaUh34fFr1LZ5w9tlCxEpz62rYGtVa7cCNuEvQ7sERlCrN8jcSdncPmccgOxiKQ5LVRXunDueZ9fs5levb4769YKaMX1W0dBu7NTauVqjxROgsrGD3DQXCkrMTaGFEka7Vg8+1kZETH+y/u53v6O9vZ1HHnmEzz77jGeffZZnnnkmmm0bMG9AwzmAkYb8dGO4tuse70JEyntbqo3170fI1Nzk8JuZqipML0hjwYxcphekHTNvcKJ/Vn65H29PFZiiIDSYq3Um/urGJpq4OzdSg9ibQuuaMBoSGhE5VpgeaVAUhauuuordu3fj9xtbl95www188cUXUWvcQHn8AxtpGNe5Z/u2qlZmFaVHulniGJfi6nlTt2hwWlV++M1iCQ6EaWt31R+x/XcUjJwGf0A7ZF8VTdPx+jVmj429KbRQwujBYm1EJJpMBw1XXHEFDz74IBMnTkRVY7ta10ATIbMSHaS6bGwNTTQLEUELZ+by+hf7Te0aOFBxNpWUOBvnfWMkMwsk8BXmLV9TQR+7qkeM1aKQn+qkotGDv3NUQcEYfVAVmPuNkfwyBof8QwmjB4u1EZFoMh00ZGZmMm/evGi2JWI6/EESBrAjmqIojBuZxJb9rVFolTjWzSxIZ2xWPJurer5bGQxFgaKMeG44rYjirGMvOUsMjqbpfLb7yA2x67qOJ6CT5LTS4TeCBquqoCpGxdIxWQkx2X9DCaMH5zTE2ohINJn+ZF2yZAnXX389Z511Fg7Hgb0ZLrnkkqg0bDDc3gAjkwaWyDh2ZCLPr9uDpukx2WnF0KWqCqcclxHxoMFmUXDZrdz/7YmcOEZGF0T/bahopMMf4cIMvdCBE3JTGJUcx8rNVUDnCLFNxWW3UJzV8x390RZKGD2Wk4pNBw1PPvkkW7duxe/3h6cnFEWJyaChzRMY8N7r40cl0uEPsqveTdFhhqKEGIhAQOPt0uqInjM93kayy86Zx2cyo/DYmFMVkbejtg1f4AhlQAKgMCo5jtvmjMUb1Fhb3kB8571orN+5h5KKj5UchoOZ/mT9/PPP+fLLL6PZlohp8wYGND0BhDvr+t2NEjSIiHpuXQUVDR0RO1/JyASuPrlQpiPEoI3JTAivWDgS4u0WzhyXKXfuQ5DpT9ZZs2ZRWlpKSUlJNNszaLquDypoKM5KINVlY215Awum50a4deJY9u7m/RErET0yycE/fngqdnv/lxYLcbBJ2ckRLSzWG6sKl04dzfR84079WL9zH2pMf7J+9NFHPP300xQWFuJwOMJVE2NtyaXHb9TuT3AOLGhQFKMDr9t1ZJYeiWPHnvrIjDKMSnKw+rbZEjCIiPnbZ3uO2LXOmzCSuy+cIKMJQ5TpT9aVK1dGsx0R0+o1akgMNKcB4MTCNN4praa6xcOIASZUCnGw3Y2DDxoSHRbe/48zJWAQEbVxT9MRuY6qwMljMmI2YDjWS0SbYfqTNT8/P5rtiBh3ZzmzxEEEDTM6h8nWljdw0eTsiLRLiMHkpuekODh3wijumDNOAgYRcRNGJfESe6N+HVVR0GJ0o0MpEW1O1Ks0rVy5krFjx1JcXMwDDzxwyPe9Xi/f+c53KC4u5sQTT2TXrl2Dul6bJwAMbqRhQnYSLrtFpijEUWcBnrthJh/dcTaLL5ogAYOIinc2Rz9gAIwdVy2xWRxQSkSbE9V/vWAwyM0338xbb71FaWkpy5cvp7S0tNsxjz/+OKmpqXz99dfceuut/OIXvxjUNdu8RtAw0ERIAKtFZVp+6hErqSpET9KcKtecUsCswoyj3RQxTHX4gvz1k118siuyVXCLM+NxHlSV16IYCbyxWoOhtxLR4oCoBg1r166luLiYoqIi7HY7Cxcu5JVXXul2zCuvvMI111wDwGWXXcaqVavQBzF8FYmgAYwpim3VrTS1R35feSH6MjM/hT9fM5O7LiiRoVERcd5AkIoGN3e+/CV3vxK5XS1VBdLj7Vx3aiGXz8wlOc6KzaJgt6qkuOzMHpcVszUYpES0OYP7ZO3D3r17yc09sGwxJyeHNWvWHPYYq9VKcnIy9fX1ZGR0v7tatmwZy5YtA6C2tvaw13SHgoYBrp4ImVWUjq7DmvIG5kwYOahzieHNTN/sz6jVk1dP44xxIyRYEBFxcP+safXwdXUbS18vZWtV5Ermx9tVshKdxDusHD8ikYUz8jh/4ig+2FqLrsDssZlMz4/dHValRLQ5UQ0aehoxUBSl38cALFq0iEWLFgEwffr0w16z1RvKaRjc3O8JuSk4bSqf7KiXoEH0qq+++VFZHdc/s67P8/z4jFx+fM43sA5gszUhDqdr/5x4wlTe3lWXeLUAACAASURBVFzFb1Zuo9UTQAFuOqOIP63eOeDzO60KoDAiKY54hzX8QauqCjML05lZODRKm0uhKXOiGjTk5OSwZ8+B9b+VlZVkZ2f3eExOTg6BQIDm5mbS0gZe5MMdoekJu1VlRkEan+yoH9R5xLFt1ZZqfvB/G/AFNFLjLTS6e6669+kvzmBkamzO9Yrho67Vy13/MKYjUuJsPDR/MmeXjOCk41xc/Zeven1teryN6fmplNW4qWn14gtqJDqsjEx2UJiRwKnFGUO+OqkUmupbVIOGGTNmUFZWRnl5OaNHj2bFihU899xz3Y6ZN28eTz/9NCeddBIvvvgi3/zmN3scaTCrzRNAVSDONvgs85PGpPNfK7dR1+YlI8HR9wuE6OLNL/fz4+UbCWg6RZnxPHf9LN79ejt3vXAgkB6fCS/fPAfnIKfThDCjod3HKGDS6GQevWIKeWnGfP3pxfk8cz2HBA7TcxK5eGoeY7OTwsP0Gyoa+bqmjUBQw2pRh3ygIPonqu9UVquVRx99lDlz5hAMBrnuuuuYMGECixcvZvr06cybN4/vf//7XHXVVRQXF5OWlsaKFSsGdc02r7FZ1WACj5CTioxhtU931nPhJKnXIMz7+4ZKbnvhczQdxo1M5K/fP5HMRAdXTpvEldMmHe3miWPYFSfmcfcF43Hau7/9n16cz64H+q7HI3fix7ao397MnTuXuXPndntu6dKl4a+dTicvvPBCxK7X5g0MqrBTVxNHJ5PgsPLvHRI0CPP+b81u7nr5K3Rgck4yT183kxSX/Wg3SwhyUuNY+q1vYJFRATFAw25M1O0d+LbYB7NaVGYWSl6DMK+uzcudLxtDvNPzU3ny2hkkOm1HuVVCGFJddgkYxKAMuzTtpnY/SXGRe5M+/bgMyuvclO6LbPETMTztb/YAcEpxOs98f6YEDEKIYWXYBQ27693kp7kidr5vTxmNw6ry7JrdETunGN6+OS6Lx6+Zgcs+7AbyhBDHuGEVNHT4guxr9lCYEbkKXikuO/MmZ/P3DZV8XRO5QihieMpKdPDnK6fhjMDqHSGEiDXDKmjYVW/UCC+McNnPn507lgSHlRue+Yyv9jbz9uYqHllVxntbqwdV8loMPyOSnNilOJMQYpgaVuOn5XWdQUMERxoARiY7+d+rpvH9p9dz4R8+6va9c0tG8NOzj6cwI5442YFQCCHEMDYsg4aC9MhvMDItP423fnIaH26vJS3ewanFGTz9yS7++53tvF1aDcAFk0bx2/mTcdosVNS30+r1c/yIRGwxuhWsEEII0R/DKmgo3d/CyCRnxJZcHmxUchzfmZEXfnzTGWO4aHI2n+1u5Is9TTz+cTlfV7eRneLk/W3GxkWZiQ7OHp/FrKJ0ZhWlMyLJGX59fZuXD8tqSXTYOGNspgQXvfAFNBn2F0KIo2zYBA2rtlTzxhf7+d7JBUf0uqNT4hidEse8ydmcclwGd738Fdur2/jJWcdRlBnPm1/u5/Uv9rN8rVE6OD/dRXZyHFaLwrpdDXj8GgAjkhxMyklB18FuVchPj2dEogOLqqCqCmpnhUtdBx0dTTce6EBQ02ls91PT4qHe7SMr0UF+ugunzYKqKJ3/HWhzKAujazqGzoEHoee7ZWt0ObjH13c+0Ht+SZfX9JwDcuCaB77vD+qUVbeyaU8Tu+rbGTcykdnjshidEse5JSPI6hKACSGEiD5FH4KZfBkZGRQUFPR6TG1tLZmZmUemQSZJm/o22PZkZGSwcuXKCLao/9fvq29C7P3eezIU2ghDo521tbWMHz/+qPZNGJrvnbHUnlhqC0S2PWbfO4dk0GDG9OnTWb9+/dFuRjfSpr7FWnuiZSj8nEOhjTA02jkU2hgSa22NpfbEUlvg6LRHJomFEEIIYYoEDUIIIYQwxXLvvffee7QbES3Tpk072k04hLSpb7HWnmgZCj/nUGgjDI12DoU2hsRaW2OpPbHUFjjy7Rm2OQ1CCCGEiCyZnhBCCCGEKRI0CCGEEMIUCRqEEEIIYYoEDUIIIYQwRYIGIYQQQpgiQYP4/+zdeXhb5ZX48e/V6n23s9lO7BiyEUISZ6GsYWkgbQPMQBootAMNoZ10Y6YL004p0DJtB0opP9rpBMo+IZQyndAWQpOSUAJkMVkgGBIncWLHWSzv1i7de39/yFLsxI4lWbIk+3yehwdLlq6Oneuro/c973mFEEKIsEjSIIQQQoiwSNIghBBCiLBI0iCEEEKIsEjSIIQQQoiwSNIghBBCiLBI0iCEEEKIsEjSIIQQQoiwSNIghBBCiLBI0iCEEEKIsKRk0nDNNdckOgQh+iXnpkhmcn6KoUrJpKGlpSXRIQjRLzk3RTKT81MMVUomDUIIIYQYfpI0CCGEECIskjQIIYQQIiySNAghhBAiLJI0CJFATR0unnz7ELquJzoUIYQYlCQNYkTw+jXaHd5EhxGx32w6wE/+8jGHWhyJDkUIIQYlSYNIeV6/xvFOFz5VS3QoEfGrGuv3ngBgb1NngqMRQojBSdIgUprHr3K808XxDhdfemp7osOJyLb6Nlp7Rkc+OCpJgxAi+ZkSHYAQ0fL4VU50umlsc/KvL+/hZJcn0SFFZN+JbgAqijL5UEYahBApQEYaREoKJgz1LQ6+9dJuTnZ5SDcbEx1WRDpdPgAuririo6ZONE2KIYUQyU1GGkRS0zSdnQ3tHLTZmVycxZzyfHyaxolONwea7Xz75T20O31kWoz86ubZiQ43Ip0uH9lWE9PG5eDwqpzocjM+Lz3RYQkhUlR/10uDQYnpa0jSIJKWpun85C+1bN5nw+PXsJoMXHJOEf/0qUnsO9nNd//wAV1uPzlpJv7zxvOZVZqX6JAj0uXykZNuprwgA4CGNqckDUKIqGiazoOvfcz2+jYAdF1nUlEmF1UVcU5J7BIISRpE0qo50sa63cdwelUg8Eewbvcx8jLMPPl2PQ6vSn6Gmf+88XwmF2clONrIdbp85J6WNCysLExwVEKIVLSzob1PwnC8081Bm4Pa411kWkzMryjgB0umDTlxkJoGkbQ2fdLcJ2HQAYfHz683HcThVSnMsvDLZRekZMIAp5KG8XlpGA0KDa3ORIckhEhRB2320NdOrxq6dnp8gaXo2+vb2NnQPuTXkaRBJL1gwqBpOj5Nx6/pjMmx8ujnL6C8MPApXVEUMq2pVwiZm27GZDQwIS+dhjZJGoQQ0en94cnjP9Wzxmo+9TZ/yDb0JnKSNIiktWhqCRkWAzqg9iQMAEVZFn71+QuY0DP/b1AUxuWmkWFJrdm2YNIAUF6QwRFJGoQQUZpTns/8igIArKbAW3um1UiG5dSHqcrizCG/TmpdZcWoMnN8LoumlPDmvmbaHIHlidlpJn59y2yKs9MAMBoUxuamYTWl1igD9CQNGT1JQ2FGqDukEEJEymBQ+MGSaexsaOdAs50tB1o43OpAIVDDML+igDnl+UN+HUkaRFJy+1ROdnuoKM6kfVcgYZiQl86vls+iINMKgNloYGxuGmZj6g2YuX0qHr/WZ6ShzeGl2+0jO82c4OiEEKnIYFConlRA9aQCllWXsbOhnUM2B5XFmbJ6Qoxcbl+gcdP/7W7i0Y11AEwdm83P/3Fm6A3VYjIwNicNUwomDBBYbgmQ05M0TOy1gmLG+NyExSWEGBl6JxAxPW5MjybEEAUThpdqGkMJw8wJuTx04/mhhCHNbGR8bnrKJgxwqhtkcKShrCdpaJS6BiFEEpORBpE0ggnDc+8d5ql3DgMwd2I+D1w3I9QiOtNqoiTbiqLEtsvZcDs9aQiuAjkiyy6FEElMkgaRFNw+leMdLp7cUs//bGsAYGFlAfd9bgaWnkrgrDQTJT0FkKnu9KQhJ81MfoZZll0KIZKaJA0i4YIJw+ObDvDKziYALj23iB8smRYqcszLsFCQaUlkmDHV5e6paUg79SdYXpAhSYMQIqlJ0iASyuVVOdbp4tGN+/nTnuMAXDWthO9dMxVjT6VvYaY1tDRxpHD3dGlL77WGuqwgQ7bIFkIktdStJBMpz+VVaepw8vPXPwklDJ+ZOY57rg0kDIqiUJw98hIGAG9Px7be/SXKCjJoanfJFtlCiKQlSYNICJdX5Wi7k5/8+WP+WnsSgH+YPYF/ufocDEogYRiTYx2xPQs8/kBf+GDnNoBxuWn4NZ1WhzdRYQkhxFnFPWlYv349U6ZMoaqqip/97Gf9Pub3v/8906dPZ8aMGdxyyy3xDkkkmMur0tDm5EevfsTm/TYAls8rY9WiySiKkrJtoSMR3ETG0itpGJMTKPI80elOSExCCDGYuF6VVVVl1apVbNiwgdLSUubNm8fSpUuZPn166DF1dXX89Kc/5Z133iE/P5/m5uZ4hiQSzOVVOdzq4N51e9lxOLDj2u2fmsStC8tRFAWTwcCYXGtKtoWOhMevYVDA1KtD29hg0tDlZibS4EkIkXyiGmlob29H1wefd92+fTtVVVVUVlZisVhYvnw569at6/OYJ554glWrVpGfH+iJXVJSEk1IIgU4vX4Otdi555UPQgnDXZdWctuFE1EUBbPRwLi81NxHIlIev4rVZOzTb2Js7qmkQQghktGgScMDDzzAJ598AoDH42HRokVMnjyZMWPGsHHjxrM+t6mpibKystDt0tJSmpqa+jxm//797N+/n4suuoiFCxeyfv36aH4OkeScXj8Hm+185+U97DkaWCHwjSuq+Py8wPlhMRkYn5eekvtIRMPj1/psWQtQlGXFaFA4KdMTQohhous6bp8a9uMHvUK/9NJLTJkyBYBnn30WAJvNxltvvcX3v//9QYM53emd/Px+P3V1dWzevJkXX3yRFStW0NHRccbzVq9eTXV1NdXV1dhstsHCFknE6fWz/0Q3d/9+D7XHu1GA73z6XK6fPQEILDscn5seWmKZaqI5Nz0+rU8RJAR27CzOsspIg4gpuXaKgfhVjeOdbhwef9jPGTRpsFgsoTf6N954g+XLl2M0Gpk2bRp+/9lfqLS0lMbGxtDto0ePMn78+DMec91112E2m6moqGDKlCnU1dWdcayVK1dSU1NDTU0NxcXFYf1wIvGcXj8fH+/iWy/t5kCzHYMC318ylWtnjgMCbaHH5qTFZPe1RInm3PSqWr/TMGNy0zgpSYOIIbl2iv64fSrHOtwRjTJAGEmD1Wpl79692Gw2Nm3axKc//enQ95zOs3evmzdvHnV1ddTX1+P1elm7di1Lly7t85jrr7+eTZs2AdDS0sL+/fuprKyM6IcQycnh8bO3qZNvrt3N4VYnJoPCjz43gyunjQEgO83MmJy0lN9HIhqBmoYz//zG5aTJ6gkhRFx1On0c73Tj17SInzto0vDoo49y4403MnXqVO6++24qKioAeO2115g9e/ZZn2symXj88cdZvHgx06ZNY9myZcyYMYN7772XV199FYDFixdTWFjI9OnTWbRoEQ899BCFhYUR/yAiuTg8fvY0dvCNF3dztN2FxWTgx9fP4JJzioBAW+jibGuCo0wcj0/rs9wyaEyOVUYahBBxoWk6J7vctDo8YS1m6I+iR/vMBKqurqampibRYYgBODx+3j/Szr/8fjctdi9pJgM/ueE85pQHVsiMxLbQQeGem7c+uQ2n18///vNFfe7/1cY6frlxP3UPXjtqikLF8JFr5+jl8as0d3nwqWeOLuSmmynMCu9D3KB9Gh555JE+txVFoaioiIsvvjg06iBEkMPjZ9uhVv715T20O31kWIz87B9mct6E3MC5k2UZsV0eIxFccnm6gqzAplztTu+I2dFTCJFYdo8fW3f0owu9DfpRpru7u89/XV1d1NTUcO2117J27dohByBGDrvHz5YDLXzrpd20O31kp5l4+KbzQwnDSG4LHan+llwCFGT0JA0O33CHJIQYYXRdp8XuobnLHZOEAcIYafjRj37U7/1tbW1cddVVLF++PCaBiNRm9/h5a18z333lAxwelbx0Mw/ddD6Ti7MwGhTG5KSRZh75TZvC5fWfueQSID8zkFS1OjxA9jBHJYQYKfyqxsluD54IV0cMJuo20gUFBTHLXERqs3v8bPjoBN//415cPpXCLAu/uHEW5YUZmAwGxuam9Vv0N5p5/P0vuSzMDMwrykiDECJaLq9Kc7cbNQ475kadNLz55puh1s9i9LJ7/Pzlg2Pcu+4jPH6Nkmwrv1g2iwk93R3H5qZJQV8/PL7+l1wGRxraHJ7hDkkIMQJ0OL20xXGn3EGThpkzZ56xjr6trY3x48fz3HPPxS0wkfy63T7+b1cTD/y5Fp+qMz4vjV/cNIsxOWlYzUbG5qSlbJfHePP4+19ymd9T0yDbYwshIqFpOs3dHpze8Ls7RmPQpOHPf/5zn9uKolBYWEhmZmaf+9vb22XkYRTpdvt4ueYoD772MaqmM7Egg4duOp+iLCvpFiNjslO7y2O8DTQ9YTYayEkz0S5JgxAiTGdbThlrgyYNEydODOtAV155JTt37hxyQCL5dbt9/M/WI/znG/vQdJhcnMlDN55PXoaFLKuJ4mzrqOzyGAmPX+139QRAYZZVRhqEEGHpdvtosXuHrcYw6pqG00lR5OjQ7fbx1JZ6frkxsD/I1LHZ/PwfZ5KdZiYn3UxRmA1CRjNN0/Gper81DQD5GWbanZI0CCEGFlhO6aXbPbxF0zFLGuST5cjX7fbxX5sP8pvNBwGYOSGH/7hhJplWE/kZFvIzLQmOMDV4e4YQ+5ueACjItHK0/ez7ugghRi+fqtEch+WU4ZCydhGWbrePRzfuDyUMc8rz+Nk/nk+m1URhllUShgh4fMGkof8/v4JMGWkQQvTP6fVzrMOVkIQBZHpChKHT5eU/1+/jf7Y1ALCwsoD7PjcDq9lIcbaVLGvMTqNRweMP/LEPVNOQm26m0yV9GoQQfbU7vHH5QBHJ+3dEIw1btmzh6aefBsBms1FfXx/63t/+9rdIDiVSRKfLy4//XBtKGC45p4j7l84grWdJpSQMkfP4AyMNlgH6V+RlWHD7tIj3uRdCjEyqpnOi0x2XhOFgs507ng1/E7Owr/j3338/NTU17Nu3j9tvvx2fz8ett97KO++8AwQ6RIqRpcPp5Yfr9vKnPccBuHJqCfdcOxWLySBtoYfg1EhD/7+/nPRAg6cul09+x0KMcm6fiq079sspnV4/z7x7mP/d2UQkjSPDThr++Mc/smvXLubMmQPA+PHj6e7ujjhQkRranV7ueeUD3vjoJABLzhvL3Vefi9VklLbQQ+QepKYhtydp6HT5KMmRnS6FGK263D5aY7ycUtd13q5r4fFNB2ixB0YuJhVmhP38sJMGi8WCoiihVRIOhyPCUEWqaLF7+M7Le9i0zwbADbMnsGrRZKwmI+Ny0zBJW+ghObV6YoDpiV5JgxBi9NF1HZvdg90d2+6OxztdPPa3A2yrbwPAYjLwxYUTWXFJRdjHCDtpWLZsGXfddRcdHR088cQTPPXUU9x5552RRy2Smq3bw7fW7uKdg60ALJ9Xxp2XVJBmMUlb6Bg5tXqi/6mH4EhDh1OSBiFGG5+qcbLLjdcfu+kIn6rx+5pGnt/aEDrugooCvnFlFeNy0yPaHyjspOHb3/42GzZsICcnh3379vHAAw9w9dVXRx69SFonutx8fc1OdhxuB+BLF07kixdOJNNqpiTbKm2hYySc1RMgIw1CjDZOr5/mLg9aDKcjdjd28OjGOhraAr1firIsfO2KKi6pKoqqv1LYSUN9fT2XXHJJKFFwuVwcPnyYSZMmRfyiIvkc73Tx1RfeZ3djJwArL6lg+fxyaQsdB4OtnpCkQYjRp83hpSOGqyPanV7++61D/LU2UJdmUOAf5kzgnz41iQxL9Kvewn7mTTfdxLvvvhu6bTQauemmm9ixY0fULy6SQ2Obk7uef5/a410AfP2KKm6YPUHaQsdJcHhwoJqGHEkahBg1VE2nuduNyxubJdaarvPah8d54u16untqIqaNy+buq86lqiRryMcPO2nw+/1YLKe6/lksFrxe6VqX6o60OFjxXA11zXYU4F+uPpfPnD+OgkwLeRnS5TEe/FogaRhoHtFoUMhOM0nSIMQI5/YFdqcMXhOG6mCznV9u3E/t8cDKxiyriTsvqeAz54/DEKPR4rCThuLiYl599VWWLl0KwLp16ygqKopJECIxDjXb+fJzNdS3ODAocM+1U7lq2hiKsq3kpJkTHd6I5fMH5itNxoH/iKUrpBAjW6fLR5sjNsspXV6VZ949zCs7j4Z6Llw9fQxfuayS/Bh/+As7afjtb3/LF77wBb72ta+h6zplZWU899xzMQ1GDJ/9J7r58rM7aGx3YTIo/PtnpnHZlBJpCz0MgksuB6ppAMjLkKRBiJFI13Vs3R7snqEvp9R1nbcPtPDrNw9is3sAKC/I4FtXncMFZXlDPn5/wn53mDx5Mlu3bsVut6PrOtnZ2XEJSMTfR8c6WfFsDcc73ZiNCvcvncGnJhcxJieNdIt0IIw3v3r26QkIjDTEsihKCJF4Xr9Gc3dsllMe73Tx/948wNZDp3ou3LqgnM/PK4toCWWkwk4aPB4Pr7zyCocPH8bvP5Uh3XvvvWd93vr16/nmN7+JqqqsWLGCe+65p9/H/eEPfwgVVlZXV4cblojQnsZ2Vjz7Pja7hzSTgZ9cfx7zKgoYm5s2YN8AEVs+NbzpiROd7uEKSQgRZw6PH1v30JdTBnsuvLC1IbQSa0FFAV+/oorxeemxCPWswk4arrvuOnJzc5k7dy5Wa3gV9aqqsmrVKjZs2EBpaSnz5s1j6dKlTJ8+vc/juru7eeyxx1iwYEFk0YuI1Bxu487namh3+siwGPmPG85j7sQCxuRIW+jh5BukEBIgN91Cpyu23eCEEMNP13XaHN6YTDfuaezgl6f3XFhUxSXnRNdzIRphJw1Hjx5l/fr1ER18+/btVFVVUVlZCcDy5ctZt27dGUnDD3/4Q7773e/y8MMPR3R8Eb6tB1tY+fz7dLn9ZFlN/PwfZzKrLI+xOdIWergFCyEHm57odAWKpKRHhhCpya9qNHd7hrxjbbx6LkQj7HeLT33qU3z44YcRHbypqYmysrLQ7dLSUpqamvo8ZteuXTQ2NvLZz342omOL8P19v40vP1dDl9tPbrqZR5bNYnZ5PuNz0yVhSACfqmFQOGtL7tx0Mz5VxyXbYwuRktw+lWMd7iElDJqu8+cPjvFPT+8IJQzTx2Xz37fO5Z8vrxr2hAEiGGnYsmULzzzzDBUVFVit1tAnoA8++GDA5/S3lKT3pyZN07j77rt55plnBn391atXs3r1agBsNlu4YY96G2tP8vUXd+HyqRRmWnjopvOZPi6XMTnS5TFWIj03fZo2aKFSXsapBk+JuDCIkUOuncOv0+mjzTm05ZT99VxYeWkFS2bGrudCNMK+Gr3++usRH7y0tJTGxsbQ7aNHjzJ+/PjQ7e7ubvbu3cvll18OwIkTJ1i6dCmvvvrqGcWQK1euZOXKlQBSKNkPTdPZ2dDOQZudycVZzCnP542PTvCtl3bj8WuUZFv5xU2zmDIum+IsSRhiKdJz0+fXB00aem9aNS43/sVNYuQaTdfO/q6Dw7lnjqbptNiHtpzS6fXz7LtH+vRc+PT0MdwVh54L0Qg7aZg4cSJbtmyhrq6O22+/HZvNht1uP+tz5s2bR11dHfX19UyYMIG1a9eyZs2a0Pdzc3NpaWkJ3b788st5+OGHR/yJHWuapvPgax+zvWe7U4CCTDPvHmzFp+qMy03jF8tmMWVMNoXSFjrh/JqG+SwrJ0D2nxAiUv1dB+dXFPCDJdOGJXHw+gO7U/rU6JZTJqLnQjTCThruv/9+ampq2LdvH7fffjs+n49bb72Vd955Z+CDm0w8/vjjLF68GFVVueOOO5gxYwb33nsv1dXVoe6SYmh2NrT3+UNpc3j4sCmw8VR5QQYP3Xg+U8fmkJshXR6TgU/VBq0lkaRBiMicfh0E2F7fxs6GdqonFcT1te0ePy1DWE55vNPFY387wLb6Uz0XbltYzrLq+PZciEbYScMf//hHdu3axZw5cwAYP3483d3dgz5vyZIlLFmypM99DzzwQL+P3bx5c7jhiF4O2k6N+LTaPRzrWd9fnGXl0c9fwDljssiWttBJw+vXz9oNEiRpECJSva+DvR2yOeKWNOi6TqvDS1eUf6fBngvPb20INXyaX1HAN4ap50I0wk4aLBYLiqKE5sIdDkfcghKRmVwc2LnM1u3mRFdgWMtqMvCvV5/D1HHZUkiXZMKanggWQjolaRAiHMHr4OkqizPj8npDXU65p7GDRzfWcSSBPReiEfa7ybJly7jrrrvo6OjgiSee4KmnnuLOO++MZ2wiTHPK87GYDKGEIc1s4JoZY1l6wQRJGJJQONMTWRYTBkVGGoQI15zyfOZXFJxR0zCnPD/mr+XyqjR3u1G1yKcjkqnnQjTCjvDb3/42GzZsICcnh3379vHAAw9w9dVXxzM2EaZHNuzn/SPtQLBwpoprzxtHegqcgKORTx189YTBoMhOl0JEwGBQ+MGSaexsaOeQzUFlcWZcVk90OL20OSLfF0bTdV778ARPvH2IbndgdcX0cdl866pzqSrpf5QkGUX0rnL11VdLopBEdF3nwb98zJNb6oFAVv0f15/HxKLMpCueEaf41MGnJ6Bn0ypJGoQIm8GgUD2pIC41DJqmY7N7cESxnDLQc6GO2uNdQKDnwp2XVPCZ8xPbcyEagyYNF198MVu2bCE7O7vPPEuwuVNXV1dcAxT903WdH67bywtbGwC4uKqIH19/HuUFGWftNCgSL5A0DJ7UyUiDEMnB41dp7vJEvJyyv54LV08fw1eSpOdCNAZNGrZs2QIQ1koJMTw0Ted7r3zAy+8fBeCKqSXcv3Q6E/IyhrWRiYhOYHoijJGGDIskDUIkWLfbR4s9su6OwZ4Lj795gBZ7YCojGXsuhFOt7AAAIABJREFURGPQpKGtre2s3y8oiO/615Esmu5lqqbzLy/tZt2eYwBce95Y7v3sdMbmpiV1xa04xadqZFkHnxnMTTfT0CqrlMTIlugujgPRdZ0Wu5dud2SJeyr1XIjGoFeuuXPnoigKuq7T0NBAfn4+uq7T0dFBeXk59fX1wxHniBNN9zKfqvG1NTt546NA1e11F4znB5+ZRkl22rDELGIj/OkJk4w0iBEt0V0cB+LrWU7piWA5pU/VeLnmKM9tPZIyPReiMWjSEEwKvvKVr7B06dJQo6bXX3+djRs3xje6ESzS7mUev8pXnn+fTfsCG84sqy7lnmumUiBtoVOOP9zpiZ6aBk3Tk+KTlxCxlsgujgNxev3Yuj0RLafsr+fCqkVVXJrkPReiEfbqiR07dvDb3/42dPvaa6/lhz/8YVyCGql6D8MdbnGgo6PQ94Tqr3uZ26dyxzM7ePdgKwBfXDiRf118LrnpqVlIM9p5w+jTAJCXbkHTwe71kyMdPcUIFOziqKPj9Kp4fBpWs4EDzfaEJA3tDi/tzvCXU3Y4vfz33w+FRn9TredCNML+qYqKivjJT37CrbfeiqIovPDCCxQWFsYzthHl9GE4h8dPl9sXqEXolTic3r3M4fHzpae2U9PTh+HOSyr41lXnkhnGnLhITn518DbS0KuVtNMnSYMYkSYXZ6Gjc6LTjcNzaipgy4EWllWXDdsIm6rpNHe7cXnDm44I9Fw4zhNv14d6Lkwbl83dKdZzIRphv/O8+OKL3H///dxwww0AXHrppbz44otxC2ykOX0YLsNipNPlw+lVyezJSE/vXtbl9nHrk9v44Ghg86mvX1HFP19eRbrFOLzBi5jyqRqmMC6GOb32nyiLd1BCJMCc8nwmFWZysPlUwW+GxcjhFsewTVG4fYHllH4tvOWU/fVcWHFJBZ9NwZ4LiqKQYTFG9CE07EcWFBTwq1/9KqrAxJmbqSiKwrjcNC49p5hJRZlndC9rd3i55cltfHy8CwX410+fy52XVmI1ScKQ6nyqhtkUxvREz/4T0W6GI0SyMxgULqoqpPZYFx6/htVkIMNiRFGUuG40FdTp8tHmCG85pdPr55l3D/O/O5tSvudCmtlIVpqJTIsp4r4+YScNixYt6reg480334zoBUergTZTGZ+Xhk7fE7bF7uHm1Vupa7ZjUOD7S6bxpU9NGhHLdUSgT0Mk0xPSFVKMZOeUZJNpNZF5Wk33QBtNxWKJpq4Hujva3YN3d9R1nbfrWnh8U2r3XLCYDGRZTWRZTWHVVA0k7KTh4YcfDn3tdrt55ZVXMJlkXj1cp2+mouuBVGFtTWOopmF+RQFfvqiCm5/cypFWJ0aDwn2fm87N88uH9I8skku40xOyPbYYDSLZaCoWSzS9fo3mbndoWeTZpHrPBZPBQKY1MKoQq1HqsN/1586d2+f2RRddxGWXXRaTIEaD0zdT8frVPgkDwJa6Fl7d3YTN7sVsVHjw+pncOLdUltuNMH5Vj2h6QpIGMZJFstHUUJdoOjyB5ZTaINMRqdxzwaAoZPaMKMSj/i3spKF3Z0hN03j//fc5ceJEzAMayXpvpvLSjoY+CYPHr3LI5sCv6ZgMCqsur+If50yQhGGE0XUdr6phDuPfNd1sxGxU6HBK0iBGhoGmFsLdaOr02rCgcOof2hxeOsJYTpmKPReCBY1ZVlOoJiReIhppCHaGNJlMVFRU8Lvf/S5ugY10vWsc3D6VQy0OVE1HIVDn8LdPmun2+BPeGU3Elr+ngiqcoU1Fke2xxcgRi6mFgWrDBqp/gPCXU7Y7vfz3W4f4a+2pngs3zJ7A7Rclb8+FoRQ0Rivs34S0i47MYMU6wXm8t/bZqG9xoOqBhKG8IJ2cnqZNie6MJmLPr/YkDWFMT0CgrkFWT4hkFm5hYiy6P0ZS/wDhLacM9Fw4wRNvH0qJngvBgsZMqykhdRURpU979+6ltrYWt9sduu+LX/xizINKdeFk1AaDwmdnjuPF7Q2ouo7VZGB8XhpZ1r5NfIZj2ZEYPt6erXXDKYSEQNLQ4Qq/Q50QwymS0YOhTC0ERVL/0On00eY8+3LKgzY7v9yQ/D0X4lHQGHUs4T7w/vvvZ/PmzdTW1rJkyRJef/11Lr74YkkaTqNpOmu2HWH93hNYzT1rjlHOyKi3HWrljmd24PSqFGRa+Panz+XF7Y1nHO9sw24i9fh7kgZLBCMNNrsnniEJEbHg6MLfPj7Jpn3NoescDDx6EM3UQn8Gq3/QNJ0Wuwe7Z+DllE6vn2ffPcIrO48mbc+FeBc0RivspOEPf/gDe/bsYfbs2Tz99NOcPHmSFStWxDO2lBPMutfvPUGbI/DpMNNqDLWKDmbUb9fZWPFsDR6/Rkm2lWfumMfUMTkctDnCHnYTqcnXMz1hMoSfNBwY4BOaEInQe3ShzeGlzeHtc52D/kcPIp1aiIbXr3Gyy41P7X86Qtd13j7Qwq/fPBhKxsvy0/nWVecwOwmutb07NGbGuaAxWmEnDenp6RgMBkwmE11dXZSUlHDo0KF4xpZygnN21l6fIh0eNdQqurI4k799fJKvvrATr6oxPjeN5748n6qSbICwh91E6gpezMLZ5RIgL8MiqydEUuldmxC81vW+zkH/oweRTC1Ew+7x03KW5ZQD9Vy4aW5Z2CN/8ZKIgsZohZ00VFdX09HRwZ133sncuXPJyspi/vz58Ywt5QTn7DIsRjIsRpw91boen8aiKQWc7HTzjZd2o2o65QUZvLBiAeUFGaHnh7vsSKQuX4TTEznpZrrdflRNT/qLiRgdetcm9L7WeXwamZazjx7E4xqn6zptDu+Aq4yCPRee33oETxL1XDAbDWSnJa6gMVphJw2/+c1vAPjKV77CNddcQ1dXF+eff37o+x999BEzZsw443nr16/nm9/8JqqqsmLFCu65554+33/kkUd48sknMZlMFBcX89RTTzFx4sRof56ECs7ZBfeVcHpVPH6Nr15WSbrFyDfW7kbVdSqLM1mzYgFjc5O7SYiIvWimJwC63T7ykmSuVYxuvWsTel/rFp83liunlgzrCKlf1Wju9uD29b+ccndjB786refC1xZVcUmCei4kU0FjtKJafDpp0qQz7rvtttvYuXNnn/tUVWXVqlVs2LCB0tJS5s2bx9KlS5k+fXroMbNnz6ampoaMjAz+67/+i+9+97u89NJL0YQ17E5fanRBaV5ozi44NzV9fA7vH2nn/3YfQwemjM3mf1YsoCjLOujxxcgT8fREcP8JpyQNIjkEaxO2HWoNfTCaXZ7Hv151LqZ+RtBisVdEf862nDKZei4YFIUMq5FsqzmpChqjFbPfXn/LWrZv305VVRWVlZUALF++nHXr1vVJGhYtWhT6euHChbzwwguxCiluNE2n5kgbj/3tAMc6XKEOXPMrCvi3a6ay+2gHB5rtbDnQwo7DrZzsChRF5qabWXPHfAolYRi1TiUNkY00SIMnkSwMBoXvfXoK//TsDo62u8iwGqlvsfPT9Z+csdQy3CWZkSYWAy2nDPRcOM4Tb9cntOdCKhQ0RitmSUN/v5SmpibKyspCt0tLS9m2bduAx/jd737HtddeG6uQhmSgkzj4R7BpXzPHOwL9KjIsRsblpgWWGjW2A7D1UCtvfnwSpy/wJmFQwO3186M/1/LY8tlS4DhKBacnwk4aZP8JkUD9XQcB/uUPe9jV0AGAx6/h8WlsO9TKzoZ25pTnh57j82tsq2/t0zL/9CWZAyUWwQ9gp7+2ze7B0c9yyoPNdn65cT+1x7uBQM+FlZdWsGTm8PVcSKWCxmjFdZymv9GHgTKuF154gZqaGt56661+v7969WpWr14NgM1mi12Q/TjbSbx2RwPr957A61fR0VFQcHoDlcMZViOP/a2O2mNdtDt9fTa8NhsVDIqBXQ0doT+YeA3bieEVybnpj3J6QpIGEa1or53B6+C2+tZQoePs8jxuWzAxlDAEBa+BB5rtvL73ROja2ebw4vGrfZZjQt8lmf11itxW38q3fr+bI63O0H1zJ+Zzx0WTQq3YITCysPNIOy/VHGVXQ3uo58JV00r46uWTh6XnQqoWNEYrZkmDxXLmP05paSmNjacaFh09epTx48ef8biNGzfy4IMP8tZbb2G19j90v3LlSlauXAkEVnLE09lO4l0NHbQ5vKi6jqbpmIygoASqchVo7fbQ6eqbMADoPX8wVrOBQzYHc8rzh9yHXSSHSM7NUEfICKcnOiRpEFGK9tq5s6GdbfWtnOh04/AECg3/9nEzDW3OPsvKgzx+Db+q9bmmWU0G2hzePssxoe+SzP46RTq9KrsaOijIDLyvqJrOuwdbmFOex3kTcnvu07h3XS07DreFEonsNBM/+ux05kyMb8+FkVDQGK2wk4a///3v/d5/6aWXArB169Yzvjdv3jzq6uqor69nwoQJrF27ljVr1vR5zK5du7jrrrtYv349JSUlkcQeN6efxLqu0+b0crQtUL+go2NQQAU0HQyKjsvnx+7W6PaoaKdlDErPMTLTAjuQVRZnxqQPu0g9wW12+7vo9ienJ2mQ/SfEcDtos+P0qqGEQdd1NB0ONdvJSTeTYTHi8PjRdNDRmViYgXLaaR1ckhlcjgl9l2T6/RoHTtppbHeSYTZSkGlBURQ8Pg2ryYCu66ha4D+AxjYX503I5Xini/947RM+OhZo/6wABZkW8jPMceu5MNIKGqMVdtLw0EMPhb52u91s376duXPn8uabbw58cJOJxx9/nMWLF6OqKnfccQczZszg3nvvpbq6mqVLl/Kd73wHu93OTTfdBEB5eTmvvvrqEH6koQsuKdLRcXj8NHd78Pg0DIoSWtqj6jroOmajAV3TaXOceVE3AhqBeobiLCsFWRYWVBQypzyfl98/s2U0yF4TI50nwqQhzWwkzWyQ6Qkx7CYXZ+HxaegE3rT9qo4OeFVw+TUyzAasJgNOn0qGxUSXy8d7B9vQdT00DR1ckrl8XhkWk7FPQye/X+O637zDwWY7Pk2n0xUobqwqzmJ2eR71Njs+VUfXdXR0XD6NI612Htmwnw21J0N/SxkWIyXZViw9o3fBxCIWRnJBY7TCThr+9Kc/9bnd2NjId7/73UGft2TJEpYsWdLnvgceeCD09caNG8MNYdjMKc9n3qR8Xt1zjC6XH5+mYSAwsmAwKLh9p5b4BLPw/qiAUYFMa6Ab5DeuPIfqiQUYDErM+rCL1HJqpCH8Tyq56WY6nLJplRhec8rzmVWWyxt7T6CeNnqqajrdHpU0s4Gy/AwyrIG9Jw63OphUlNmnFmFBZSHL55WHihqDx167o4FDNgeKomA2gKYrqJrOhZWFfOOKc3jgL7XsaexAR8fW7cWvafzf7mN4e4LJTTeRYTaRZe37Zl5WMPT+N6OhoDFaUdc0lJaWsnfv3ljGkjQMBoVrzhvL5n02/KqGwxsYltN0Ha9/4B3TelMIJAsl2VYyrEY6XX4MihKqVxiOPuwi+QQ/HUUyhJqbbpaRBjFsggXadc122uyeM6Zbe/P0fIAKFjkqKFxcVcQ/fSor1Cr6gtI8frr+kzOude2OUxuxKYpCoDZYobnbg83h4a7LKqk91sXmT5pZX3sy1GEXAgXC91w7hZojHXzQeKoo8/yyPKaPz4nq5x5tBY3RCjtp+PrXvx7K5jRNY/fu3cyaNStugSWSpuls+qQZj1/Fp+qhZXLAGQWOA1EUKMm2kmk99SvuPfUQ7z7sIjl5/IELX7jTExDYf6Jd9p8QwyC0YuJQK21OLyc73SgKDLS7tA60Orx4/FpgV1+zEb+q9VkRtrOhvU8jKKvJwLZDrVxYWdj3WD0vUlF0qrX+4VYnr+09gbsn2U4zGSjJtpJmNtJq9/GVnsSisc1FWUE608fnRLS8cjQXNEYror0nQk8ymbj55pu56KKL4hJUIoX6MHzSjM3uDQ0nR8pkCNQ/6D1phtev4/WraJoeSgxkr4nRJzQ9YQ4/aSjOtlLbU/AlRDwF3+CPd7rpcvt6ihzPzu724/GrqGqgluHXmw5QmGUNNbyrLM7geKebbo8/VO+QbTUxqSiDyuJMDtkcgSJLdEqy01AUhTf2nuBPHxyn9njgvDcoUJRlJTfNFPrwWlaQjkFROG9CbkQ1DFLQODRhJw1f+tKX4hlHwmmazvbDrfz6zQPsauwg22rCpEA0M8kmA6SZDbQ5vaHiodw0E2t3NFLf6pRllaNYaHoiguHPMdlpbOpqjldIQoQEV0w4vWrgzVkZPGvItBhw+rSeZY86J7o8tLt8VBVnBaYkdJ0Ol6/X7pOB26oO6/75Ip59t55th9tp7nLT3O3it28dwtVrL4mrppWQZjay/0R36L5IpyGkoDF2wk4a6urq+Ld/+zdqa2txu92h+0fC9tiapvPjP3/Ei9sbQ8Ng9rMUOA5EAUxGBYvRQHlBJm0OLza7B4OikJtuRlEUWVY5ynn8KkaDEnafBoAxOVacXhW7x0+WdXj75ovRZXJxFm6/GupDA4RaMg2UO6g6fRou6QSS4zaHl8IsKwdsdk5/i1aApnYnHW4fi6aNoSDLwg/+76M+dQsGBb562WT+cW4pmq5HNQ2RZg4kCllWKWiMlbCvQLfffjv3338/d999N5s2beLpp5/ut+NjKqo50sare46FEoZIGZVAJptmNmAyGMjPCCQIiqKEdjP09qqLkGWVo5e3Z043EiU5gYZnJ7vcZA2w6kaIWLigNA+r0RDRtKzDe+YHLF0Hp0+lEMjPsGAyKhh0JTQ9oaDj9Kh0uXyc6HTz0Bv7+yQMRkOgMLLdERjrjWQaQgoa4yvs36jL5eLKK69E13UmTpzIfffdd9YeDanC61X5t1c+pLWfPgvhUvXAEiS3X0PXdbrcPnT0PvPWvd8oZFnl6OXxaxE3nxmTnQYEkgYh4mn30Q40XTtjZCAaRkVhYmEGJTkWrCYDBiVQeGgA0s0mZpXlsmZbA7c/s4NjnYFz26CAxahgMgQ+dOlhBmIyGMhNNzMhP52yggzyMiySMMRJ2CMNaWlpaJrGOeecw+OPP86ECRNobk7teVa/X2PxY29zuMUx5GPpBOapJ+SlcbI70DY1MIdmRNcDDUhAllWOdsFOd5EIjjTYuj2DPFKI6GmazsbaE5zo9Ia9SuxsctKMHG5xcLjFgVFRsJoCqyuMRgOVRZk89uZBGtoC/Rxy0034VR2fqoXqDTIsRhZUDDwiKwWNiRF20vDoo4/idDp57LHH+OEPf8imTZt47rnn4hlb3K3d0cDRdmdM/kAMSuCPzu3XGZebxqXnFDOpKJNJPcuHDrc4ZVmlwKtGPtJQkiMjDSK+gqvGXvvwGB41umna0zW0uxiTrZNmMTI210q3y09FURaN7U7+XtcCBK6bN8yewJc+NZFn3z3Ctvo2vD2jcQsqCs6YjlAUhfRQ4yUpaEyEsJMGRVG47bbbOHLkCD5fYCj/zjvv5IMPPohbcPGkaTobPjrRpwfDUBgI/I48fo1Mq4krppX0qVuYX1E48JPFqOHxqxGvB8+2mkg3G2nukpEGER/BvXC8vtgkDACqBie63JgNgXovrwpHO1pCH9Ky00xcd8F45k8qIMNi4quXT+ayc4v7LXa0mo1kSUFjUgg7afjCF77AQw89xMyZMzEYUnuuKLBaopZ3DrbG5HiKQmj0wGoyyBSEGFA00xOKolCSY+WEjDSIODlos6PpGh3u2DYR03rqvbrcaihZMCiBJk0en8rmfTa2H2rj/LI8vnJZZZ9iR5PBQFZaIFGI1yZUInJhJw3FxcUsXbo0nrEMm50N7az/6DhhdoQekCWwbAKDAllWE9PG5vD1K6tC+0sIcbpopicAxuem09ThikNEQgSWWrY7fcRoZqKP3tfZDIsRs1Hp6QMRWE2UYTbyQWMHtce6OL80L7REUuoUklPYScP999/PihUruPLKK7FaraH7/+Ef/iEugcWLpums//A4xzuHPtSr6pBlMZBlNfPVyyq5ZcFESRbEWUUz0gAwqSiDNz46GYeIhAjshZNhMaIQfqv8SBgVMJsMqFqgM65fC/Rq8Po1nD6VTIuRDqcvsL221CkktbCThqeffppPPvkEn88Xmp5QFCWlkgavV+WLT21j6+H2mBxP03TsHpWLq4okYRBh8fhV8jIsET9vUmGgWViny0duujkOkYnRzGBQ+OKFk/jxn2rxnW2HqigFixadPjW0j4UOdLt92D0+Mi0mzh2bJQlDCgg7adizZw8ffvhhPGOJK79f4+pfbuZIe+zmhXUAXac0P10SBhGWaPo0AEwsDPT2ONLq4PzSvFiHJQS3zCvn6S311Pfa1jpWujwqpsBsbp+RDFUPjDg4vCrPv3eE+ZMK5Vqa5MK+ei1cuJDa2tp4xhJXa7YfiWnCEKSBVLWLsEXTERKgoiiQNByOwwVdCACTycAtCybE7fh+HRSDAaNBCTWPMiqBDo4mo8Luxk52NsRmFFjET9gjDVu2bOHZZ5+loqICq9UaageaCksuNU3n5R0NcTm2ARiTmxaXY4uRJ7A1cOQFXuUFgX4fR2LQiEyI/vj9Go/89WBcXyP4vhEcb1AMCkbl1MozabGf/MJOGtavXx/POOJG03Qe+NNePjxuj+lxg5lymtnIFVNLYnpsMXJFOz2RbjEyLjeNekkaRBxoms7XX9yJK8r9d8Kl61CUZabL7cfpVTFwqvtjhsUoLfZTQNhJw8SJE+MZR9xsP9zK8+/FbpQhuDmVooCCwuVTiqmeKJmxCE+guVN0a86njs3mo2NdMY5IiMAy9M37bXF/Hb+m02r3cU5JJk6fhsenkmYOJAwLKgulv00KGPH77D6z5RCRb3Ldv2yrEZ+mk2U1YTUZmV2ex6PLLpDCHRE2j1/rs5FZJGaV5bF5f51skS1i7qDNHtHOlkPh1zQWVhZx9YwS3tpnA0VhUc+HL7mWJr8RfeVxu/2srx169qwoYDEo5KRbsJoNXDN9LFdMK5F9JEREdF0PFEJGufverLI8dB32NnWysFLakovYmVycRRxWWvZL1+GVnY1sq28NLbH0+jUZsU0RI7Y3p9+vMfu+N4Z8HJMh0PnRYDBgNRtYNKWEby+eQvUkyYpFZLw97fas5ug63c3qWWq5p7EjZjEJAXDe2Jy4NHUaiN2j4vSeGgPeXt8mKydSxIgdaXh8Yy1DbbprBEqy00gzG5mQly4tosWQeHqGf6OtaSjItFBekMGeo5I0iNj6xcb9w/ZaBkOgNiywud+p+w80B4rVD9rsTC7OkpHcJDUikwa7w8ujm48M6RgKkJVmYukF47lq2hg5gcWQBeeMh7L5zqyyPHYekU9kIrZqjrQN22vlWk24/Hqf5FnXdbYcaOF/tp0qWp9fUcAPlkyT626Sifv0xPr165kyZQpVVVX87Gc/O+P7Ho+Hz3/+81RVVbFgwQIOHz48pNfTNJ3zfrxhSMeAQNJgNhm4YmqJTEWImBjqSAPArNJcmjpcNHfLjpdi6HyqRrvDS9ow7iLZ7VWZVJhOhsWIruvY3V7aHF4272umpduN3tNnOlmnLDRNp+ZwGy/taKDmcBvacBWDJIm4nimqqrJq1Spef/11amtrefHFF8/oKvm73/2O/Px8Dhw4wN133833vve9Ib3m9/7wtyE9P0SBkmwLh1ukA5+IDY8vMIcbTXOnoAvKAnUNHzR2xiQmMfqomk6ny0dTh4sjrQ6e33qErfXD9+bsU3VcPo3vf2Yquelmmjo9HOt0Y/eoHO/yUNfcHUocDtmGty/JYAmBpuk8+NrH3P+nWl7Y2sD9f6rlwdc+HlWJQ1ynJ7Zv305VVRWVlZUALF++nHXr1jF9+vTQY9atW8d9990HwI033sjXvva1Xl3DItPc4eDlnbFp6azp0OH0S7MRETPBQsihTE/MGJ+L0aCw52gHV00fE6vQxCjhUzWOtAbeiA/a7PxyQx21x4e/90dTh4tNH9uob3HgU7U+u2t6/DptDi+FWdZhvf4GE4Lt9aemak6fItnZ0N7n+3BqRGS0dLKM60hDU1MTZWVlodulpaU0NTUN+BiTyURubi6tra1Rvd7lv/h79MH2I9NqkmYjImY8vqFPT6RbjEwZk81uWUEhoqDp4PKq/Nfmg9z1/PsJSRgg0CBvZ0MHTl//XXRcPpX5FQXDev09W0IQdNDWf2fh4R4RSaS4Jg3BIabeTh9BCOcxAKtXr6a6uprq6mpstv57Lzh9sWtOYjIo3HahbHctBhfOuQm9axqin56AQDHknsaOfv92hDhd7/PzhK2N25/ZwcvvH0XTA3uaPHHb3GGNx6AE/ptTnkdGcPmxEqgjUwCjAW6cUzrsRZDhJASTi7P6fcxoGpGOa9JQWlpKY2Nj6PbRo0cZP378gI/x+/10dnZSUHDmMM/KlSupqamhpqaG4uLiM77f6fQRq/NLUWDKmGxumVcemwOKEW2wczPI4fEDgdGCoZhVmkuX2y87Xoqw9D4/uzQzzd0eLCYDKy6u4E9fu5irZ4xlaGdkXwbAYoQsi+GMa7JCYHpucnEW3/n0FBbPGHtq5E0Bg0FhyphsvnfN1GH/wBZOQjCnPJ/5FX3fn4Z7RCTR4lrTMG/ePOrq6qivr2fChAmsXbuWNWvW9HnM0qVLefbZZ7nwwgv5wx/+wBVXXBFxPUOr3cOtv9sWVkczIzAmx8KcSYUsmzeB9w62o2kaXp/KrqOdKChcf8EEvrCgHNMwVhSLka/N4QWgMNMypOPMKjvV5Cm4ZbYQ4ZpfUcB3Fk9hdlkepp7upO987zIW/vytsJ7fu/7ACKSZDYzNTeOyKcVMKszEZDSgaTomo4FJRRnsP2lnd0M7PlXHbDQwpzyP5fMC19cffnY618wYy9odDXS4fCyaUswt8ycm5NobTAhOr2nonRAYDAo/WDKNnQ3tHLI5qCzOHHXL8eOaNJhMJh5//HEWL16MqqrccccdzJgxg3vvvZcTeBObAAAgAElEQVTq6mqWLl3Kl7/8ZW677TaqqqooKChg7dq1Eb1Gc5ebW57YxgGbHZNB4f7PTeMnf/kElz9QXHPlOflcPmM8U8fm9PuPe+k5Ukwmhke7M5A05A8xaTinJIsMi5Edh9u4fvaEWIQmRolxuWn85pbZFGZZ+3w4G5ufxdbvXcZlD/8dj6pjMsD/Wz6LxedN6HPN1DQ94jfMhZVFfPHCSf1+z2BQWDC5kAWTE98WPdyEwGBQqJ5UMGoKH0+n6Ck4MVpdXU1NTQ1NHS5ueWIrR1qdmI0Kv/nCXK6WinKRQMFzsz//uf4TVv/9EHUPXhvV6qDevvL8++xu7ODde64YVZ9yxNDMmTuXne+/n+gwRApL2fH3I60Olv32PY60OrGaDDz5pXmSMIik1ubwkp9pGXLCAPDpGWM40eXmgybp1yDCZ4jBuSdGt5RMGjx+jZt++x5NHS4yLEaevWM+l507cAGaEMmgzeGlIGNoUxNBV0wtwWRQeO69wzE5nhBChCMl9544aLNT0u0hO83EM7fPZ+7E0VO5KlJXu9NLfqY5JsfKy7Bw12WV/HrTQdocXm6eX86np4+JySiGEEIMJCVHGlRNJz/DzIt3LpSEQaSMNoeXgiEWQfb2zSvP5ZYF5RxotnPX8+/zwtahbdImhBCDScmkwWRQWLvyQs6bkJvoUIQIW7vTR36MpicgsN79P26YyaZvX87FVUX85xv7aLHHpo26EEL0JyWThsriLKaMzU50GEKETdV0OpzeIfdo6I/ZaOC+pdNx+1R+9OpHMT++EEIEpWTSMJTe/UIkQqfLh6YPvUfDQKpKsvnWVefylw+O86uNdWiaHlpT/5cPjtPt9sXldYUQo0tKFkIKkWqC3SBjWdNwursureRgs51fbtzPnz84hqrrob75WVYTKy6pYFl1GePz0uMWgxBiZJOkQYhhENxNcEIc37BNRgO/WDaLS84t4sXtjZiNCl+9bDLlBRk8uaWeRzfW8ejGOi6uKuK+pTOoKum/174QQgxEkgYhhsHLNY1MyEuP+8Y2iqJww+xSbphd2uf+BZWF1Lc4eHX3MZ5+t54lj73N3Vedy52XVIT2H/CpGt1uP35Vw6fpPTsOKhgNCrnpZszGU9OCmqaP+k6UqqZz0GbH69c4d0w2Fpk2FaOAJA1CxFlTh4stB1r4+hXnJPSNtqIok29edQ43Lyjj3v/7iJ+v/4QXtzcwsTCDE51u6lsc+AfY9c2gQHG2lTE5abTavRzrdGE2Gsi0GHF4VDKtRsoKMpiQl47JaOjZ/ljBq2q0dHs42u6izeElN93MxMIMirKtGJVAQqIooBD4vej0en29z/8CX/d0ve973xlP6bNtuH7GF31fJ/hQvZ/v93dsCEw31R7rwuVTAbAYDUwbn0NpfjrnT8jlrssmn/lLFGIESMm9J4qKipg0adJZH2Oz2c66TXEiSEyDG2o8RUVFrF+/PoYRRf76g52bkHy/9/6kQoyQGnHabDamTZuW0HMTUvPamUzxJFMsENt4wr12pmTSEI6zbRyUKBLT4JItnnhJhZ8zFWKE1IgzFWIMSrZYkymeZIoFEhOPTMIJIYQQIiySNAghhBAiLMb77rvvvkQHES9z585NdAhnkJgGl2zxxEsq/JypECOkRpypEGNQssWaTPEkUyww/PGM2JoGIYQQQsSWTE8IIYQQIiySNAghhBAiLJI0CCGEECIskjQIIYQQIiySNAghhBAiLJI0CCGEECIskjQIIYQQIiySNAghhBAiLJI0CCGEECIskjQIIYQQIiySNAghhBAiLJI0CCGEECIskjQIIYQQIiySNAghhBAiLJI0CCGEECIsKZk0XHPNNYkOQYh+ybkpkpmcn2KoUjJpaGlpSXQIQvRLzk2RzOT8FEOVkkmDEEIIIYafJA1CCCGECIskDUIIIYQIiyQNQgghhAiLJA1CCCH69V+bD/L81iOJDkMkEVOiAxDibDRNZ2dDOwdtdiYXZzGnPB+DQUl0WGKUGy3n5QtbjzAmx8ptCycmOhSRJCRpEElL03QefO1jtte3he6bX1HAD5ZMG5EXaJEaRst56fVrHO90YRxBP5MYOpmeEElrZ0N7nwszwPb6NnY2tCcoIiFGz3l5tN2JpoOt24Ou64kORyQJSRpE0jpos/d7/yGbY5gjEeKU0XJeHml1AuDyqTi8aoKjEclCpidE0ppcnIWOjtOr4vFpWM0GMixGKoszEx2aGMUmF2eFvu59fnr9Kpqmj5gpiiOtp5Kglm4PWVZ5uxAy0iCS2AWleeg6HO9w0+bwcrzDja4H7hciUeaU5zO/ogAdnROdbo53uHH7VNbuaOTB1z5G00bGUP6RNmfoa5vdk8BIRDKRpEEkrd1HO1CAcblpFGRaGJebhtJzvxCJYjAo/GDJNJZXl2E1GRmXmxY4NxVlRNU2NLQ6sZgCbxG2bkkaRIAkDSJpHbTZURSFTKuJgkwLmVYTiqKMuLljkXoMBgWzydDnvAwaKednu9NLZVFgKrBFRhpED0kaRNLqPXfcm9Q0iGQw0s9Pp1dlQl46BkVGGsQpkjSIpBWcO+5tfkUBc8rzExSREKeM9PPT5VPJSjNRmGWVpEGExL0cdv369Xzzm99EVVVWrFjBPffcc8Zjfv/733PfffehKAqzZs1izZo18Q5LpIDg3PHOhnYO2RxUFmeO2M57IvWM9PPT6VXJsBgpzLTQ6vAmOhyRJOKaNKiqyqpVq9iwYQOlpaXMmzePpUuXMn369NBj6urq+OlPf8o777xDfn4+zc3N8QxJpBiDQaF6UgHVkwoGf7AQw2wkn58ur0q62USm1YTT6090OCJJxHV6Yvv27VRVVVFZWYnFYmH58uWsW7euz2OeeOIJVq1aRX5+YEivpKQkniEJIYQYhK7rOL1+MixGMixGHB5p7iQC4po0NDU1UVZWFrpdWlpKU1NTn8fs37+f/fv3c9FFF7Fw4ULWr18fz5CEEEIMwuPX0HRItxjJkpEG0Utcpyf661fee2kSgN/vp66ujs2bN3P06FEuueQS9u7dS15e3wY+q1evZvXq1QDYbLb4BS1EhOTcFMksmvPT1dM2OjDSYJKRBhES15GG0tJSGhsbQ7ePHj3K+PHjz3jMddddh9lspqKigilTplBXV3fGsVauXElNTQ01NTUUFxfHM2whIiLnpkhm0ZyfTl8gSUg3G8m0GnHISIPoEdekYd68edTV1VFfX4/X62Xt2rUsXbq0z2Ouv/56Nm3aBEBLSwv79++nsrIynmGJEUjTdBweubAJEQuuniQhvWekwSkjDaJHXJMGk8nE448/zuLFi5k2bRrLli1jxowZ3Hvvvbz66qsALF68mMLCQqZPn86iRYt46KGHKCwsjGdYYoTxqxrHOl04ZSc+IWLCGZqeMJFlNeJVNbx+LcFRiWQQ9z4NS5YsYcmSJX3ue+CBB0JfK4rCI488wiOPPBLvUMQI5PVrnOh049c0rCZjosMRYkQ4vaYBwOn1YzFZEhmWSALSEVKkLJdX5ViHC78mn4CEiKVQTYMlUNMA4JCRPMEwjDQIEQ/dbh8tdm+/K3SEEEPT70iD1AwJhjjS4PfLSSSGX5vDi63bIwmDEHESqmkwm8iyBpIGGWkQEEbS8LnPfY4jR46ccf/GjRu54IIL4hKUEP3RdZ3mbjcdTumDL0Q89V090TM9ISMNgjCShuXLl7No0SIefPBBfD4fx44dY9myZfz7v/87zz777HDEKASapnOiy43dLRcuIeLN2Wt6IjM40iBJgyCMpOELX/gCu3btoqGhgWnTpnHhhRdy1VVX8d577zF37tzhiFGMcj5Vo6nDFZpnFULEVzBpSDefGmmQJc0CwqxpqK2tZfv27cyfPx+r1crJkyelnkEMC7cvsELCpw6+QmL/ye5hiEiIkc/lU7GaDBgMSqimwS4jDYIwkoYVK1awatUqfvOb37BmzRp27dpFZ2cns2bN4q9//etwxChGKYfHz/FON6p29oJHXdd5ZedRvvjU9mGKTIiRLbjDJUCG9VSfBiEGTRpmzJjBjh07uPDCCwHIzMzk4Ycf5qWXXuLHP/5x3AMUo1On08fJLvegKyRcXpWf/OVjfr3p4KDJhRCJ0u5IreJdp1cNLbVMNwcLIWV6QoTRp+Huu+/u9/6ZM2fy9ttvxzwgIVrtHjpdvkEf19Dq5Ed/+ogjrU4AFs8YE+/QhIiIqunYuj04vX7yM1Onm6LLq5LeM9JgNCikm40y0iCAMJKG0zeYOl1wDwkhhiqwpNITVpX23/fb+Pn6fbh8KiaDwlcvn8xtCycOQ5RChMftU7F1e8Kqx0k2Lp8aGmEAyLSasMtIgyCMpOG9996jrKyMm2++mQULFkhDHREXas+SSo/v7Bcmv6rxxNv1vPz+UQCKsiz86HPTmTE+F0VRhiNUIQbV5fbRmsIdS71+Davp1Ox1plVGGkTAoEnDiRMn2LBhAy+++CJr1qzhM5/5DDfffDMzZswYjvjEKOD1a5z8/+ydeXxU9dX/33f27BsJWwJJCFvYISyKC0hRAcXWuuCDlmoFbam2Po+PbX+tCj622upjrbU+FjesVqhbC1ZFQUGLFtlRCEuAhCQs2dfJ7Pf7++NmhoRsk2QmmWS+776omTt37j0zOXNz7vme8zm19g7vyCqtTla/l8s3p2sAmJwWz4PXjCUhsu+kfSX9GyEEZfWOPq8n4nSrmJoEDZEmg6xpkAB+FELq9XquvvpqXn31VXbs2EFWVhZz5szhj3/8Y0/YJ+nneIdOdRQwfF1czV2v7fEFDLfMSOOJGybKgEESMnj1RPp6wADg9DQPGqJMMtMg0fBrYJXD4eD9999n3bp1FBQUcO+993L99dcH2zZJP8efoVNCCN7ee5o/f3YCVWgXr58vGMPsrAE9aKlE0j5Wh5uyOgdqH12OuBCHS8Wkb7o8YZDy7RLAj6Bh2bJlHDx4kAULFvDwww8zfvz4nrBL0s+psjqp6uAi1OB08+RHx9h2rAyAzAFRrFqcTWpCZE+YKJH4RaXV2e/+oDo9KuZmhZB6TlfL5QmJH0HDa6+9RlRUFMeOHeOZZ57xbRdCoCgKtbW1QTVQ0r/wd833VIWVhzfmUliptVN+a2wK/zl/FJYmFzKJpDfxqNoAtf4ob+50N880RJoMcjS2BPAjaFBV/9qFqqqqSEhI6LZBkv6LqgpK/LjIbjtayu8+OordpWLQKaycO4LFk4bI7ghJyGB3eSitdeD28/rY13C4W9Y0yNHYEvCzpsEf5s2bx969ewN1OEk/w+1ROVdrx+lu+yLr9qj8+fOTvLP3NADJ0WZWLc5m7ODYnjJTIumQmgYXlQ19t53SH5xuzwUtlwasDrcvwywJXwIWNPTnL5CkezjcHkpq2r8rq6h38Mg/c/nmtLbcNW1YPL9cNJZ42R0hCRFUVVBe7wiLwU0tuifMBtyq0GodDHKJMJwJWNAgo09JazQ43ZTWtl9VfqC4mkfey6WqQZOOXjpzGN+/OB29TvqUJDTwV0ukPyCE0JYnmtU0NI7Hdnhk0BDmBCxokEgupNbuorzO0ebzQgje2lPMms9Pau2UZj0/v1q2U0pCi3qHm/J+1E7ZEW5VIATNlydM58dj96UZGpLAI5cnJEGho6FTVoebJz4+yufHygHITI5i9bXjGJoQ0VMmSiTtIoSgwuqk1o/haf0Jb93RhcsToE2/lIQ3nQoatm/fTl5eHrfffjtlZWXU19eTkZEBwCeffBIUAyV9CyG0qX7trfvml1tZtfEQRVU2QJtO+ZN5I2U7pSRkcHtUSuocHc5C8Ze+dFPVWtAQaW4cjy1VIcOeDmWkvaxevZrf/va3PPbYYwC4XC5uvfVW3/OJiYmBt07Sp/CogrM19nYDhk+PlLLyr3spqrJh1Cv85/yRPHDVaBkwSEIGm9PD6WpbwAKG09U2fvbONwE5Vk/g9LSSaWhcnmiQ8yfCHr8zDX//+9/Zt28fU6dOBWDIkCHU1dUFzbCeRFUFewurOFFWz4jkaKYOS0Ani/A6RUeFYi6Pyp8/O8m7+7R2ypQYrZ1yzKDwa6eU/ha6VDc4qbQGRt3R7VF5c3cxf9lxqt1W41DDl2lopRAyHDpHJO3jd9BgMplQFMXXJWG1WoNmVE+iqoJff3CYnfmVvm0zMhL55cKx8kLuJ3aXh5JaOx619RRsWZ3WTnnojNZOmTM8gV8uHEtcpLEnzQwJpL+FJh5VW1YL1FCmw2dr+d/NxzhZpl0nB0T3neJBh1vLJjTNNET7ahpk0BDu+B003HTTTdx1111UV1fzwgsv8PLLL7N8+fJg2tYj7C2sanYBB9iZX8newipy0uWSS0fUNw7qaWvNdn9RNf/zz/PtlLfNGsb3Lgrfdkrpb6GHw62pOwainbLe4eal7fls3H8GASjAt6cM5Y7Z6d0+dk/haMw0NG2tPF/TIJcnwh2/axruv/9+brjhBr773e9y9OhRHnnkEe65554OX7dp0yZGjx5NVlYWjz/+eJv7vf322yiKwu7du/01KSCcKKtvdbv3DkHSNtUNTkpr7a0GDEII1u8s5P63DlDV4CLabOA33xnP7bMzghIwmI16YiNCv4NY+ltoUWt3caa6+/oLQgg+zyvj9rW72NAYMGQlR/OnpVO454osX/dBX8DpCxpaq2mQmYZwx29Pzs/P59JLL2X+/PkA2Gw2CgoKSE9Pb/M1Ho+HlStXsnnzZlJTU5k+fTqLFy8mOzu72X51dXU888wzzJw5s2vvohuMSI5udXtmclQPW9K3KKtzUGdvvRWt3uHmd5uOsv241k6ZlRLNqmuzGRIf+HZKvU4hIcpErKVvLHVIfwsNhBCU1zvb9OHOUFpr5w+fHOffJysAsBh0LLs4nRumpfbJjFpr3RMRjYXKVhk0hD1+ZxpuvPFGdLrzu+v1em688cZ2X7Nz506ysrLIzMzEZDKxZMkSNmzY0GK/Bx98kAceeACLxdIJ0wPD1GEJzMhonhaekZHI1GFy+FZrqKrgXI29zYttfrmVH/11ry9guHrcIP64ZHJQAoZoi4HUhMg+EzCA9LdQwOVROV1t63bA4FEFb+8p5vtrd/kChhkZibz8/encPD2tTwYM0Hr3hE6nyKFVEqATmQa3243JdL6Yx2Qy4XS2X2V8+vRp0tLSfI9TU1P56quvmu2zb98+ioqKuOaaa3jyySf9NSdg6HQKv1w4lr2FVZwss5KZHCWr2dugo6FTWw6X8NTHx7C7VYx6hXuvGMmiiYMDbofJoGNAtLlPtmlKf+td/JE194djJXU8tfkYx0q05aaESCM/npvFnNHJfV5Sv7XuCYBIs6HDkfaS/o/fQUNycjIbN25k8eLFAGzYsIEBA9qX+21trbvpF0pVVe677z7Wrl3b4fnXrFnDmjVrACgrK/PXbL/Q6RRy0hNlIVo7tDd0yuVReW7bCTbsPwPAwFgzq64dx+hBMQG1QacoJESaiI0whNSFubO+Kf2td6i0Oqlu6F47pc3pYe2XBbyztxhvs9C1Ewdz56UZxIRoxquz/uloZXkCINZioM4RXuqYkpb4HTQ8//zzLF26lB//+McIIUhLS+Mvf/lLu69JTU2lqKjI97i4uJghQ4b4HtfV1XHw4EHmzJkDwLlz51i8eDEbN24kJyen2bFWrFjBihUrAFo8JwkuNqfWUtna3VlZnYPV7x0i96ym2TEjPYFfLBxLXERgL6DRZgOJUSYMer9X1HoM6ZuhjUcVlNbZsXUztf7vExX84ZM8ShvnqQxPiuS/5o9i/NC4QJgZNDrrn63VNADERRjblYaXhAd+Bw0jRoxgx44d1NfXI4QgJqbju8jp06eTl5dHfn4+Q4cOZf369bzxxhu+5+Pi4igvL/c9njNnDk8++aS88IYQdXYX5fXOVrNGe09V8ej7h6m2uVCA2y4azvcuGo4ugFkAo15biogw9b2lCEnvY3dp7ZTtjWXviIp6B3/cetw3J8WoV7ht1nBunp6GMQSD2O7SWvcEaEFDWX3bA+gk4YHfQYPD4eCdd96hoKAAt/v8utZDDz3U9sENBp599lmuuuoqPB4Pd9xxB+PGjeOhhx4iJyfHt9QhCU2qrE6qWknnqkKwfmcRL3+RjyogxmLg/y0cw8yMpICdW1EU4iOMxEcaQ2opQtJ3qGlwUdnQesDrD6oQvHfgLC/+66SvAHDKsHju+9ZIUhMiA2lqSOFopRASIDbCyAnZGhz2+B00XHfddcTFxTFt2jTMZrPfJ1i4cCELFy5stu2RRx5pdd9t27b5fVx/kHK9XUMIQVm9o9Wip3q7m99uOsIXJ7Rq8ZEp0axanM3guMB1R0SaDCRFm/rlXZz0yeCjqoLy+vaHpnVEfrmV//34GLlnNRXTWIuBH80Zwfzsgf0+iPVlGvTNs3tyeUICnQgaiouL2bRpUzBtCShSrrdrqKqgpI313xNl9Ty88RBnqu0ALJwwiHuvGNnijqSrGPU6EqNMfUoIpzNInww+Hc1A6QiHy8NrO07xt93FPln0q8YN5O7LRoSN7Hl7NQ21dheqKqS/hjF+X50vvvhivvnmGyZMmBBMewKGlOvtPO21VH6cW8LvNx/D0dhO+dNvjWLB+EEBOa+iKMRFGEno50sR0ieDS73DTXld19sp95yq4vdbjvmC4tSECH76rZFhp6HR2uwJgFiLESGg3unuU9ooksDid9Cwfft21q5dS0ZGBmazGSEEiqLw9ddfB9O+LtOeXK+8QLekrZZKp1trp9x4QGunHBRrYdXibEYNDEw7ZYRJT1KUOWDZilBG+mRwEEJQYXVS28XUeXWDk+e2nWDL4VIADDqFW2aksXTm8LDwywtxulX0OqWFOJW3I6qmwSWDhjDG76Dhww8/DKYdAUfK9fpPW4I3pbV2Vr2Xy5FzWjvlzIxE/t/CMQHpRzfodCRGm3zT88IB6ZOBx+1RKalz4HB1vp1SCMGmQyX8+bMT1DbW70wYGst980eRnhS+vxOnW23ROQH4ZrvUBkB6W9J38fuKPXz4cLZv305eXh633347ZWVl1Ne3fucUCnjlei9cPw63VGNH1NhcVLTSRrXnVBX/889cau1uFOD7F6ezdNawgLRTxkYYSYw0hd26qPTJwGJzeiita3ske3sUVjbw+83HOFBcA2g6ICsuy2ThhEEBbRnuizg9aqsZllhvpkEWQ4Y1fgcNq1evZvfu3Rw9epTbb78dl8vFrbfeyhdffBFM+7qMlOvtmIp6R4sLgCoEb3xVyCtfFCDQqsZ/uWgs0wOQPjcb9QyINjUbuRtOSJ8MHNUNTiqtnVd3dLpV1u8q5K9fFeLyaMHG3NHJrJybRWKUqYNXhwdOt9pCQhrOL090dRlI0j/wO2j4+9//zr59+5g6dSoAQ4YMoa6uLmiGBQIp19s6QghK6xwtJtbV2V08/uFR3/Cd0QNjeHhxNoNiuzdIrK9Nogwm0ie7h6pqvtvg7Hw75YHian6/OY/CygZAq8/5ybeyAqov0h9wutvINFi8QYOcPxHO+B00mEwmFEXxVbdbrVLkoy/iUQXnau0t1oCPl2rtlGdrtMrxayYO5sdzs7pdCBZjMZIYZeqzE/8koYPDrak7dradstbmYs3nJ/ng4DkAdArcOC2V712c7hv5LDmPo43lCW/LqVyeCG/8Dhpuuukm7rrrLqqrq3nhhRd4+eWXWb58eTBtkwSYtnrYNx08x9Of5PnuMH46byRXd7Odsi9PopSEHrV2FxVtyJm3hRCCT4+U8ty2E1Q1aH/oRg+K4b/mjyIrpfWiVAk4XK0vT0SbDOgUWQgZ7vgdNNx///1s3ryZ2NhYjh49yiOPPML8+fODaZskgNhd2tCppkVjTrfKn7Ye572vzwIwOM7C6sXjunVB9U6iDBchHElwEUJQXu+krpN/qM5U23h6Sx67T1UBEGnSc8fsDK6bPERmvTrA6VExtxLs63QKMRapChnudKrfbf78+TJQ6IPUO9yU1Tma3aWdq7WzemMuR0u0upRZmYn8YkH32ilDeRKlpO/h8miZsdbExtrC7VF5a08xf/n3Kd+I59lZSdx7xUiSY/yXvw9nnG4P5ja+w1JKWtJh0HDJJZewfft2YmJimqn1ecWdamtrg2qgpHu0VmW+q6CSX79/mFq7G50Ct89O55YZXW+nlJMoJYGmLe2Q9jh8tpb/3XyMk41DlQZEm7j3ipFcMnJAsMzslzjdKpGm1v80xEUYZfdEmNNh0LB9+3aAkO+UkDSntbSuKgSv7zjFq1+eQqBdAH61aCzThndNJ0BRFBIijcRF9G/5Z0nPUml1Ut3KdNW2sDrcvLg9n437zyAABfj2lKHcMTu9384xCSZOj0p8GwXQsREGmWkIczr8RlVWVrb7fGKibB0LNVobOlVnd/HYh0fYcVL7fY4ZFMOqa7NJ6WI7ZX+eRCnpHTyqoLSNYWmtIYTgX3nl/HHrcSrqtSAjKzma/7xyJGMGxQbT1H5NWzoNoN1onGvssJKEJx0GDdOmTUNRFIQQFBYWkpCQgBCC6upqhg0bRn5+fk/YKfGT1oZO5ZXUseq9XF875bWTBrNyTtfaKY16HUnRpjbTlxJJV7C7tHbKC2eftEVprZ0/fHLcpyliMej4/ux0vjs1NeQKHY16XZ/SKHG0odMAmlaDV3JbEp50eOX3BgV33303ixcvZuHChYA2i2LLli3BtU7SKVobOvXhN2d5+pM8XB6B2aDjvvmjuDJ7YKePHS6TKCU9T43NRaXVv3ZKjyr4x/7TvLQ9H7tL8/MZGYn8dN5IBsV1T4Qs0ESZDcRYDH0uwG5r9gTIQkhJJ7ondu3axfPPP+97vGDBAh588MGgGCXpPPV2F1uPlnKqooFhiZFkpUTz7NbjfPCNJmgzJF5rp2xraFJ7hNMkSklwUFXB3sIqTpTVMyI52jdvo7zeQb3DvzvXYyV1PLX5GMdKtJk3CT7JIVkAACAASURBVJFG7rkii8tHJYdMIGvQ6Yi2GIi1GPpsF1FbipCgzZ9wulXsLo/UYAlT/A4aBgwYwKOPPsqtt96Koii8/vrrJCVJ+dVQoLrByaPvH+brompAa1Wrtrl8gjYXj0ji51ePIdrSuTuecJxEKQk8qir49QeHmw3qmjY8gTtmp+P2Y9iUzenhlS/zeXfvaby7XztxMMsvzey0TweLCJOeGIuRKJM+ZAKYrtJR0ACayqYMGsITv79x69atY/Xq1XznO98B4LLLLmPdunVBM0ziH5VWJ9vzynwBg9Xh5mytHVWAosAPZmewZEZap9sptaWI8JtEKQk8ewurmgUMHlXw5Ylypg6LZ/zQuHZfu+NkBU9vyaO0TpvEOjwpkv+aP6rD1/UEOkVpzCoY+1UWri0ZaTg/tKrG5upyEbWkb+N30JCYmMgf/vCHYNoSdrSWsvX3j7QQgrI6LbVbWNmAEIIKq5PKxuyCXlH47tSh/MfMYZ2yyWLUkxTGkyj7I93xs0BwokxbThBC4FGFT5W0qNLW5h//inoHz249wWfHygAw6hVumzWcm6en9XrHjsmgIzbCSIzZ0OezChcihNBqGtrpngApJR3O+B00zJ07t9UvyKeffhpQg8KF1lK2MzIS+eXCsR1e0D2qoKTWjr1x6FRSlInTNXYaGlvVLAYdg+MsnRK1kZMo+yfd8bNAMSI5GiEELo9oVuyYlhjR0l4heO/AWV7810msjf48ZVg8931rJKkJkT1ib2soikKUWU+sxdiv0/LOxrk0bXdPaH8yZDFk+OJ30PDkk0/6frbb7bzzzjsYDKGxntgXuTBlC7Azv5K9hVXtjk12eVTO1ZwfOnWspI6nP8nzBQzxEUaSo01MGpZA9hD/etXlJMr+S1f9LJCMHRTL2MGxHGhcQgOYmBbfwj/zy63878fHyD2rqczGWgz8aM4I5mcP7LU7em+7ZLTFEBbfD2+rdluZRl+mQY7HDlv8/qs/bdq0Zo9nz57N5ZdfHnCDwoUTZfUIBA1ODw6XitmoI9Kk52SZtc2LedOhU0IIPvjmHM98er6d8qacVAbFRpCWGEH2kNgO6xjkJMr+j3dp4ELa87OmdHdpwytjftflmeSeqaWo0tbCPx0uD6/tOMXfdhf7li6uGjeQuy8b0SuDzxRFIdKkZRXCTRrdGzR0VAgpMw3hi99BQ1NlSFVV2bNnD+fOnQuKUeFAxoAoztXYsTrOq99FmfWkD2g9Bdt06JTD5eEPnxxn0yHt809NiGDVtdlk+tlOqVO0pQjvXYOk/9JWi21mclSHr+3O0oaqCsrqHVgb2yl1isL4oXEtahj2nKri91uOcaZaEx5LTYjgp98a6WvJ7EkMOh0xFk1boa+2S3aXjpYn4mTQEPZ0KtPgVYY0GAxkZGTw0ksvBdO2fs+FWjZtads0HTp1tsbGwxtzOV6q3UHOzkriZ1eP8bstUk6iDC+mDktgRkZiiz/8/vxR7urShsOtqTt6l9Bao7rByf99dpLNuSUAGHQKt8xIY+nM4T3eiRDRmFWI7Aftkt3Fl2lo4/pg1GsZUTm0KnzxO2iQctGBJb/cyuA4i7Y80ajAFmnSU1DewIyM8/oXZXUO39CpHScr+M0HR6h3aNMp77wkg5unp/l1oZOTKMMTnU7hlwvHsrewipNlVjKTo/xeYujK0kad3UV5fdvqjkIINh08x58/P+mTI54wNJb75o8iPanj7Eeg0OsUos0GYvpZu2R36Wh5AjQpaZlpCF86Vcl48OBBcnNzsdvPDyz53ve+F3Cj+gMdrQWPSI5urMg2EGU+/zpv2lhVBaV1Dhqcbjyq4C//LuC1HYWApoT3q0VjmeLH3aKcRBm+XOiDN0xL7VQ9QmeWNlqbqnohhZUN/H7zMQ4U1wBa1mvFZZksnDCoy2PZO4vZqCfWYiC6H7ZLBgKHH0GDlJIOb/wOGlavXs22bdvIzc1l4cKFfPjhh1xyySUyaGgFf9aC20sbNx06VdPg4tcfHGb3qSoAsgfH8vC12STHmOmIqMaliN7ua5f0PIFotfR3acPlUSm5YEhaU5xulfW7CvnrV4W4PFoGYu7oZFbOzSIxytTZt9ZpFEXLKsRGGKT+SAc4fN0T7QcNUqchfPE7aHj77bc5cOAAU6ZM4ZVXXqGkpIQ777yzw9dt2rSJn/zkJ3g8Hu68805+/vOfN3v+qaee4sUXX8RgMJCcnMzLL7/M8OHDO/9OQgh/1oLbShu7VcG5GjtuVeXIuVpWbcz1qeFdP2Uod12e2WEQICdRSgLRaunP0kaDUyvQ9bQhB/11cTVPbc6jsLIBgMFxFn4ybyQzMoLf7mnUnxdhksqm/uHX8kSEgdPVcjx2uOL3X5WIiAh0Oh0Gg4Ha2lpSUlI4efJku6/xeDysXLmSzZs3k5qayvTp01m8eDHZ2dm+faZMmcLu3buJjIzk//7v/3jggQf429/+1vV31MuoquCTwyVUWp2+NkoF7YJ14VqwTqeQk57o22ZzelsqVf759Vme3Xocl0dgMej4rytHM29sSrvnlpMoJV4urEfwtveu36Utcflb13Chjzal0uqkusHZ6utqbS7WfH6SDw5qHT46BW6clsqyi9OD2uKrKApRjXMgZP1O5/F2T7SXaYiNMHL4bF1PmSQJMfwOGnJycqiurmb58uVMmzaN6OhoZsyY0e5rdu7cSVZWFpmZmQAsWbKEDRs2NAsa5s6d6/t51qxZvP766519DyGDNyW89Uipr9shyqxnUJwFBaXdNjdvAZnN6eYPn+Tx0SGtqjwtIYJVi8eRMaD9IjE5iVLSlKb1CALha+/dK6o5eq6+W6qQHlVQWmfH5vS0eE4IwadHSnlu2wnfwLTRg2L4r/mjyErp/IRVfzHodMRGaLUKsjOo65zvnmg74Iq1GGX3RBjjd9Dw3HPPAXD33Xdz9dVXU1tby8SJE33PHzp0iHHjxjV7zenTp0lLS/M9Tk1N5auvvmrzHC+99BILFizw2/hQw5sSjjTpiTTpaXB6sDo8NDg9zB2d0mabW5XVSVWDk9PVNlZtPMSJMisAl40cwH9fNZqodtop5SRKSWs0rUfw+qHXL6HrqpB2l9ZO6VZb1i+cqbbx9JY8X/1NhFHPDy7J4LrJQ4Kmphhp0nQV2vuOSPzHn+WJuAgjdQ6tQDscVDIlzenSNy09Pb3Ftttuu429e/c229Za21VbafPXX3+d3bt389lnn7X6/Jo1a1izZg0AZWVlnbS4Z/CmhBVFadZOeXX2IO6/anSLuzohNAGcerubL0+U89iHR7A6POgUWHFZJjdOS23z81IUhViLQU6iDAFC0Teb1iOs31XIXlHdQofAX1VILzU2F5XWlu2Ubo/KW3uK+cu/T/kK6WZnJXHvFSP9KtjtLN52ydgIoyzy9YPO+KfDrWWPOgoaQMuOxkcGv5BVEloELDxvLUBITU2lqKjI97i4uJghQ4a02G/Lli38+te/5rPPPsNsbv0is2LFClasWAFoSyXBoDOSua3t2zQl7G2njDQJhsRbeGtPUbNjqqqgpM5Ovd3N2i8L+OtX59spH7omm0lp8W3aKSdRhhZd8c1AT55UVcHuU5VsPVIKwNwxKeQMP1+LcPRcS80Ff1Qhvccur9cmql5I7plantpyjJON2bHkaDP3zstidpb/w9L8RbZLdo3O+KfTj+6JplLSMmgIPwIWNLT2JZ4+fTp5eXnk5+czdOhQ1q9fzxtvvNFsn3379nHXXXexadMmUlLaL/QLJp1pUWtr319cPaZZi5oQAlUIXvoiH6dbYDIoZA+O5aIRSSRFmUmOMfHYB0fYU6gN8hk/JJaHrs1mQHTrgZNep5AYZSJGTqLs0wR68qSqCh59P5eNB874ZMnf3F3MdZOH8KtF2b6liq9OVviyX1OGxTM5te3A1IvTrbVTNlV3VIVgT0EV63YVcqCoBgEowHemDOWOS9ID2rWjawy+Zbtkz9CRjDTIoVXhTlAXAg0GA88++yxXXXUVHo+HO+64g3HjxvHQQw+Rk5PD4sWL+e///m/q6+u58cYbARg2bBgbN24Mplk+vHd7eaX1nCytZ9PBs5iNel/HQ1vrvm21s+0vrm7WomZ3ufnDJ8dpcHoQCNwewamKBg4UVaMoilb42Djees6oZH6+YDSmNi6MchJl/0BVBa9/dYqN+08D2u810qzv1uTJvYVVbDtW1myOSYPTw7ajZSycoB3zF1eP4adv7mdfYTVmo46CCiuPbTrSbqBS73BTXudAbZJF9KgqD244xK6CKl+bZbTZwOJJQ5iVmRiwzgiTQUeMRbZL9jT+1jSAnD8RrgQsaDCZWk9TLVy4kIULFzbb9sgjj/h+3rJlS6BM6BTeu72v8is4V2OnusGJKrS14CiTntSECHSKrtV13xbtbEJQaXXy2AeH+c6UoSyZPoyc9ER+++Fh38hqVYC78SJbaXXS4NK+nAowKNbMmWobL24v4O7LM5up45mNepKiTHISZT9AVQX/889DrNtZhL3x4lxpdRIfaWJwvKXTNQZeTpTV43C1LEx0uFWOldRx5Gwtmw+XkFdST2KUyZcVbCtQ8frzhX8USmvtPPr+YQ6e0UZXK2hpbKfbw+d5ZewuqGRiWnwLH/YXb7tkbIRR+nsv4ehg9gRoOg0gg4Zwxe+g4fPPP291+2WXXQbAjh07AmNRD+HNFjQ4PdTb3ahC+8MuPIJau5viKhtpCZGtrvs2a2cTguNl9TjcKuX1TnLP1rFuVxEbfjS72WvUJtXmTQOGhEijb7nh66Jqcs/UMn5oHHqdQnyknETZn9h9qpJ39572XZgBPAJq7S7inEa/awwuZERyNGZjy4u8SQ8v/CvfJxbmVgWVDU6yGiXMoWUxpNujUlrnwO46n7XwqIK/7zvNy1/kY2/0XU0LwUBVgwtFUXC6VSKN+mY+7C9GvXe6pFFm0nqZjgZWQZPlCakKGZb4HTQ88cQTvp/tdjs7d+5k2rRpfPrpp0ExLNh4swUOl4oqhG/CpHd9tsHpIX1AFJNT49ldUOkrWJs4JI7cMzXYXG4aGtPBDreKTlHwXu9OlllZv6uQuWNSeGtPMfX2lmt/ZoMOIQSRF7SKFVXamNVY8yAvoP2LrUdKaXC11DZQhWBInAVVCP62q7BFway3wFEAQ+IjMOoVRqbE+PaZOiyBOaOSm9U0RJr0DIqLYF9RNUrj/0DgcKtUWp0kNdbNNA1UbE4PpXX2ZuqOx0rqeGrzMY6VaN+XGIuBaJOeaLOBmiZ+3TSdXVRp8ytoiDRptQpSuTR0cHpUjHql3SWhWItcnghn/P62vvfee80eFxUV8cADDwTcoJ7Cmy0wG3S4VUHT3g8FrQp89ogkHtt0xFe/oKoq52odWJ1uaMxM6HVg1CnoFKVZMeiB4hpumTGMb41JYfPh82JPAAOiTZgNOhqcHiKa3CEqisLkYXGkxFiC+t4lvYeiKKAIlCYOF2M2EBdh5H/+edi3zVtY+5sPD7Nh/xmsTjduj+an8RFGBsdZmJmZ5KtJ+NWibK4eP4itR8tQBMwZk8z6XYXsL9J8UqdoRYWqEL46mqZzJJqOXwctgFj7ZQHv7C3GG0NcM3Ewd16SwetfFfJ1UbUvUIg06Zv5cVpiRJvvX69TtFoFi0G2S4YgDpfabpYBtN+3yaCjytq6Gqikf9PlED81NZWDBw8G0pYexVtR7m1R86KgXdgtRj0eVTQreKxqcFHZ4MSo16FXFPSKNqxHUVp2j0wYGktxjQ0UhYrGL1esxcCyi4djMRgYmmDhX3nlfFNcA4om0jQrMxGjXtfiblPSP5g7JoU3dxdTbXOhNoapekVh7OBYTlU0NPOhnfmVrN9VyLajZTQ4PagCPI3psDqHmzinp1lNgk6nMCMjqdlY9WPn6vjwG01ZVFEUjDpQhcKcUcksnTXcFzCU1NqxNmmn3HGygqe35PlmngyKtfDzBaOZ2NhtcfflmeSeqeVURQN7Cqs4XdXgk0qfmBZP9pDYFu/dYtRqFaIu0IqQhBZOjwdzB/UkiqKQFGXyXdck4YXfQcM999zj+7Krqsr+/fuZNGlS0AwLNl7xG5NeYcP+09TY3Np6XuP1TFFgz6lKrA63TxTHV9SoqqDoEAgUBJEmA073+VvH9AGRjB8Sx0/Xa9XqABNT43hw0VhfWhhg/NA48suslNc7GZESxaaD51rcbXa1DU8SeuQMT+S6yUPYdrSMusbU/oyMBC7OSmL9zuIW++8vqsHu8uBRBR5V9S2heTwqlVbtD/rx0vo2iyeXTB/Gul1FPg0FRVEYmRLFEzdMwmDQ4XBr6o7edsqKegfPbj3BZ8c0ASAFtBZfs57txysYPzSucRlOYfzQOMYPjWPBhEHknqmlqNJGWmIE2UNifUWQOkUh2qIpNsp2yb6B091xpgEgIdIkMw1hSqdmT/heZDBwyy23MHv27HZeEdq4G8f1Hj5bCyikxZsprNYKwISAUxVWyusdOFwqUWYDg2K1GgMhtOI1N1qGAWDMwGjGpyZwoKiaCUNimZKWwIrX91Ber32pbpyWyvJLM5pp4hv1OgZEm8lKiQFgd0EluwqqmtnYnTY8Seih0yn8vwVjSR8QxadHSomPMLJkRho6RUEI4dNQMBu0QWcTU2PZnHsOV5OAAbzFk27sbpXtx8u5KSfNV//gFYzyzipZOmMY+eVWqhqcTE6LZ8n0YRgMOt+sE6+WyHsHzvLiv05ibQyMI4x6Bsacn2XSVoFj0wDCi8mgTZeMNsl2yb6Gw636Nb8mKVpmGsIVv4OGZcuWBdOOHsXtVln8p+0cL7WiIlA9grNAY60YQvsPdpcHi1GP1eGmuErF4VG9uwAghFahfrysgTKrC7Nexz8PnmXtjlMIoV14l8xIIynKxJFzdWQPiUWv05EQaSQuovkkygvbOL10tQ1PEnqoquA3Hx5uVrD4r7xyrp04GFUIzlTbtA4eBKnxEYwYEI1Br0MHXFg+KQSYDXoKKqzsLaxi6rAErYX4ZAXWxnHVOkUhLUGbTjsjI5H/mDkcIQRbcs9x5FwdwxIjiTDp+f3mPHLPam2UsRYDs7MGcLykrsUyQnsFjpoCqp5Yi2yX7Ms4XCqWVjpxLiQxysSpioYesEgSavgdNOTl5fGLX/yC3Nxc7Pbzs9Q7Go/dm5wXb6rD4xG+QrCd+RUcOVfXrGPC+4OC9k8VIISmcR9l1grDBkdbKK11NIo1aUVd3qBCr1Moc3qoa1wbHhRrZmJaPF/klfvsmTo8gdWLx7W6Zti0jbMpXW3Dk4Qeewur2Ha0jBqbC7Wx+Nbp9vDWnmJizHpMBgVbY0tjUZWNn765n1iLAUWB6gaXr8tHp4Ber9PklFF8yw9fnazgbI2dOofbt+RQXGUjLTGSnfmV7DhZzj/2n2F/YTVqoxZDVYPL5/9XjRvI3ZeNoKiqgWdLWwaxrRU4GvU6Yi1Goi0G2e3TD7C7PX4FfYlRpmaFs5Lwwe+g4fbbb2f16tXcd999bN26lVdeeaXVeROhgle8aceJcgoqGrC7VHQ6rfDM6VFR2zC9aQDhEQKTQYfTLUiIMoEAl6pFFgraxbuhsZOi0ur0iTfFmA1cMnIAXxfVANpdmEGncOhMLd+crmk1c9B0KqGXptXtkr7PsXN1FFU14PI0dz6r04PV6fGW0/h8sKzeSXm9k0iTHoNeQVUVXKqKvrEQ16vNkJkcxYmyehqc2kTVpt/LBpe2zWLU88+vz7G/sBqr001pncNnR3KMmZ9dPdrnazERsUxMi+fromrfcZoWOHpFmGIsRiJMMqvQn7C7PO3OnfCSFGWi3uHG4fbIepUww++gwWazMW/ePIQQDB8+nFWrVnHppZeyevXqYNrXZfYWVvHVyQrySutxNl4cPR5w4X+g41EFFfUO0pOiqHd4sLu1CZR6RfFVsntFobxpi+RoE/ERRow6LbLQKwp6ndKmmI6XplMJT5ZZyUyOkt0T/Yz8cituT9v+19ozAi2o0Cuaj5j1Ok25VA92p4fBjfoOGQOifKJRmq81CRycHgw6BZvT5ctEeEmMNHLrjGHNglOdovg6JJoWOJoNeinC1M9xuFWi/RgznhClKQBXWp0Mjmu7xVbS//A7aLBYLKiqysiRI3n22WcZOnQopaWlHb+wlzhRVk+l1ekLGLpKncNDcZUNRTkvA23QK0TotFRy04xFjFlPfKSRianxDImP4LNj5VhMeiL15yPx9pYbdDqFnPREWcPQT6mwOtDpwNNS8blDPAL0QqDTQZTJgL1RgdTh9vDIP3OZkZ7I5LQ4Pj1S5gtsVSG0n3WaKNOHB0t88tUWo46BMRbMBh0Zrfhk0wLHKLPWASFFmPo/dpdKUlTHmYMkGTSELX5fBZ5++mkaGhp45plnePDBB9m6dSt/+ctfgmlbtxiRHN2q+l5nEQIqG1yY9QqD48zERpqpbnBSUuvAqwYcYdQRH2nCowoWTRxCRZ2Djw6V4HCrVDW4iDLrGRRnYWZGklxuCGOmDkvg/W/ONlNc7AxOFZyqwOZygaKJilkd2vLDroIqfrloDIqisK+wGqNewaMKYi1G7G6Pb5KqQmMtjkGHyaC0qatg0HmlnQ3Nun4k/RuH29OqJPmFJEZpreOyriH88DtoUBSF2267jVOnTuFyafKhy5cv5+uvvw6acd1h6rAEsgfH8uWJioAcz+kROD0wfXgib+0t8qWC4yOMRJn1uDyCCKMem9PN/uIaFEVhcJzF10a3JCeN/5g5XC43hDE3TUvj91vycLi7d6EVjf/n8miZB7vTQ5TJQGGFjadvmszLX5xkV0EldXYPewqrfLULMWYDA6KNuFStH3/RhMFcM2lIs+FSkSYtUIjyI0Ut6X84XCoWP2oUEptkGiThhd9XhqVLl/LEE08wYcIEdLrQv/PQ6RTWLpvOlU9/RkGlrdvHE0CF1ckrX+ajCk1+OjHKiM2ppYkVoM7u5t8nKhFCoDTKSkc1dl+YDHoZMIQ5X5+pYVCcGZvT7Rta1h0EWsGvl2FJEfxqw0G255VTWmf3Lc3FWgzEmM8HAkY9RBr1GPV6dI01N1LaWQKNhZB+ZBq8yxNljaqhkvDB7ytEcnIyixcvJiMjg+HDh/v+hTImk57ffneSz8G7i8Ot1TAMjrPw/NKpjBkUi93lQVFARVs7Lq93YHW4sDrcVFqdWB1uhBCydVLCibJ6lEYhp0AhgNJ6OxFGhXU7C3l3bzHF1TZfwJAQaeS2WcNazRxkpUSREmthWGIkiVEmGTBIcLj9yzTERxqJMRukVkMY4nemYfXq1dx5553MmzcPs/m8FPL1118fFMO6i3c64P99dhybM3DT2HQKRJp0bD5cyrwxKZyqaKC0zoHTc370sLe7QtN6EKQmRDJxiP+jgiX9kxHJ0dTbXdjcgQsaANwe2FlQDVQ3227Qa8PRLEbD+RbKxiLJmZlJzM8e1CL71VRVUs4/CT80QbuOg0dFUchMjiK/3NoDVklCCb+DhldeeYUjR47gcrl8yxOKooRk0KCqgkffz2XD/jNUNTjb1GTo0rEFnKuxs+NkBWMGx4CitWbqAFXVtB3caFKsHlVbpjhbY+M/3z7AM0umyAtwGDN1WAI9+dt3e6Da6sSjqoxIjmLMwGiizAZGDoxpNRjwaptcqBUi55+EB+7GGx9/dRcyk6P56mRgasYkfQe/g4YDBw7wzTffBNOWgLG3sIqtR0oDHjB4sTpVCiqsvLmrkCiTHpfH0yj/e15N0t44Ytarz7CvsFrOkZBQa3d3vFMAqbG5+Ti3BH1joD89PYERKdG8taeoRSZhb2FVs4AB5PyTcMLRpB3XHzIHRPH3fadpcLplO24Y4fdvetasWeTm5pKdnR1MewJCXmkdlUEKGLyoAg6eqcNs0IZYCaFNxjToFJweTe7XLQQGBRQUzAadnCMR5nx1soIKa+CWyvxBAHa3SpRJhxCCd/aeZuOBM8RajESa9MzMTOKXC8cC8MnhEiqtTsxGbWCWd9y19NvwwN7You6PIiRomQbQRMvGyeXXsMHvoGH79u28+uqrZGRkYDabfR0CodZyqaqCL45XUGvrmTs6p1s0tqxpswTcqvANtXJ7tPRDXISBSJNeFkOGOX/adrxHz2fQKej1Cg6XSqRJUFRlo9buwtCo7xBp0vPVyQp2n6rko0MlbD1S6muh82qLKCjSb8OE85kGf5cnNL84USaDhnDC76Bh06ZNwbQjYGgyzHU9dj5NQVqg0ym+9WqDQcHp1kZn6xSF2AgDMzOlsFO4U9BDRWM6RZuwqlc0Cer6xg6eBqcWSHs91TurYuvRMnbmVxJp0hNp0tPg9PhEo+aOTpF+GyZ4Mw3+Bg0jkqOJagw8F08aEkzTJCGE30FDqLdXeskrraO4yt6JCRPdRwWUJhLTAAmRJmItBpwewYJxg7n/qtGymCzMiY8wUFzd8X7dRRVasOClxuaixuZCp+D758XhVn1zUy4UJLs6e5D02zDCm2nwd3nCZNBx6chkPj1S6ss8S/o//a4x2+MRzS6YPUXTIkiTXsegWDPRFiOJUSauGJsiL7wSFKV3v26qAJ13RGsjU4bFM3dMiu+xV5BM+m340dlMA8AVY1M4W2Pn0JnaYJklCTH6XdCg1+vws/g3sOdVwGTUEWHUJKVtjYp/cry1xEu1rWeLIFvDIwSJkSYSo0zMG5vC0zdNJmd4IjMymhc6Sr8NP+yuzmUaAOaMTgbgX3nlQbFJEnr0uz6ZkSnRxEcaOVfbs5roep0OBYWUGDMoMG1YAjdPT5PiOBIfQ+JMFFV1X9K8OwgBUWYDv/7OeHKGJ/p8U45llzjcjd0Tncg0pMRYGJkSzZcnyvnhnBHBMk0SQvS7oGHqsAR6tKDBhyDKbCDSrLWq3Tw9TbapSZpxprL3JXcVBawOrSCyaVAgx7JLvJkGf3UavFw8Iok3dxfjdGuidpL+Tb/7DbvdKufqgwsmEgAAGOBJREFUen7ymqIoDIrVWtRkalfSGqfren95QghtMuEfPznebNiVROLLNPipCOnlohEDsLk8HOiJKl9Jr9PvMg2//ehIr5zXYtRx6ahk5o1JkaldSev04N9or1bIhRj02vTV0zU2qfQoaYaji5mGqcPiATh0uobp0p/6Pf0u07DtyLkeP6dBp5AYZSIjKYqc9EQZMEhapScytwq0Od9Cp4BepxBl1vQYTpbJYUOS89i7mGlIjjETF2HkaEl9MMyShBhBv4xt2rSJ0aNHk5WVxeOPP97ieYfDwc0330xWVhYzZ86koKCgW+crqLB36/UdceEFWa9TiIswEmUySOU8SZu4PSpOtWfO5c0wKI3dlTo0P02KMjEkPkIqPUpapauZBkVRGD0whrySnhPVk/QeQQ0aPB4PK1eu5MMPPyQ3N5d169aRm5vbbJ+XXnqJhIQEjh8/zn333cfPfvazLp+vtNpKTyg0KMr5ORMDY8wMjrNIxUdJqzQ43ZTU2vn7vtNBP1fTBJdPZ6cxuzAoxszAOAtRJoOsu5G0Sld0GryMHBjN0ZI6hJB1Mv2doNY07Ny5k6ysLDIzMwFYsmQJGzZsaDb0asOGDaxatQqAG264gR//+MddVhe77IltgTC7GTo0xccLibUYuCRrAJeOTCYrJVrWMUh8eFRBvd1Nrd1FaZ2d/9t2gi2HS4N+Xu9XRggtUFAUBaNeawN+7PoJGHQ62VIpaRO724Ou8Waos4weFEPdV25Kah0MirMEwTpJqBDUoOH06dOkpaX5HqempvLVV1+1uY/BYCAuLo6KigoGDBjQbL81a9awZs0aAMrKylqc63hpHfYAphkUwGRQUFBwqQJVCHRAjMXIsKRIfrlgLNMzZP2CpLlvlpaWUVjZgKqqbDpUwp8/O9Ej47ANOoX4SCPRZj2VVhcmg67ZJMsZ6Um+tkpJeNHRtdOLw6ViMeq7dMM2amAMAIfP1sqgoZ8T1KChtVTVhQ7pzz4AK1asYMWKFQDk5OT4tjvcHj46VMLDGw5211wfs9LjqbW7Kalz0uD0YNSBKhTGDI7hV4vGNhPFkUia+ubkqdM4VWHl6S3H2F9UA0C02cBP5mXx6w8C39ljUEAoWnHjoFgLiqJwxZiBXD1+EAXlDTKrIGnz2nkhNpenU2qQTRk/NA69TmFvYVUzWXJJ/yOoQUNqaipFRUW+x8XFxQwZMqTVfVJTU3G73dTU1JCY2PHdkKoKKq0O1vwrnxf/dRJVaBfnekfX7uoUtAKgm3NS+dWicTy26QhfnazwDe+ZMiyep2+ajEGKl0jaobzOwfK/7Mbl0YLhK8ak8NA12aQPiCI5wcVP/3qi08c06BRunZHGsZI68isaqLW7cXlULEYdMRYjk9Piue2i4RRW2JoFCTMykgL99iT9mOoGFwmRpi69NtpsIHtwLLsLqgJslSTUCGrQMH36dPLy8sjPz2fo0KGsX7+eN954o9k+ixcv5tVXX+Wiiy7i7bff5oorrugwPaYKwZFzdfzmg8NsP65pno8ZFMOa23Kw6AUXPb6tRUGkEUiONTIg2sKMzEQEOqqsThKiTBh0oFd0zBmT7MsiSFldSVcoq3cw2CMYGGvm/itH8+0pQzHqtUDz2xPGwFJaDRwSLHoECgOijVw8IomTFTbK6xzMHpnMz64cjcmkR1UFewurOF5aj9ujYtDrmtXTzMrs6Xcr6U9UWB0kRXctaADISU9g3c5CXB7V5/OS/kdQgwaDwcCzzz7LVVddhcfj4Y477mDcuHE89NBD5OTksHjxYn7wgx9w2223kZWVRWJiIuvXr+/wuFaHmxWv7aa4Ucf/+ilD+c31E3xVvyceX9Rt26WsrqSr3JyTyo/mZjEsMbJFAPztCWP49uNjunRc6ZOSYFJR7+xWG+709ERe+aKAPaeqmJUps1z9laArQi5cuJCFCxc22/bII4/4frZYLLz11ludOuapigYcVTZMeh0PXjOW2y5KD4SpEkm3yRwQxS+vySbWYuxtUySSTlFpdTI9o+sB6eWjkomPNPLiv/Jl0NCP6ZM5JAEMirXwt7tmyYBBElJEmQ0yYJD0OTyqoKrBSVJU15cnoswGll2UzpbDJTy37TiHz9YG0EJJqNAng4Yok4H3772EKVKcRiKRSLpNdYMTVdCtoAFg+WWZXDEmhd9tOsqCP/yLd/YUB8hCSajQJwdWZSZHkRRt7m0zJBKJpF9QadUmAyd287oabTbw0rIc8krreXjDIX72ztfU2V0suzi9S/oPktCjT2YaJBKJRBI4KhqDhu5mGkDT2Rk1MIY/f28ac0Yns+q9XH6yfj8NzuCLnEmCjwwaJBKJJMypqG8MGrrRcnkhsRYja27L4f4rR/He12e45pntfHqkJGDHl/QOMmiQSCSSMKfS6gAgMQCZhqbodAo/vmIkr90xE0WBO1/dLQOHPk6frGmQSCQSSeAoa8w0JHZREbIjLhk5gPfuuYSb/vxv7nljH2/efREGnY680jpyz9Ty6RFtoFv2kFhuykmTLZshjAwaJBKJJIxxuD38Y99pxg6OxRBEJcdIk4GXlk3nume/4Jo/bsc7dkivU5iRnojZqGPb0TLe3Xua71+cztKZw2hwekiJNRNlNnCuxk602UBshJEamwub08PAWDM1NhdldQ4Gxlow6nXU2JzER5pIijJ1uviyzu6iuMpGbISRAdEmzIaWY8KFEJTUOqh3uEiOthAXGTot1kIIqhtclNc7SIm1YHN6KK93MDwpkpgAtYLLoEEikUjCmJe3F1BY2cBrP5gR9HMNjLXw1t0X8e7e01iMOi4blcyQuAjfH16b08NvNx1h7ZcFrP2yoFvnijLpiY80+UbG+/7L+UDCu82jChxulbI6R7NjxFgMvnkcqhAIAbU2F3VNZhzFWAzERRhpGp80PUfT8wC+YEmgHa/pzEYhBKJxH+0n78/e/S7c5t1L2+b2qFidrY97HhBtJj7SyOb7LutWJ4siWhszGeIMGDCA9PT0dvcpKysjOTm5ZwzyE2lTx3TXngEDBrBp06YAWtT583fkmxB6n3tr9AUboW/YWVZWxtixY3vVN6FvXjtDyZ5QsgUCa4+/184+GTT4Q05ODrt37+5tM5ohbeqYULMnWPSF99kXbIS+YWdfsNFLqNkaSvaEki3QO/bI7gmJRCKRSCR+IYMGiUQikUgkfqFftWrVqt42IlhMmzatt01ogbSpY0LNnmDRF95nX7AR+oadfcFGL6FmayjZE0q2QM/b029rGiQSiUQikQQWuTwhkUgkEonEL/pk0LBp0yZGjx5NVlYWjz/+eIvnHQ4HN998M1lZWcycOZOCggLfc4899hhZWVmMHj2ajz76qMdseuqpp8jOzmbixInMmzePU6dO+Z7T6/VMnjyZyZMns3jx4h6xZ+3atSQnJ/vO++KLL/qee/XVVxk5ciQjR47k1VdfDYg9/th03333+ewZNWoU8fHxvueC8RkFi1D0z87a2NP+2hUbe8OHO2tjKPt0d/y0p21pzx97wx4vb7/9NoqiBLWDwR9b3nzzTbKzsxk3bhz/8R//ETRbABB9DLfbLTIzM8WJEyeEw+EQEydOFIcOHWq2z5/+9Cdx1113CSGEWLdunbjpppuEEEIcOnRITJw4UdjtdnHy5EmRmZkp3G53j9j06aefCqvVKoQQ4rnnnvPZJIQQUVFR3bahs/a88sorYuXKlS1eW1FRITIyMkRFRYWorKwUGRkZorKyskdsasozzzwjbr/9dt/jQH9GwSIU/bMrNvakv3bVxp724a7Y2JRQ8unu+Glv2NKeP/aGPUIIUVtbKy699FIxc+ZMsWvXrl6z5dixY2Ly5Mk+Hy8pKQmKLV76XKZh586dZGVlkZmZiclkYsmSJWzYsKHZPhs2bGDZsmUA3HDDDXzyyScIIdiwYQNLlizBbDaTkZFBVlYWO3fu7BGb5s6dS2RkJACzZs2iuLi42+ftjj1t8dFHHzF//nwSExNJSEhg/vz5ARGk6axN69at45Zbbun2eXuaUPTPrtjYk/7aVRvbIlg+3F0bQ8mnu+OnvWFLKF4/H3zwQR544AEsFkuv2vLCCy+wcuVKEhISAEhJSQmaPdAHlydOnz5NWlqa73FqaiqnT59ucx+DwUBcXBwVFRV+vTZYNjXlpZdeYsGCBb7HdrudnJwcZs2axT/+8Y8es+edd95h4sSJ3HDDDRQVFXXpvQTaJoBTp06Rn5/PFVdc4dsW6M8oWISif3bFxqYE21+7Y2NP+nBXbYTQ8+nu+Glv2NKUC/2xN+zZt28fRUVFXHPNNUGzw19bjh07xrFjx5g9ezazZs0Kuupon5s90Vqke6GOdlv7+PPaYNnk5fXXX2f37t189tlnvm2FhYUMGTKEkydPcsUVVzBhwgRGjBgRVHuuvfZabrnlFsxmM88//zzLli3j008/DYnPaP369dxwww3o9eeHxQT6MwoWoeifFxJq/tpVG3vah7tio5dQ8+nu+Glv2OKlNX/saXtUVeW+++5j7dq1QbPBX1sA3G43eXl5bNu2jeLiYi699FIOHjzYrH4mkPS5TENqaqrvjgKguLiYIUOGtLmP2+2mpqaGxMREv14bLJsAtmzZwq9//Ws2btyI2Wz2bffum5mZyZw5c9i3b1/Q7UlKSvLZsHz5cvbs2dOp9xIMm7ysX7++RRo30J9RsAhF/+yKjdBz/tpVG3vah7tio5dQ8+nu+Glv2AJt+2NP21NXV8fBgweZM2cO6enp7Nixg8WLFwelGNLf39N1112H0WgkIyOD0aNHk5eXF3BbfAS1YiIIuFwukZGRIU6ePOkrDDl48GCzfZ599tlmBTw33nijEEKIgwcPNis0y8jICEihmT827d27V2RmZopjx441215ZWSnsdrsQQoiysjKRlZXVbjFVoOw5c+aM7+d3331XzJw5UwihFZGlp6eLyspKUVlZKdLT00VFRUW37PHXJiGEOHLkiBg+fLhQVdW3LRifUbAIRf/sio096a9dtbGnfbgrNgoRmj7dHT/tDVva8sfesqcpl19+edAKIf2x5cMPPxTf+973hBCaL6Wmpory8vKg2COEEH0uaBBCiPfff1+MHDlSZGZmikcffVQIIcSDDz4oNmzYIIQQwmaziRtuuEGMGDFCTJ8+XZw4ccL32kcffVRkZmaKUaNGiQ8++KDHbJo3b55ISUkRkyZNEpMmTRLXXnutEEKIL774QowfP15MnDhRjB8/Xrz44os9Ys/Pf/5zkZ2dLSZOnCjmzJkjDh8+7HvtSy+9JEaMGCFGjBghXn755YDY449NQgjx8MMPi5/97GfNXheszyhYhKJ/dtbGnvbXrtjYGz7cWRuFCF2f7o6f9rQtbfljb9nTlGAGDf7YoqqquO+++8TYsWPF+PHjxbp164JmixBCSEVIiUQikUgkftHnahokEolEIpH0DjJokEgkEolE4hcyaJBIJBKJROIXMmiQSCQSiUTiFzJokEgkEolE4hcyaJBIJBKJROIXMmgIYdLT0ykvLwfg4osv7mVrgsvatWs5c+ZMb5shCRCh4rsFBQWMHz++2bZVq1bx5JNPArBjxw5mzpzJ5MmTGTt2LKtWreoFKyU9Raj4JWhy0LfddpvvsdvtJjk52TfP4qmnnuIHP/iB7/m//vWvLFq0qMftvJA+N3siXPnyyy9724SgsnbtWsaPHx8UuV9J7xLKvrts2TLefPNNJk2ahMfj4ejRo71tkqSH6G2/jIqK4uDBg9hsNiIiIti8eTNDhw71PX/vvfeSk5PDF198wbhx4/jVr37FJ5980osWa4RdpqGgoIAxY8Zw5513Mn78eJYuXcqWLVuYPXs2I0eOZOfOnezcuZOLL76YKVOmcPHFF/suJGvXruXHP/6x71jXXHMN27Zta/NcP/zhD8nJyWHcuHE8/PDDvu1No93du3czZ84cACoqKrjyyiuZMmUKd911V7NhJdHR0b6fn3jiCaZPn87EiRN9xy0oKGDs2LEsX76ccePGceWVV2Kz2QA4fvw43/rWt5g0aRJTp07lxIkTbR6nLV5//XVmzJjB5MmTueuuu/B4PJw6dYqRI0dSXl6OqqpceumlfPzxx77PeNmyZb4JhA0NDQA88sgjTJ8+nfHjx7NixQqEELz99tvs3r2bpUuXMnnyZJ/dkuZI3+2a77ZHaWkpgwcPBkCv15Odnd3lY4Ur0i+77pcLFizg/fffB1qOTjcYDDz33HOsXLmSBx54gDvuuIPMzMwOjxl0gqo3GYLk5+cLvV4vvv76a+HxeMTUqVPF7bffLlRVFf/4xz/EddddJ2pqaoTL5RJCCLF582Zx/fXXCyGEeOWVV8TKlSt9x1q0aJHYunVrm+fy6t273W5x+eWXiwMHDgghhBg+fLgoKysTQgixa9cucfnllwshhLjnnnvE6tWrhRBC/POf/xSAb7+oqCghhBAfffSRWL58uVBVVXg8HrFo0SLx2Wef+d7Xvn37hBBC3HjjjeK1114TQggxY8YM8e677wohNGlYq9Xa5nFaIzc3V1xzzTXC6XQKIYT44Q9/KF599VUhhBAvvPCC+O53vyt+97vfiRUrVvg+Y0Bs375dCCHE7bffLp544olmn4kQQtx6661i48aNQojgS7H2B6Tvdt538/Pzxbhx45pte/jhh33+uHr1ahEfHy++/e1vi+eff17YbLZ2fweSlki/7Lxfes9/4MAB8d3vflfYbDYxadIksXXrVrFo0aJm+y1ZskRkZGT4ZpX0NmG5PJGRkcGECRMAGDduHPPmzUNRFCZMmEBBQQE1NTUsW7aMvLw8FEXB5XJ16Txvvvkma9aswe12c/bsWXJzc5k4cWKb+3/++ee8++67ACxatIiEhIQW+3z88cd8/PHHTJkyBYD6+nry8vIYNmwYGRkZTJ48GYBp06ZRUFBAXV0dp0+f5jvf+Q4AFoul3eNcdtllLc75ySefsGfPHqZPnw6AzWYjJSUFgDvvvJO33nqL559/nv379/tek5aWxuzZswG49dZbeeaZZ7j//vvZunUrv/vd72hoaKCyspJx48Zx7bXXduJTDW+k73bOd9sasezd/tBDD7F06VI+/vhj3njjDdatW9funa6kdaRfds4vvUycOJGCggLWrVvHwoULWzxfX1/P7t27cblclJWVkZqa6s/HFFTCMmhoOlZVp9P5Hut0OtxuNw8++CBz587l73//OwUFBb5Ul8FgQFVV32vtdnub58jPz+fJJ59k165dJCQk8P3vf9+3f9PjXHiMjubVCyH4xS9+wV133dVse0FBQbP3pdfrsdlsrc5jb+84be27bNkyHnvssRbPNTQ0UFxcDGgOHhMT0+r7UBQFu93Oj370I3bv3k1aWhqrVq1q9zOUtET6bud8NykpiaqqqmbbKisrycjI8D0eMWIEP/zhD1m+fDnJyclUVFSQlJT0/9u7f5DU4iiA41+4GWh/hyACCSka+kfkIpEUJdgS7VFUFGbSEFLkZhDRWFON/TMnFVrEIIKWEIpAKGho0aKhQKGSwMXeEO++J3JfFsWL985nPFcPvwvH6+F3fnDfzC1+kbp8X13+bmBggLm5OY6OjkgmkznXFhYWGB4eprq6GrfbTSAQeFfur/DfnWkoxMPDg3ogZWtrS42bTCZisRjZbJabmxtOTk40czw+PlJSUkJFRQV3d3dEIpGcPGdnZwCEQiE13tXVhd/vByASieQ97AD6+vrY2NggnU4DcHt7y/39veY6ysvLMRqN7O3tAZDJZHh+fn5XHpvNRjAYVK+nUikSiQQAHo+HoaEhFhcXcTgc6neur6+JRqPA66zOarWqP+aqqirS6TTBYFD9fFlZGU9PT5r3IQojtZurtLSUmpoa9QBZKpVif38fq9UKQDgcVv8Erq6uUBSFyspKzTWJj5G61DY+Po7X61V3an46Pz8nHA7j8XiYnJwkkUhwcHDwZr6v9l/uNLxlfn6e0dFRVlZW6O3tVeOdnZ3qNlxLSwtms1kzR1tbG+3t7TQ3N1NXV6du1cNr9zgxMcHy8jIWiyUnPjg4iNlspru7m9ra2ry8drudy8tLOjo6gNeH4u7uLoqiaK7F5/PhdDrxer3odDoCgYBmnp9jh981NTWxtLSE3W4nm82i0+lYW1sjHo9zenrK8fExiqIQCoXY3Nykp6eHxsZGtre3cTqdNDQ04HK5MBgMOBwOWltbMZlM6rgDYGxsjKmpKfR6PdFoFL1er3k/QpvUbr6dnR2mp6eZnZ1V11pfX6/md7vdGAwGioqK8Pv9f1yP+BipS21Go5GZmZmc2MvLCy6Xi9XVVXX8sb6+zsjICLFYjOLi4j/m/Eryamzx6eLxOP39/VxcXPztpQghhPhEMp4QQgghREFkp+ETWCwWMplMTszn8+XNqL67ZDKJzWbLix8eHsrBsH+U1K74jqQuvy9pGoQQQghREBlPCCGEEKIg0jQIIYQQoiDSNAghhBCiINI0CCGEEKIg0jQIIYQQoiA/ALhuzUjOOQ1pAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import seaborn as sns\n",
+ "matplotlib.rcParams['lines.markeredgewidth'] = 0\n",
+ "pal = sns.color_palette('Blues')\n",
+ "g = sns.pairplot(combined_interests.iloc[:, 1:], \n",
+ " markers='o', palette=pal, \n",
+ " diag_kind='kde', kind='reg')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Rough confirmation that the Ex-pats behave more like US than like MX."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 141,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "US R=9.437E-01 (p=0.000E+00)\n",
+ "MX R=7.355E-01 (p=3.327E-245)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from scipy.stats import pearsonr\n",
+ "countries = ['US', 'MX']\n",
+ "for c in countries:\n",
+ " corr, pval = pearsonr(combined_interests.loc[:, '%s_%s'%(audience_var, c)],\n",
+ " combined_interests.loc[:, '%s_expat'%(audience_var)])\n",
+ " print('%s R=%.3E (p=%.3E)'%(c, corr, pval))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now that we have established a correlation among expat interests and US interests, we should actually define the assimilation metric and compute that."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# stolen from display_results.py (https://drive.google.com/file/d/1QzX4Re77H7PJrXk84qGHOB5RZ7FKjVzn)\n",
+ "\n",
+ "def global_score(target_file, dest_file, home_file, score_type_, nb_int):\n",
+ " \"\"\"\n",
+ " This function computes the assimilation score for a given target populations coming from some home population and\n",
+ " trying to assimilate to a certain dest population\n",
+ " :param target_file: File containing interests audiences for the target population\n",
+ " :param dest_file: File containing interests audiences for the dest population\n",
+ " :param home_file: File containing interests audiences for the home population\n",
+ " :param score_type_: String indicating if the score should be computed using subtraction or division\n",
+ " :param nb_int: Number of interests to consider\n",
+ " :return: scores: the per-interest assimilation scores for each most german interests\n",
+ " nb_target: the size of the target population\n",
+ " \"\"\"\n",
+ " target_data = pd.read_csv(target_file, index_col=0)\n",
+ " dest_data = pd.read_csv(dest_file, index_col=0)\n",
+ " home_data = pd.read_csv(home_file, index_col=0)\n",
+ "\n",
+ " # Remove hand-picked interests\n",
+ " target_audience = target_data['audience'][0:3000]\n",
+ " dest_audience = dest_data['audience'][0:3000]\n",
+ " home_audience = home_data['audience'][0:3000]\n",
+ "\n",
+ " nb_target = target_audience[0]\n",
+ " nb_dest = dest_audience[0]\n",
+ " nb_home = home_audience[0]\n",
+ "\n",
+ " # Remove erroneous audiences\n",
+ " target_errors = (target_audience != nb_target)\n",
+ " dest_errors = (dest_audience != nb_dest)\n",
+ " home_errors = (home_audience != nb_home)\n",
+ " errors = target_errors | dest_errors | home_errors\n",
+ " target_audience = target_audience[errors]\n",
+ " dest_audience = dest_audience[errors]\n",
+ " home_audience = home_audience[errors]\n",
+ "\n",
+ " # Select a certain number of interests\n",
+ " random.seed(0)\n",
+ " int_ind = random.sample(list(dest_audience.index), nb_int)\n",
+ " int_ind = np.sort(int_ind)\n",
+ "\n",
+ " target_audience = target_audience[int_ind]\n",
+ " dest_audience = dest_audience[int_ind]\n",
+ " home_audience = home_audience[int_ind]\n",
+ "\n",
+ " # Compute activity level\n",
+ " target_nb_interests = target_audience.shape[0]\n",
+ " total_nb_interested_target = target_audience.sum(0)\n",
+ " dest_nb_interests = dest_audience.shape[0]\n",
+ " total_nb_interested_dest = dest_audience.sum(0)\n",
+ " home_nb_interests = home_audience.shape[0]\n",
+ " total_nb_interested_home = home_audience.sum(0)\n",
+ "\n",
+ " # Compute interest ratios\n",
+ " target_ir = target_audience.values / float(total_nb_interested_target)\n",
+ " dest_ir = dest_audience.values / float(total_nb_interested_dest)\n",
+ " home_ir = home_audience.values / float(total_nb_interested_home)\n",
+ "\n",
+ " # Keep only 'dest' interests\n",
+ " dest_indexes = dest_ir > home_ir\n",
+ " g_dest_ir = dest_ir[dest_indexes]\n",
+ " g_home_ir = home_ir[dest_indexes]\n",
+ " g_target_ir = target_ir[dest_indexes]\n",
+ "\n",
+ " # Keep only 'very dest' interests\n",
+ " if score_type_ == '-':\n",
+ " dest_home_perc = np.percentile(g_dest_ir - g_home_ir, TOP_PERC)\n",
+ " very_dest_indexes = (g_dest_ir - g_home_ir) > dest_home_perc\n",
+ " else:\n",
+ " dest_home_perc = np.percentile(g_dest_ir / g_home_ir, TOP_PERC)\n",
+ " very_dest_indexes = ((g_dest_ir / g_home_ir) > dest_home_perc)\n",
+ "\n",
+ " vg_dest_ir = g_dest_ir[very_dest_indexes]\n",
+ " vg_target_ir = g_target_ir[very_dest_indexes]\n",
+ "\n",
+ " # Compute scores\n",
+ " if score_type_ == '-':\n",
+ " scores = vg_target_ir - vg_dest_ir\n",
+ " else:\n",
+ " scores = vg_target_ir / vg_dest_ir\n",
+ "\n",
+ " return scores, nb_target"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def interest_ratio():\n",
+ " pass"
+ ]
}
],
"metadata": {
diff --git a/src/data_processing/get_top_k_interest_query.py b/src/data_processing/get_top_k_interest_query.py
index 7ea7dd6..2676232 100644
--- a/src/data_processing/get_top_k_interest_query.py
+++ b/src/data_processing/get_top_k_interest_query.py
@@ -11,8 +11,8 @@
def main():
parser = ArgumentParser()
# parser.add_argument('--interest_count_file', default='data/all_FB_interests_2016/all_FB_interests_2016.csv')
- parser.add_argument('--interest_sorted_file', default='data/top_interests_complete.json')
- parser.add_argument('--query_file', default='data/queries/US_MX_native_interests.json')
+ parser.add_argument('--interest_sorted_file', default='data/top_interests_complete_clean.json')
+ parser.add_argument('--query_file', default='data/queries/hispanic_MX_expats.json')
parser.add_argument('--top_k', default=3000)
args = parser.parse_args()
# interest_count_file = args.interest_count_file
@@ -38,7 +38,6 @@ def main():
## write
out_file = query_file.replace('.json', '_top_%d_interest.json'%(top_k))
- print(out_file)
json.dump(query, open(out_file, 'w'), indent=4, encoding='latin1')
if __name__ == '__main__':
diff --git a/src/data_processing/mine_facebook_audience.py b/src/data_processing/mine_facebook_audience.py
index 909312a..373ab1f 100644
--- a/src/data_processing/mine_facebook_audience.py
+++ b/src/data_processing/mine_facebook_audience.py
@@ -17,15 +17,18 @@ def main():
# parser.add_argument('--query_file', default='data/hispanic_expat_lang_age.json')
# parser.add_argument('--query_file', default='data/hispanic_lang_age.json')
# parser.add_argument('--query_file', default='data/US_MX_native_interests.json')
- parser.add_argument('--query_file', default='data/queries/US_MX_native_interests_top_3000_interest_new.json')
+# parser.add_argument('--query_file', default='data/queries/US_MX_native_interests_top_3000_interest_new.json')
+ parser.add_argument('--query_file', default='data/queries/hispanic_MX_expats_top_3000_interest.json')
+ parser.add_argument('--interest_file', default='data/top_interests_complete_names.csv')
parser.add_argument('--out_dir', default='data/query_results/')
+ parser.add_argument('--response_file', default=None)
args = parser.parse_args()
query_file = args.query_file
out_dir = args.out_dir
+ response_file = args.response_file
## TEST: try multiple queries at once
extra_auth_files = ['data/facebook_auth_ingmar.csv']
-# extra_auth_files = ['data/facebook_auth.csv',]*2
## temporary: remove interest IDs that we've already queried
# response_file = 'dataframe_collecting_1527334686.csv'
@@ -39,9 +42,7 @@ def main():
# print(tmp_query_file)
# json.dump(leftover_query, open(tmp_query_file, 'w'), indent=4)
- query_and_write(query_file, out_dir, extra_auth_files=extra_auth_files)
-# query_and_write(query_file, out_dir, extra_auth_files=extra_auth_files)
-# query_and_write(query_file, out_dir, extra_auth_files=extra_auth_files, response_file=response_file)
+ query_and_write(query_file, out_dir, extra_auth_files=extra_auth_files, response_file=response_file)
## TODO: periodically copy response to server
## so we can tell when something goes
## wrong even if we're not on the same machine