Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
master_project_JLU2018/call_peaks.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
348 lines (254 sloc)
12.7 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
call_peaks uses the uncontinuous score from a bigWig file to estimate peaks | |
@author: Anastasiia Petrova | |
@contact: anastasiia.petrova(at)mpi-bn.mpg.de | |
""" | |
import argparse | |
import sys | |
import os | |
import re | |
import time | |
import multiprocessing | |
import logging | |
import subprocess | |
from Bio import SeqIO | |
import Bio.SeqIO.FastaIO as bio | |
import numpy as np | |
from collections import defaultdict | |
from scipy import stats | |
import pyBigWig | |
from statsmodels.sandbox.stats.multicomp import multipletests #for bonfferoni | |
import matplotlib.pyplot as plt | |
import random | |
import textwrap | |
logger = logging.getLogger('call_peaks') | |
logger.setLevel(logging.INFO) | |
formatter = logging.Formatter("%(asctime)s : %(message)s", "%Y-%m-%d %H:%M") | |
def parse_args(): | |
parser = argparse.ArgumentParser(prog = '', description = textwrap.dedent(''' | |
This script produces a file with peaks in .bed format from the file with scores in .bigWig format. | |
'''), epilog='That is what you need to make this script work for you. Enjoy it') | |
required_arguments = parser.add_argument_group('required arguments') | |
required_arguments.add_argument('--bigwig', help='a bigWig-file with scores', required=True) | |
required_arguments.add_argument('--bed', help='provide a file with peaks in .bed format', required=True) | |
#all other arguments are optional | |
parser.add_argument('--output_directory', default='output', const='output', nargs='?', help='output directory, by default ./output/') | |
parser.add_argument('--window_length', default='100', type=int, help='enter the length for a window, by defauld 100 bp') | |
parser.add_argument('--threshold', default=0.3, type=float, help='enter the threshold for peaks searching, by defauld 0.3') | |
parser.add_argument('--silent', action='store_true', help='while working with data write the information only into ./call_peaks_log.txt') | |
args = parser.parse_args() | |
return args | |
def check_directory(directory): | |
if not os.path.exists(directory): | |
os.makedirs(directory) | |
#logger.info('a new directory ' + directory + ' was created') | |
print('a new directory ' + directory + ' was created') | |
#if there are chars that are not allowed, they will be replaced with '_', to the possibly invalid names there will be added '_' at the beginning of the name | |
def check_name(name_to_test): | |
badchars= re.compile(r'[^A-Za-z0-9_. ]+|^\.|\.$|^ | $|^$') | |
badnames= re.compile(r'(aux|com[1-9]|con|lpt[1-9]|prn)(\.|$)') | |
#replace all the chars that are not allowed with '_' | |
name = badchars.sub('_', name_to_test) | |
#check for the reserved by the os names | |
if badnames.match(name): | |
name = '_' + name | |
return name | |
#check if the bw score is already saved, if so check if it is bigger than the new one | |
def save_bw_score(key_for_bed_dict, matches_dict, bw_score, moods_score, which_score): | |
if np.isnan(bw_score): bw_score = 0.0 | |
#bw_score = moods_score * bw_score #apply moods score as well | |
if key_for_bed_dict in matches_dict: | |
if which_score == "mean": | |
#save the mean of both scores | |
matches_dict[key_for_bed_dict] = np.mean([matches_dict[key_for_bed_dict], bw_score]) | |
elif which_score == "greater": | |
#save the biggest of scores | |
if matches_dict[key_for_bed_dict] < bw_score: | |
matches_dict[key_for_bed_dict] = bw_score | |
else: | |
matches_dict[key_for_bed_dict] = bw_score | |
return matches_dict | |
def remove_file(file): | |
if os.path.isfile(file): | |
os.remove(file) | |
def clean_directory(cleans, output_directory, motif): | |
for clean in cleans: | |
if clean == 'all' or clean == 'cut_motifs': | |
remove_file(motif) | |
#the output_merge.fa will be deleted after processing of the multiprocessing | |
def tool_make_output(motif, genome, output_directory, cleans, p_value, bed_dictionary, moods_bg, condition1, condition2, global_mean, global_std, which_score): | |
standard_moods_bg = 0.25, 0.25, 0.25, 0.25 | |
control_dict = {} | |
overexpression_dict = {} | |
differences = [] | |
control_dict, overexpression_dict, differences = call_moods(motif, genome, output_directory, p_value, standard_moods_bg, condition2, condition1, control_dict, overexpression_dict, differences, which_score) | |
#make arrays of the dictionaries | |
control_array = [] | |
overexpression_array = [] | |
for key in control_dict: | |
control_array.append(control_dict[key]) | |
overexpression_array.append(overexpression_dict[key]) | |
motif_name = motif.replace(output_directory, '') | |
motif_name = motif_name.replace('/', '') | |
#make the wilcoxon signed-rank test | |
my_wilcoxon_pvalue, direction, differences, differences_normalized, motif_std = my_wilcoxon(condition2, condition1, control_array, overexpression_array, global_mean, global_std, motif_name, correction = False) | |
clean_directory(cleans, output_directory, motif) | |
return my_wilcoxon_pvalue, direction, differences, differences_normalized, motif_std | |
def make_name_from_path(full_path, output_directory, ending): | |
return os.path.join(output_directory, get_name_from_path(full_path) + ending) | |
def get_name_from_path(full_path): | |
return os.path.splitext(os.path.basename(full_path))[0] | |
def compute_differences(bed_dictionary, condition1, condition2): | |
logger.info("the mean and standard deviation for the differences in peaks will be count now") | |
bw_cond1 = pyBigWig.open(condition1) | |
bw_cond2 = pyBigWig.open(condition2) | |
global_differences = {} #dict | |
differences_array = [] #to compute the mean at the end | |
cond1_array = [] | |
cond2_array = [] | |
for header in bed_dictionary: | |
header_splitted = re.split(r':', header) | |
chromosom = header_splitted[0] | |
positions = re.split(r'-', header_splitted[-1]) | |
#compute the background difference for this peak | |
bw_global_score_cond1 = np.mean(np.nan_to_num(np.array(list(bw_cond1.values(chromosom, int(positions[0]), int(positions[1])))))) | |
bw_global_score_cond2 = np.mean(np.nan_to_num(np.array(list(bw_cond2.values(chromosom, int(positions[0]), int(positions[1])))))) | |
bw_global_difference = bw_global_score_cond2 - bw_global_score_cond1 | |
global_differences[header] = bw_global_difference | |
cond1_array.append(bw_global_score_cond1) | |
cond2_array.append(bw_global_score_cond2) | |
differences_array.append(bw_global_difference) | |
bw_cond1.close() | |
bw_cond2.close() | |
mu = np.mean(differences_array) | |
std = np.std(differences_array, ddof = 1) | |
mu_cond1 = np.mean(cond1_array) | |
mu_cond2 = np.mean(cond2_array) | |
cond1_name = get_name_from_path(condition1) | |
cond2_name = get_name_from_path(condition2) | |
return mu, std | |
def is_fasta(check_fasta): | |
if not os.path.isfile(check_fasta): | |
#logger.info('there is no file with genome, the exit is forced') | |
print('there is no file with genome, the exit is forced') | |
sys.exit() | |
else: | |
# modified code from https://stackoverflow.com/questions/44293407/how-can-i-check-whether-a-given-file-is-fasta | |
with open(check_fasta, "r") as handle: | |
fasta = SeqIO.parse(handle, "fasta") | |
return any(fasta) # False when `fasta` is empty, i.e. wasn't a FASTA file | |
def check_existing_input_files(args): | |
if not is_fasta(args.genome): | |
#logger.info('please make sure the input genome file has a fasta format') | |
print('please make sure the input genome file has a fasta format') | |
sys.exit() | |
if not os.path.isfile(args.condition1) or not os.path.isfile(args.condition2): | |
#logger.info('please make sure the both files with conditions to compare exist') | |
print('please make sure the both files with conditions to compare exist') | |
sys.exit() | |
if not args.condition1.endswith('.bw') or not args.condition2.endswith('.bw'): | |
#logger.info('please check if the both conditions files are in bigWig format') | |
print('please check if the both conditions files are in bigWig format') | |
sys.exit() | |
#check if the file with motifs exists | |
if not os.path.isfile(args.motifs): | |
#logger.info('there is no file with motifs, the exit is forced') | |
print('there is no file with motifs, the exit is forced') | |
sys.exit() | |
#check if the bed file exists | |
if not os.path.isfile(args.bed_file): | |
#logger.info('there is no such bed file ' + args.bed_file + ', the exit is forced') | |
print('there is no such bed file ' + args.bed_file + ', the exit is forced') | |
sys.exit() | |
def make_bed_dictionary(bed_file): | |
bed_dictionary = {} | |
with open(bed_file) as read_bed_file: | |
for bed_line in read_bed_file: | |
bed_line_array = re.split(r'\t', bed_line.rstrip('\n')) | |
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one | |
key = bed_line_array[0] + ":" + bed_line_array[1] + "-" + bed_line_array[2] | |
value = [] | |
for i in range(3, len(bed_line_array)): | |
value.append(bed_line_array[i]) | |
bed_dictionary[key] = value | |
else: #this is not a bed file, force exit | |
logger.info('please make sure the input bed file has a right format, the problem occured on the line ' + bed_line) | |
sys.exit() | |
read_bed_file.close() | |
return bed_dictionary | |
def find_window(bed_file): | |
#chromosom = 1 #start with the first chromosom | |
window_length = 0 | |
with open(bed_file) as read_bed_file: | |
for bed_line in read_bed_file: | |
bed_line_array = re.split(r'\t', bed_line.rstrip('\n')) | |
if bed_line_array[1].isdigit() and bed_line_array[2].isdigit() and int(bed_line_array[1]) <= int(bed_line_array[2]): #in the real bedfile the second column is a start position, and the third column is an end position, so we are checking if these are integers and if the start position is smaller than the end one | |
#if chromosom == int(bed_line_array[0]): | |
peak_len = int(bed_line_array[2]) - int(bed_line_array[1]) | |
if peak_len > window_length: | |
window_length = peak_len | |
print(window_length) | |
def find_peaks_from_bw(bed_dictionary, bw_file): | |
footprint_count = 1 | |
bw_open = pyBigWig.open(bw_file) | |
for header in bed_dictionary: | |
header_splitted = re.split(r':', header) | |
chromosom = header_splitted[0] | |
positions = re.split(r'-', header_splitted[-1]) | |
scores_in_peak = np.nan_to_num(np.array(list(bw_open.values(chromosom, int(positions[0]), int(positions[1]))))) #save the scores to an array | |
bw_peak_background = np.mean(scores_in_peak) #find the mean of all scores within one peak | |
all_footprints = {} | |
check_position = 0 | |
for i in range(len(scores_in_peak)): | |
position = i + 1 #calculate the relative position for a score | |
score = scores_in_peak[i] #extract one score from the list | |
if score >= bw_peak_background: | |
if position != (check_position + 1): | |
print() | |
print("new footprint ", footprint_count) | |
start_pos = position #save current position as start for this footprint <------------------------------ bebe | |
footprint_name = "footprint_" + str(footprint_count) | |
all_footprints[footprint_name] = all_footprints.get(footprint_name, {}) | |
all_footprints[footprint_name] = {'chromosom': chromosom, 'start': start_pos, 'end': "todo"} #<-------------------------- bebe | |
footprint_count += 1 | |
check_position = position | |
#save the position where this score is and start to write a footprint | |
#footprint[position] = score | |
#print(position, footprint[position]) | |
check_position = position | |
#print(footprint) | |
print(all_footprints) | |
def main(): | |
start = time.time() | |
peaks_bed_file = "./small_peaks.bed" | |
#peaks_bed_file = "./control_peaks.bed" | |
#find_window(peaks_bed_file) | |
#bed_dictionary = make_bed_dictionary(peaks_bed_file) | |
bed_dictionary = {} | |
bed_dictionary["chr1:3062743-3063132"] = ["control1"] | |
bw_file = "./control_footprints.bw" | |
find_peaks_from_bw(bed_dictionary, bw_file) | |
#args = parse_args() | |
#check_existing_input_files(args) | |
#check if there is an existing directory that user gave as input, otherwise create this directory from the path provided from the user | |
#check_directory(args.output_directory) | |
#fh = logging.FileHandler(os.path.join(args.output_directory, "call_peaks_log.txt")) | |
#fh.setLevel(logging.INFO) | |
#fh.setFormatter(formatter) | |
#logger.addHandler(fh) | |
#ch = logging.StreamHandler() | |
#ch.setLevel(logging.INFO) | |
#ch.setFormatter(formatter) | |
#logger.addHandler(ch) | |
#if user do not want to see the information about the status of jobs, remove the handler, that writes to the terminal | |
#if args.silent: | |
# logger.removeHandler(ch) | |
#logger.info("call_peaks.py was called using these parameters:") | |
#logger.info(vars(args)) | |
#blablablaaaa | |
#logger.info("call_peaks needed %s seconds to generate the output" % (time.time() - start)) | |
for handler in logger.handlers: | |
handler.close() | |
logger.removeFilter(handler) | |
if __name__ == "__main__": | |
main() |