Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
multimodalR/man/getClassifications.Rd
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
55 lines (48 sloc)
1.77 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% Generated by roxygen2: do not edit by hand | |
% Please edit documentation in R/evaluate.R | |
\name{getClassifications} | |
\alias{getClassifications} | |
\title{getClassifications} | |
\usage{ | |
getClassifications(modality, validationData, outputs) | |
} | |
\arguments{ | |
\item{modality}{numerical, for which modality the classification is calculated, 1 for unimodal, | |
2 for bimodal,...} | |
\item{validationData}{The validationData behind the simulated gene expression data frame} | |
\item{outputs}{list of named outputs} | |
} | |
\value{ | |
a classification data frame that contains the number of | |
FN, FP, TN and TP | |
} | |
\description{ | |
Returns the numbers of TN (TRUE Negative),TP (TRUE Positive), | |
FN (FALSE Negative) and FP (FALSE Positive) for each of the algorithm's | |
formatted outputs. | |
} | |
\details{ | |
TN (TRUE Negative): validationData: unimodal, assigned scenario: unimodal | |
TP (TRUE Positive): validationData: bimodal, assigned scenario: bimodal | |
FN (FALSE Negative): validationData: bimodal, assigned scenario: unimodal | |
or | |
FN (FALSE Negative): validationData: unimodal/bimodal, | |
assigned scenario: more than bimodal | |
FP (FALSE Positive): validationData: unimodal, assigned scenario: bimodal | |
} | |
\examples{ | |
\dontrun{ | |
params <- newParams(nGenes = list("1"=10,"2"=list("gauss"= 10,"gamma"= 10))) | |
simulation <- simulateExpression(params= params,verbose=FALSE) | |
expression <- simulation$expressionData | |
validationData <- simulation$validationData | |
mclustOutput <- useMclust(expression = expression,verbose = FALSE) | |
hdbscanOutput <- useHdbscan(expression = expression,verbose = FALSE) | |
#getClassifications of one algorithm | |
getClassifications(modality=2,validationData, | |
outputs = list("mclust"=mclustOutput)) | |
#getClassifications of two or more algorithms | |
getClassifications(modality=2,validationData, | |
outputs = list("mclust"=mclustOutput,"HDBSCAN"=hdbscanOutput)) | |
} | |
} |