Skip to content
Permalink
mariux
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
/* basicmbr.cc -- Functions for loading, saving, and manipulating legacy MBR partition
data. */
/* Initial coding by Rod Smith, January to February, 2009 */
/* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
#define __STDC_LIMIT_MACROS
#define __STDC_CONSTANT_MACROS
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <fcntl.h>
#include <string.h>
#include <time.h>
#include <sys/stat.h>
#include <errno.h>
#include <iostream>
#include <algorithm>
#include "mbr.h"
#include "support.h"
using namespace std;
/****************************************
* *
* MBRData class and related structures *
* *
****************************************/
BasicMBRData::BasicMBRData(void) {
blockSize = SECTOR_SIZE;
diskSize = 0;
device = "";
state = invalid;
numHeads = MAX_HEADS;
numSecspTrack = MAX_SECSPERTRACK;
myDisk = NULL;
canDeleteMyDisk = 0;
// memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint32_t));
EmptyMBR();
} // BasicMBRData default constructor
BasicMBRData::BasicMBRData(string filename) {
blockSize = SECTOR_SIZE;
diskSize = 0;
device = filename;
state = invalid;
numHeads = MAX_HEADS;
numSecspTrack = MAX_SECSPERTRACK;
myDisk = NULL;
canDeleteMyDisk = 0;
// memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint32_t));
// Try to read the specified partition table, but if it fails....
if (!ReadMBRData(filename)) {
EmptyMBR();
device = "";
} // if
} // BasicMBRData(string filename) constructor
// Free space used by myDisk only if that's OK -- sometimes it will be
// copied from an outside source, in which case that source should handle
// it!
BasicMBRData::~BasicMBRData(void) {
if (canDeleteMyDisk)
delete myDisk;
} // BasicMBRData destructor
// Assignment operator -- copy entire set of MBR data.
BasicMBRData & BasicMBRData::operator=(const BasicMBRData & orig) {
int i;
memcpy(code, orig.code, 440);
diskSignature = orig.diskSignature;
nulls = orig.nulls;
MBRSignature = orig.MBRSignature;
blockSize = orig.blockSize;
diskSize = orig.diskSize;
numHeads = orig.numHeads;
numSecspTrack = orig.numSecspTrack;
canDeleteMyDisk = orig.canDeleteMyDisk;
device = orig.device;
state = orig.state;
myDisk = new DiskIO;
if (myDisk == NULL) {
cerr << "Unable to allocate memory in BasicMBRData::operator=()! Terminating!\n";
exit(1);
} // if
if (orig.myDisk != NULL)
myDisk->OpenForRead(orig.myDisk->GetName());
for (i = 0; i < MAX_MBR_PARTS; i++) {
partitions[i] = orig.partitions[i];
} // for
return *this;
} // BasicMBRData::operator=()
/**********************
* *
* Disk I/O functions *
* *
**********************/
// Read data from MBR. Returns 1 if read was successful (even if the
// data isn't a valid MBR), 0 if the read failed.
int BasicMBRData::ReadMBRData(const string & deviceFilename) {
int allOK = 1;
if (myDisk == NULL) {
myDisk = new DiskIO;
if (myDisk == NULL) {
cerr << "Unable to allocate memory in BasicMBRData::ReadMBRData()! Terminating!\n";
exit(1);
} // if
canDeleteMyDisk = 1;
} // if
if (myDisk->OpenForRead(deviceFilename)) {
allOK = ReadMBRData(myDisk);
} else {
allOK = 0;
} // if
if (allOK)
device = deviceFilename;
return allOK;
} // BasicMBRData::ReadMBRData(const string & deviceFilename)
// Read data from MBR. If checkBlockSize == 1 (the default), the block
// size is checked; otherwise it's set to the default (512 bytes).
// Note that any extended partition(s) present will be omitted from
// in the partitions[] array; these partitions must be re-created when
// the partition table is saved in MBR format.
int BasicMBRData::ReadMBRData(DiskIO * theDisk, int checkBlockSize) {
int allOK = 1, i, logicalNum = 3;
int err = 1;
TempMBR tempMBR;
if ((myDisk != NULL) && (myDisk != theDisk) && (canDeleteMyDisk)) {
delete myDisk;
canDeleteMyDisk = 0;
} // if
myDisk = theDisk;
// Empty existing MBR data, including the logical partitions...
EmptyMBR(0);
if (myDisk->Seek(0))
if (myDisk->Read(&tempMBR, 512))
err = 0;
if (err) {
cerr << "Problem reading disk in BasicMBRData::ReadMBRData()!\n";
} else {
for (i = 0; i < 440; i++)
code[i] = tempMBR.code[i];
diskSignature = tempMBR.diskSignature;
nulls = tempMBR.nulls;
for (i = 0; i < 4; i++) {
partitions[i] = tempMBR.partitions[i];
if (partitions[i].GetLengthLBA() > 0)
partitions[i].SetInclusion(PRIMARY);
} // for i... (reading all four partitions)
MBRSignature = tempMBR.MBRSignature;
ReadCHSGeom();
// Reverse the byte order, if necessary
if (IsLittleEndian() == 0) {
ReverseBytes(&diskSignature, 4);
ReverseBytes(&nulls, 2);
ReverseBytes(&MBRSignature, 2);
for (i = 0; i < 4; i++) {
partitions[i].ReverseByteOrder();
} // for
} // if
if (MBRSignature != MBR_SIGNATURE) {
allOK = 0;
state = invalid;
} // if
// Find disk size
diskSize = myDisk->DiskSize(&err);
// Find block size
if (checkBlockSize) {
blockSize = myDisk->GetBlockSize();
} // if (checkBlockSize)
// Load logical partition data, if any is found....
if (allOK) {
for (i = 0; i < 4; i++) {
if ((partitions[i].GetType() == 0x05) || (partitions[i].GetType() == 0x0f)
|| (partitions[i].GetType() == 0x85)) {
// Found it, so call a function to load everything from them....
logicalNum = ReadLogicalParts(partitions[i].GetStartLBA(), abs(logicalNum) + 1);
if (logicalNum < 0) {
cerr << "Error reading logical partitions! List may be truncated!\n";
} // if maxLogicals valid
DeletePartition(i);
} // if primary partition is extended
} // for primary partition loop
if (allOK) { // Loaded logicals OK
state = mbr;
} else {
state = invalid;
} // if
} // if
// Check to see if it's in GPT format....
if (allOK) {
for (i = 0; i < 4; i++) {
if (partitions[i].GetType() == UINT8_C(0xEE)) {
state = gpt;
} // if
} // for
} // if
// If there's an EFI GPT partition, look for other partition types,
// to flag as hybrid
if (state == gpt) {
for (i = 0 ; i < 4; i++) {
if ((partitions[i].GetType() != UINT8_C(0xEE)) &&
(partitions[i].GetType() != UINT8_C(0x00)))
state = hybrid;
if (logicalNum != 3)
cerr << "Warning! MBR Logical partitions found on a hybrid MBR disk! This is an\n"
<< "EXTREMELY dangerous configuration!\n\a";
} // for
} // if (hybrid detection code)
} // no initial error
return allOK;
} // BasicMBRData::ReadMBRData(DiskIO * theDisk, int checkBlockSize)
// This is a function to read all the logical partitions, following the
// logical partition linked list from the disk and storing the basic data in the
// partitions[] array. Returns last index to partitions[] used, or -1 times the
// that index if there was a problem. (Some problems can leave valid logical
// partition data.)
// Parameters:
// extendedStart = LBA of the start of the extended partition
// partNum = number of first partition in extended partition (normally 4).
int BasicMBRData::ReadLogicalParts(uint64_t extendedStart, int partNum) {
struct TempMBR ebr;
int i, another = 1, allOK = 1;
uint8_t ebrType;
uint64_t offset;
uint64_t EbrLocations[MAX_MBR_PARTS];
offset = extendedStart;
memset(&EbrLocations, 0, MAX_MBR_PARTS * sizeof(uint64_t));
while (another && (partNum < MAX_MBR_PARTS) && (partNum >= 0) && (allOK > 0)) {
for (i = 0; i < MAX_MBR_PARTS; i++) {
if (EbrLocations[i] == offset) { // already read this one; infinite logical partition loop!
cerr << "Logical partition infinite loop detected! This is being corrected.\n";
allOK = -1;
partNum -= 1;
} // if
} // for
EbrLocations[partNum] = offset;
if (myDisk->Seek(offset) == 0) { // seek to EBR record
cerr << "Unable to seek to " << offset << "! Aborting!\n";
allOK = -1;
}
if (myDisk->Read(&ebr, 512) != 512) { // Load the data....
cerr << "Error seeking to or reading logical partition data from " << offset
<< "!\nSome logical partitions may be missing!\n";
allOK = -1;
} else if (IsLittleEndian() != 1) { // Reverse byte ordering of some data....
ReverseBytes(&ebr.MBRSignature, 2);
ReverseBytes(&ebr.partitions[0].firstLBA, 4);
ReverseBytes(&ebr.partitions[0].lengthLBA, 4);
ReverseBytes(&ebr.partitions[1].firstLBA, 4);
ReverseBytes(&ebr.partitions[1].lengthLBA, 4);
} // if/else/if
if (ebr.MBRSignature != MBR_SIGNATURE) {
allOK = -1;
cerr << "EBR signature for logical partition invalid; read 0x";
cerr.fill('0');
cerr.width(4);
cerr.setf(ios::uppercase);
cerr << hex << ebr.MBRSignature << ", but should be 0x";
cerr.width(4);
cerr << MBR_SIGNATURE << dec << "\n";
cerr.fill(' ');
} // if
if ((partNum >= 0) && (partNum < MAX_MBR_PARTS) && (allOK > 0)) {
// Sometimes an EBR points directly to another EBR, rather than defining
// a logical partition and then pointing to another EBR. Thus, we skip
// the logical partition when this is the case....
ebrType = ebr.partitions[0].partitionType;
if ((ebrType == 0x05) || (ebrType == 0x0f) || (ebrType == 0x85)) {
cout << "EBR points to an EBR!\n";
offset = extendedStart + ebr.partitions[0].firstLBA;
} else {
// Copy over the basic data....
partitions[partNum] = ebr.partitions[0];
// Adjust the start LBA, since it's encoded strangely....
partitions[partNum].SetStartLBA(ebr.partitions[0].firstLBA + offset);
partitions[partNum].SetInclusion(LOGICAL);
// Find the next partition (if there is one)
if ((ebr.partitions[1].firstLBA != UINT32_C(0)) && (partNum < (MAX_MBR_PARTS - 1))) {
offset = extendedStart + ebr.partitions[1].firstLBA;
partNum++;
} else {
another = 0;
} // if another partition
} // if/else
} // if
} // while()
return (partNum * allOK);
} // BasicMBRData::ReadLogicalPart()
// Write the MBR data to the default defined device. This writes both the
// MBR itself and any defined logical partitions, provided there's an
// MBR extended partition.
int BasicMBRData::WriteMBRData(void) {
int allOK = 1;
if (myDisk != NULL) {
if (myDisk->OpenForWrite() != 0) {
allOK = WriteMBRData(myDisk);
cout << "Done writing data!\n";
} else {
allOK = 0;
} // if/else
myDisk->Close();
} else allOK = 0;
return allOK;
} // BasicMBRData::WriteMBRData(void)
// Save the MBR data to a file. This writes both the
// MBR itself and any defined logical partitions.
int BasicMBRData::WriteMBRData(DiskIO *theDisk) {
int i, j, partNum, next, allOK = 1, moreLogicals = 0;
uint64_t extFirstLBA = 0;
uint64_t writeEbrTo; // 64-bit because we support extended in 2-4TiB range
TempMBR tempMBR;
allOK = CreateExtended();
if (allOK) {
// First write the main MBR data structure....
memcpy(tempMBR.code, code, 440);
tempMBR.diskSignature = diskSignature;
tempMBR.nulls = nulls;
tempMBR.MBRSignature = MBRSignature;
for (i = 0; i < 4; i++) {
partitions[i].StoreInStruct(&tempMBR.partitions[i]);
if (partitions[i].GetType() == 0x0f) {
extFirstLBA = partitions[i].GetStartLBA();
moreLogicals = 1;
} // if
} // for i...
} // if
allOK = allOK && WriteMBRData(tempMBR, theDisk, 0);
// Set up tempMBR with some constant data for logical partitions...
tempMBR.diskSignature = 0;
for (i = 2; i < 4; i++) {
tempMBR.partitions[i].firstLBA = tempMBR.partitions[i].lengthLBA = 0;
tempMBR.partitions[i].partitionType = 0x00;
for (j = 0; j < 3; j++) {
tempMBR.partitions[i].firstSector[j] = 0;
tempMBR.partitions[i].lastSector[j] = 0;
} // for j
} // for i
partNum = FindNextInUse(4);
writeEbrTo = (uint64_t) extFirstLBA;
// Write logicals...
while (allOK && moreLogicals && (partNum < MAX_MBR_PARTS) && (partNum >= 0)) {
partitions[partNum].StoreInStruct(&tempMBR.partitions[0]);
tempMBR.partitions[0].firstLBA = 1;
// tempMBR.partitions[1] points to next EBR or terminates EBR linked list...
next = FindNextInUse(partNum + 1);
if ((next < MAX_MBR_PARTS) && (next > 0) && (partitions[next].GetStartLBA() > 0)) {
tempMBR.partitions[1].partitionType = 0x0f;
tempMBR.partitions[1].firstLBA = (uint32_t) (partitions[next].GetStartLBA() - extFirstLBA - 1);
tempMBR.partitions[1].lengthLBA = (uint32_t) (partitions[next].GetLengthLBA() + 1);
LBAtoCHS((uint64_t) tempMBR.partitions[1].firstLBA,
(uint8_t *) &tempMBR.partitions[1].firstSector);
LBAtoCHS(tempMBR.partitions[1].lengthLBA - extFirstLBA,
(uint8_t *) &tempMBR.partitions[1].lastSector);
} else {
tempMBR.partitions[1].partitionType = 0x00;
tempMBR.partitions[1].firstLBA = 0;
tempMBR.partitions[1].lengthLBA = 0;
moreLogicals = 0;
} // if/else
allOK = WriteMBRData(tempMBR, theDisk, writeEbrTo);
writeEbrTo = (uint64_t) tempMBR.partitions[1].firstLBA + (uint64_t) extFirstLBA;
partNum = next;
} // while
DeleteExtendedParts();
return allOK;
} // BasicMBRData::WriteMBRData(DiskIO *theDisk)
int BasicMBRData::WriteMBRData(const string & deviceFilename) {
device = deviceFilename;
return WriteMBRData();
} // BasicMBRData::WriteMBRData(const string & deviceFilename)
// Write a single MBR record to the specified sector. Used by the like-named
// function to write both the MBR and multiple EBR (for logical partition)
// records.
// Returns 1 on success, 0 on failure
int BasicMBRData::WriteMBRData(struct TempMBR & mbr, DiskIO *theDisk, uint64_t sector) {
int i, allOK;
// Reverse the byte order, if necessary
if (IsLittleEndian() == 0) {
ReverseBytes(&mbr.diskSignature, 4);
ReverseBytes(&mbr.nulls, 2);
ReverseBytes(&mbr.MBRSignature, 2);
for (i = 0; i < 4; i++) {
ReverseBytes(&mbr.partitions[i].firstLBA, 4);
ReverseBytes(&mbr.partitions[i].lengthLBA, 4);
} // for
} // if
// Now write the data structure...
allOK = theDisk->OpenForWrite();
if (allOK && theDisk->Seek(sector)) {
if (theDisk->Write(&mbr, 512) != 512) {
allOK = 0;
cerr << "Error " << errno << " when saving MBR!\n";
} // if
} else {
allOK = 0;
cerr << "Error " << errno << " when seeking to MBR to write it!\n";
} // if/else
theDisk->Close();
// Reverse the byte order back, if necessary
if (IsLittleEndian() == 0) {
ReverseBytes(&mbr.diskSignature, 4);
ReverseBytes(&mbr.nulls, 2);
ReverseBytes(&mbr.MBRSignature, 2);
for (i = 0; i < 4; i++) {
ReverseBytes(&mbr.partitions[i].firstLBA, 4);
ReverseBytes(&mbr.partitions[i].lengthLBA, 4);
} // for
}// if
return allOK;
} // BasicMBRData::WriteMBRData(uint64_t sector)
// Set a new disk device; used in copying one disk's partition
// table to another disk.
void BasicMBRData::SetDisk(DiskIO *theDisk) {
int err;
myDisk = theDisk;
diskSize = theDisk->DiskSize(&err);
canDeleteMyDisk = 0;
ReadCHSGeom();
} // BasicMBRData::SetDisk()
/********************************************
* *
* Functions that display data for the user *
* *
********************************************/
// Show the MBR data to the user, up to the specified maximum number
// of partitions....
void BasicMBRData::DisplayMBRData(void) {
int i;
cout << "\nDisk size is " << diskSize << " sectors ("
<< BytesToIeee(diskSize, blockSize) << ")\n";
cout << "MBR disk identifier: 0x";
cout.width(8);
cout.fill('0');
cout.setf(ios::uppercase);
cout << hex << diskSignature << dec << "\n";
cout << "MBR partitions:\n\n";
if ((state == gpt) || (state == hybrid)) {
cout << "Number Boot Start Sector End Sector Status Code\n";
} else {
cout << " Can Be Can Be\n";
cout << "Number Boot Start Sector End Sector Status Logical Primary Code\n";
UpdateCanBeLogical();
} //
for (i = 0; i < MAX_MBR_PARTS; i++) {
if (partitions[i].GetLengthLBA() != 0) {
cout.fill(' ');
cout.width(4);
cout << i + 1 << " ";
partitions[i].ShowData((state == gpt) || (state == hybrid));
} // if
cout.fill(' ');
} // for
} // BasicMBRData::DisplayMBRData()
// Displays the state, as a word, on stdout. Used for debugging & to
// tell the user about the MBR state when the program launches....
void BasicMBRData::ShowState(void) {
switch (state) {
case invalid:
cout << " MBR: not present\n";
break;
case gpt:
cout << " MBR: protective\n";
break;
case hybrid:
cout << " MBR: hybrid\n";
break;
case mbr:
cout << " MBR: MBR only\n";
break;
default:
cout << "\a MBR: unknown -- bug!\n";
break;
} // switch
} // BasicMBRData::ShowState()
/************************
* *
* GPT Checks and fixes *
* *
************************/
// Perform a very rudimentary check for GPT data on the disk; searches for
// the GPT signature in the main and backup metadata areas.
// Returns 0 if GPT data not found, 1 if main data only is found, 2 if
// backup only is found, 3 if both main and backup data are found, and
// -1 if a disk error occurred.
int BasicMBRData::CheckForGPT(void) {
int retval = 0, err;
char signature1[9], signature2[9];
if (myDisk != NULL) {
if (myDisk->OpenForRead() != 0) {
if (myDisk->Seek(1)) {
myDisk->Read(signature1, 8);
signature1[8] = '\0';
} else retval = -1;
if (myDisk->Seek(myDisk->DiskSize(&err) - 1)) {
myDisk->Read(signature2, 8);
signature2[8] = '\0';
} else retval = -1;
if ((retval >= 0) && (strcmp(signature1, "EFI PART") == 0))
retval += 1;
if ((retval >= 0) && (strcmp(signature2, "EFI PART") == 0))
retval += 2;
} else {
retval = -1;
} // if/else
myDisk->Close();
} else retval = -1;
return retval;
} // BasicMBRData::CheckForGPT()
// Blanks the 2nd (sector #1, numbered from 0) and last sectors of the disk,
// but only if GPT data are verified on the disk, and only for the sector(s)
// with GPT signatures.
// Returns 1 if operation completes successfully, 0 if not (returns 1 if
// no GPT data are found on the disk).
int BasicMBRData::BlankGPTData(void) {
int allOK = 1, err;
uint8_t blank[512];
memset(blank, 0, 512);
switch (CheckForGPT()) {
case -1:
allOK = 0;
break;
case 0:
break;
case 1:
if ((myDisk != NULL) && (myDisk->OpenForWrite())) {
if (!((myDisk->Seek(1)) && (myDisk->Write(blank, 512) == 512)))
allOK = 0;
myDisk->Close();
} else allOK = 0;
break;
case 2:
if ((myDisk != NULL) && (myDisk->OpenForWrite())) {
if (!((myDisk->Seek(myDisk->DiskSize(&err) - 1)) &&
(myDisk->Write(blank, 512) == 512)))
allOK = 0;
myDisk->Close();
} else allOK = 0;
break;
case 3:
if ((myDisk != NULL) && (myDisk->OpenForWrite())) {
if (!((myDisk->Seek(1)) && (myDisk->Write(blank, 512) == 512)))
allOK = 0;
if (!((myDisk->Seek(myDisk->DiskSize(&err) - 1)) &&
(myDisk->Write(blank, 512) == 512)))
allOK = 0;
myDisk->Close();
} else allOK = 0;
break;
default:
break;
} // switch()
return allOK;
} // BasicMBRData::BlankGPTData
/*********************************************************************
* *
* Functions that set or get disk metadata (CHS geometry, disk size, *
* etc.) *
* *
*********************************************************************/
// Read the CHS geometry using OS calls, or if that fails, set to
// the most common value for big disks (255 heads, 63 sectors per
// track, & however many cylinders that computes to).
void BasicMBRData::ReadCHSGeom(void) {
int err;
numHeads = myDisk->GetNumHeads();
numSecspTrack = myDisk->GetNumSecsPerTrack();
diskSize = myDisk->DiskSize(&err);
blockSize = myDisk->GetBlockSize();
partitions[0].SetGeometry(numHeads, numSecspTrack, diskSize, blockSize);
} // BasicMBRData::ReadCHSGeom()
// Find the low and high used partition numbers (numbered from 0).
// Return value is the number of partitions found. Note that the
// *low and *high values are both set to 0 when no partitions
// are found, as well as when a single partition in the first
// position exists. Thus, the return value is the only way to
// tell when no partitions exist.
int BasicMBRData::GetPartRange(uint32_t *low, uint32_t *high) {
uint32_t i;
int numFound = 0;
*low = MAX_MBR_PARTS + 1; // code for "not found"
*high = 0;
for (i = 0; i < MAX_MBR_PARTS; i++) {
if (partitions[i].GetStartLBA() != UINT32_C(0)) { // it exists
*high = i; // since we're counting up, set the high value
// Set the low value only if it's not yet found...
if (*low == (MAX_MBR_PARTS + 1))
*low = i;
numFound++;
} // if
} // for
// Above will leave *low pointing to its "not found" value if no partitions
// are defined, so reset to 0 if this is the case....
if (*low == (MAX_MBR_PARTS + 1))
*low = 0;
return numFound;
} // GPTData::GetPartRange()
// Converts 64-bit LBA value to MBR-style CHS value. Returns 1 if conversion
// was within the range that can be expressed by CHS (including 0, for an
// empty partition), 0 if the value is outside that range, and -1 if chs is
// invalid.
int BasicMBRData::LBAtoCHS(uint64_t lba, uint8_t * chs) {
uint64_t cylinder, head, sector; // all numbered from 0
uint64_t remainder;
int retval = 1;
int done = 0;
if (chs != NULL) {
// Special case: In case of 0 LBA value, zero out CHS values....
if (lba == 0) {
chs[0] = chs[1] = chs[2] = UINT8_C(0);
done = 1;
} // if
// If LBA value is too large for CHS, max out CHS values....
if ((!done) && (lba >= ((uint64_t) numHeads * numSecspTrack * MAX_CYLINDERS))) {
chs[0] = 254;
chs[1] = chs[2] = 255;
done = 1;
retval = 0;
} // if
// If neither of the above applies, compute CHS values....
if (!done) {
cylinder = lba / (uint64_t) (numHeads * numSecspTrack);
remainder = lba - (cylinder * numHeads * numSecspTrack);
head = remainder / numSecspTrack;
remainder -= head * numSecspTrack;
sector = remainder;
if (head < numHeads)
chs[0] = (uint8_t) head;
else
retval = 0;
if (sector < numSecspTrack) {
chs[1] = (uint8_t) ((sector + 1) + (cylinder >> 8) * 64);
chs[2] = (uint8_t) (cylinder & UINT64_C(0xFF));
} else {
retval = 0;
} // if/else
} // if value is expressible and non-0
} else { // Invalid (NULL) chs pointer
retval = -1;
} // if CHS pointer valid
return (retval);
} // BasicMBRData::LBAtoCHS()
// Look for overlapping partitions. Also looks for a couple of non-error
// conditions that the user should be told about.
// Returns the number of problems found
int BasicMBRData::FindOverlaps(void) {
int i, j, numProbs = 0, numEE = 0, ProtectiveOnOne = 0;
for (i = 0; i < MAX_MBR_PARTS; i++) {
for (j = i + 1; j < MAX_MBR_PARTS; j++) {
if ((partitions[i].GetInclusion() != NONE) && (partitions[j].GetInclusion() != NONE) &&
(partitions[i].DoTheyOverlap(partitions[j]))) {
numProbs++;
cout << "\nProblem: MBR partitions " << i + 1 << " and " << j + 1
<< " overlap!\n";
} // if
} // for (j...)
if (partitions[i].GetType() == 0xEE) {
numEE++;
if (partitions[i].GetStartLBA() == 1)
ProtectiveOnOne = 1;
} // if
} // for (i...)
if (numEE > 1)
cout << "\nCaution: More than one 0xEE MBR partition found. This can cause problems\n"
<< "in some OSes.\n";
if (!ProtectiveOnOne && (numEE > 0))
cout << "\nWarning: 0xEE partition doesn't start on sector 1. This can cause "
<< "problems\nin some OSes.\n";
return numProbs;
} // BasicMBRData::FindOverlaps()
// Returns the number of primary partitions, including the extended partition
// required to hold any logical partitions found.
int BasicMBRData::NumPrimaries(void) {
int i, numPrimaries = 0, logicalsFound = 0;
for (i = 0; i < MAX_MBR_PARTS; i++) {
if (partitions[i].GetLengthLBA() > 0) {
if (partitions[i].GetInclusion() == PRIMARY)
numPrimaries++;
if (partitions[i].GetInclusion() == LOGICAL)
logicalsFound = 1;
} // if
} // for
return (numPrimaries + logicalsFound);
} // BasicMBRData::NumPrimaries()
// Returns the number of logical partitions.
int BasicMBRData::NumLogicals(void) {
int i, numLogicals = 0;
for (i = 0; i < MAX_MBR_PARTS; i++) {
if (partitions[i].GetInclusion() == LOGICAL)
numLogicals++;
} // for
return numLogicals;
} // BasicMBRData::NumLogicals()
// Returns the number of partitions (primaries plus logicals), NOT including
// the extended partition required to house the logicals.
int BasicMBRData::CountParts(void) {
int i, num = 0;
for (i = 0; i < MAX_MBR_PARTS; i++) {
if ((partitions[i].GetInclusion() == LOGICAL) ||
(partitions[i].GetInclusion() == PRIMARY))
num++;
} // for
return num;
} // BasicMBRData::CountParts()
// Updates the canBeLogical and canBePrimary flags for all the partitions.
void BasicMBRData::UpdateCanBeLogical(void) {
int i, j, sectorBefore, numPrimaries, numLogicals, usedAsEBR;
uint64_t firstLogical, lastLogical, lStart, pStart;
numPrimaries = NumPrimaries();
numLogicals = NumLogicals();
firstLogical = FirstLogicalLBA() - 1;
lastLogical = LastLogicalLBA();
for (i = 0; i < MAX_MBR_PARTS; i++) {
usedAsEBR = (SectorUsedAs(partitions[i].GetLastLBA()) == EBR);
if (usedAsEBR) {
partitions[i].SetCanBeLogical(0);
partitions[i].SetCanBePrimary(0);
} else if (partitions[i].GetLengthLBA() > 0) {
// First determine if it can be logical....
sectorBefore = SectorUsedAs(partitions[i].GetStartLBA() - 1);
lStart = partitions[i].GetStartLBA(); // start of potential logical part.
if ((lastLogical > 0) &&
((sectorBefore == EBR) || (sectorBefore == NONE))) {
// Assume it can be logical, then search for primaries that make it
// not work and, if found, flag appropriately.
partitions[i].SetCanBeLogical(1);
for (j = 0; j < MAX_MBR_PARTS; j++) {
if ((i != j) && (partitions[j].GetInclusion() == PRIMARY)) {
pStart = partitions[j].GetStartLBA();
if (((pStart < lStart) && (firstLogical < pStart)) ||
((pStart > lStart) && (firstLogical > pStart))) {
partitions[i].SetCanBeLogical(0);
} // if/else
} // if
} // for
} else {
if ((sectorBefore != EBR) && (sectorBefore != NONE))
partitions[i].SetCanBeLogical(0);
else
partitions[i].SetCanBeLogical(lastLogical == 0); // can be logical only if no logicals already
} // if/else
// Now determine if it can be primary. Start by assuming it can be...
partitions[i].SetCanBePrimary(1);
if ((numPrimaries >= 4) && (partitions[i].GetInclusion() != PRIMARY)) {
partitions[i].SetCanBePrimary(0);
if ((partitions[i].GetInclusion() == LOGICAL) && (numLogicals == 1) &&
(numPrimaries == 4))
partitions[i].SetCanBePrimary(1);
} // if
if ((partitions[i].GetStartLBA() > (firstLogical + 1)) &&
(partitions[i].GetLastLBA() < lastLogical))
partitions[i].SetCanBePrimary(0);
} // else if
} // for
} // BasicMBRData::UpdateCanBeLogical()
// Returns the first sector occupied by any logical partition. Note that
// this does NOT include the logical partition's EBR! Returns UINT32_MAX
// if there are no logical partitions defined.
uint64_t BasicMBRData::FirstLogicalLBA(void) {
int i;
uint64_t firstFound = UINT32_MAX;
for (i = 0; i < MAX_MBR_PARTS; i++) {
if ((partitions[i].GetInclusion() == LOGICAL) &&
(partitions[i].GetStartLBA() < firstFound)) {
firstFound = partitions[i].GetStartLBA();
} // if
} // for
return firstFound;
} // BasicMBRData::FirstLogicalLBA()
// Returns the last sector occupied by any logical partition, or 0 if
// there are no logical partitions defined.
uint64_t BasicMBRData::LastLogicalLBA(void) {
int i;
uint64_t lastFound = 0;
for (i = 0; i < MAX_MBR_PARTS; i++) {
if ((partitions[i].GetInclusion() == LOGICAL) &&
(partitions[i].GetLastLBA() > lastFound))
lastFound = partitions[i].GetLastLBA();
} // for
return lastFound;
} // BasicMBRData::LastLogicalLBA()
// Returns 1 if logical partitions are contiguous (have no primaries
// in their midst), or 0 if one or more primaries exist between
// logicals.
int BasicMBRData::AreLogicalsContiguous(void) {
int allOK = 1, i = 0;
uint64_t firstLogical, lastLogical;
firstLogical = FirstLogicalLBA() - 1; // subtract 1 for EBR
lastLogical = LastLogicalLBA();
if (lastLogical > 0) {
do {
if ((partitions[i].GetInclusion() == PRIMARY) &&
(partitions[i].GetStartLBA() >= firstLogical) &&
(partitions[i].GetStartLBA() <= lastLogical)) {
allOK = 0;
} // if
i++;
} while ((i < MAX_MBR_PARTS) && allOK);
} // if
return allOK;
} // BasicMBRData::AreLogicalsContiguous()
// Returns 1 if all partitions fit on the disk, given its size; 0 if any
// partition is too big.
int BasicMBRData::DoTheyFit(void) {
int i, allOK = 1;
for (i = 0; i < MAX_MBR_PARTS; i++) {
if ((partitions[i].GetStartLBA() > diskSize) || (partitions[i].GetLastLBA() > diskSize)) {
allOK = 0;
} // if
} // for
return allOK;
} // BasicMBRData::DoTheyFit(void)
// Returns 1 if there's at least one free sector immediately preceding
// all partitions flagged as logical; 0 if any logical partition lacks
// this space.
int BasicMBRData::SpaceBeforeAllLogicals(void) {
int i = 0, allOK = 1;
do {
if ((partitions[i].GetStartLBA() > 0) && (partitions[i].GetInclusion() == LOGICAL)) {
allOK = allOK && (SectorUsedAs(partitions[i].GetStartLBA() - 1) == EBR);
} // if
i++;
} while (allOK && (i < MAX_MBR_PARTS));
return allOK;
} // BasicMBRData::SpaceBeforeAllLogicals()
// Returns 1 if the partitions describe a legal layout -- all logicals
// are contiguous and have at least one preceding empty sector,
// the number of primaries is under 4 (or under 3 if there are any
// logicals), there are no overlapping partitions, etc.
// Does NOT assume that primaries are numbered 1-4; uses the
// IsItPrimary() function of the MBRPart class to determine
// primary status. Also does NOT consider partition order; there
// can be gaps and it will still be considered legal.
int BasicMBRData::IsLegal(void) {
int allOK = 1;
allOK = (FindOverlaps() == 0);
allOK = (allOK && (NumPrimaries() <= 4));
allOK = (allOK && AreLogicalsContiguous());
allOK = (allOK && DoTheyFit());
allOK = (allOK && SpaceBeforeAllLogicals());
return allOK;
} // BasicMBRData::IsLegal()
// Returns 1 if the 0xEE partition in the protective/hybrid MBR is marked as
// active/bootable.
int BasicMBRData::IsEEActive(void) {
int i, IsActive = 0;
for (i = 0; i < MAX_MBR_PARTS; i++) {
if ((partitions[i].GetStatus() & 0x80) && (partitions[i].GetType() == 0xEE))
IsActive = 1;
}
return IsActive;
} // BasicMBRData::IsEEActive()
// Finds the next in-use partition, starting with start (will return start
// if it's in use). Returns -1 if no subsequent partition is in use.
int BasicMBRData::FindNextInUse(int start) {
if (start >= MAX_MBR_PARTS)
start = -1;
while ((start < MAX_MBR_PARTS) && (start >= 0) && (partitions[start].GetInclusion() == NONE))
start++;
if ((start < 0) || (start >= MAX_MBR_PARTS))
start = -1;
return start;
} // BasicMBRData::FindFirstLogical();
/*****************************************************
* *
* Functions to create, delete, or change partitions *
* *
*****************************************************/
// Empty all data. Meant mainly for calling by constructors, but it's also
// used by the hybrid MBR functions in the GPTData class.
void BasicMBRData::EmptyMBR(int clearBootloader) {
int i;
// Zero out the boot loader section, the disk signature, and the
// 2-byte nulls area only if requested to do so. (This is the
// default.)
if (clearBootloader == 1) {
EmptyBootloader();
} // if
// Blank out the partitions
for (i = 0; i < MAX_MBR_PARTS; i++) {
partitions[i].Empty();
} // for
MBRSignature = MBR_SIGNATURE;
state = mbr;
} // BasicMBRData::EmptyMBR()
// Blank out the boot loader area. Done with the initial MBR-to-GPT
// conversion, since MBR boot loaders don't understand GPT, and so
// need to be replaced....
void BasicMBRData::EmptyBootloader(void) {
int i;
for (i = 0; i < 440; i++)
code[i] = 0;
nulls = 0;
} // BasicMBRData::EmptyBootloader
// Create a partition of the specified number based on the passed
// partition. This function does *NO* error checking, so it's possible
// to seriously screw up a partition table using this function!
// Note: This function should NOT be used to create the 0xEE partition
// in a conventional GPT configuration, since that partition has
// specific size requirements that this function won't handle. It may
// be used for creating the 0xEE partition(s) in a hybrid MBR, though,
// since those toss the rulebook away anyhow....
void BasicMBRData::AddPart(int num, const MBRPart& newPart) {
partitions[num] = newPart;
} // BasicMBRData::AddPart()
// Create a partition of the specified number, starting LBA, and
// length. This function does almost no error checking, so it's possible
// to seriously screw up a partition table using this function!
// Note: This function should NOT be used to create the 0xEE partition
// in a conventional GPT configuration, since that partition has
// specific size requirements that this function won't handle. It may
// be used for creating the 0xEE partition(s) in a hybrid MBR, though,
// since those toss the rulebook away anyhow....
void BasicMBRData::MakePart(int num, uint64_t start, uint64_t length, int type, int bootable) {
if ((num >= 0) && (num < MAX_MBR_PARTS) && (start <= UINT32_MAX) && (length <= UINT32_MAX)) {
partitions[num].Empty();
partitions[num].SetType(type);
partitions[num].SetLocation(start, length);
if (num < 4)
partitions[num].SetInclusion(PRIMARY);
else
partitions[num].SetInclusion(LOGICAL);
SetPartBootable(num, bootable);
} // if valid partition number & size
} // BasicMBRData::MakePart()
// Set the partition's type code.
// Returns 1 if successful, 0 if not (invalid partition number)
int BasicMBRData::SetPartType(int num, int type) {
int allOK = 1;
if ((num >= 0) && (num < MAX_MBR_PARTS)) {
if (partitions[num].GetLengthLBA() != UINT32_C(0)) {
allOK = partitions[num].SetType(type);
} else allOK = 0;
} else allOK = 0;
return allOK;
} // BasicMBRData::SetPartType()
// Set (or remove) the partition's bootable flag. Setting it is the
// default; pass 0 as bootable to remove the flag.
// Returns 1 if successful, 0 if not (invalid partition number)
int BasicMBRData::SetPartBootable(int num, int bootable) {
int allOK = 1;
if ((num >= 0) && (num < MAX_MBR_PARTS)) {
if (partitions[num].GetLengthLBA() != UINT32_C(0)) {
if (bootable == 0)
partitions[num].SetStatus(UINT8_C(0x00));
else
partitions[num].SetStatus(UINT8_C(0x80));
} else allOK = 0;
} else allOK = 0;
return allOK;
} // BasicMBRData::SetPartBootable()
// Create a partition that fills the most available space. Returns
// 1 if partition was created, 0 otherwise. Intended for use in
// creating hybrid MBRs.
int BasicMBRData::MakeBiggestPart(int i, int type) {
uint64_t start = UINT64_C(1); // starting point for each search
uint64_t firstBlock; // first block in a segment
uint64_t lastBlock; // last block in a segment
uint64_t segmentSize; // size of segment in blocks
uint64_t selectedSegment = UINT64_C(0); // location of largest segment
uint64_t selectedSize = UINT64_C(0); // size of largest segment in blocks
int found = 0;
string anything;
do {
firstBlock = FindFirstAvailable(start);
if (firstBlock > UINT64_C(0)) { // something's free...
lastBlock = FindLastInFree(firstBlock);
segmentSize = lastBlock - firstBlock + UINT64_C(1);
if (segmentSize > selectedSize) {
selectedSize = segmentSize;
selectedSegment = firstBlock;
} // if
start = lastBlock + 1;
} // if
} while (firstBlock != 0);
if ((selectedSize > UINT64_C(0)) && (selectedSize < diskSize)) {
found = 1;
MakePart(i, selectedSegment, selectedSize, type, 0);
} else {
found = 0;
} // if/else
return found;
} // BasicMBRData::MakeBiggestPart(int i)
// Delete partition #i
void BasicMBRData::DeletePartition(int i) {
partitions[i].Empty();
} // BasicMBRData::DeletePartition()
// Set the inclusion status (PRIMARY, LOGICAL, or NONE) with some sanity
// checks to ensure the table remains legal.
// Returns 1 on success, 0 on failure.
int BasicMBRData::SetInclusionwChecks(int num, int inclStatus) {
int allOK = 1, origValue;
if (IsLegal()) {
if ((inclStatus == PRIMARY) || (inclStatus == LOGICAL) || (inclStatus == NONE)) {
origValue = partitions[num].GetInclusion();
partitions[num].SetInclusion(inclStatus);
if (!IsLegal()) {
partitions[num].SetInclusion(origValue);
cerr << "Specified change is not legal! Aborting change!\n";
} // if
} else {
cerr << "Invalid partition inclusion code in BasicMBRData::SetInclusionwChecks()!\n";
} // if/else
} else {
cerr << "Partition table is not currently in a valid state. Aborting change!\n";
allOK = 0;
} // if/else
return allOK;
} // BasicMBRData::SetInclusionwChecks()
// Recomputes the CHS values for the specified partition and adjusts the value.
// Note that this will create a technically incorrect CHS value for EFI GPT (0xEE)
// protective partitions, but this is required by some buggy BIOSes, so I'm
// providing a function to do this deliberately at the user's command.
// This function does nothing if the partition's length is 0.
void BasicMBRData::RecomputeCHS(int partNum) {
partitions[partNum].RecomputeCHS();
} // BasicMBRData::RecomputeCHS()
// Sorts the partitions starting with partition #start. This function
// does NOT pay attention to primary/logical assignment, which is
// critical when writing the partitions.
void BasicMBRData::SortMBR(int start) {
if ((start < MAX_MBR_PARTS) && (start >= 0))
sort(partitions + start, partitions + MAX_MBR_PARTS);
} // BasicMBRData::SortMBR()
// Delete any partitions that are too big to fit on the disk
// or that are too big for MBR (32-bit limits).
// This deletes the partitions by setting values to 0, not just
// by setting them as being omitted.
// Returns the number of partitions deleted in this way.
int BasicMBRData::DeleteOversizedParts() {
int num = 0, i;
for (i = 0; i < MAX_MBR_PARTS; i++) {
if ((partitions[i].GetStartLBA() > diskSize) || (partitions[i].GetLastLBA() > diskSize) ||
(partitions[i].GetStartLBA() > UINT32_MAX) || (partitions[i].GetLengthLBA() > UINT32_MAX)) {
cerr << "\aWarning: Deleting oversized partition #" << i + 1 << "! Start = "
<< partitions[i].GetStartLBA() << ", length = " << partitions[i].GetLengthLBA() << "\n";
partitions[i].Empty();
num++;
} // if
} // for
return num;
} // BasicMBRData::DeleteOversizedParts()
// Search for and delete extended partitions.
// Returns the number of partitions deleted.
int BasicMBRData::DeleteExtendedParts() {
int i, numDeleted = 0;
uint8_t type;
for (i = 0; i < MAX_MBR_PARTS; i++) {
type = partitions[i].GetType();
if (((type == 0x05) || (type == 0x0f) || (type == (0x85))) &&
(partitions[i].GetLengthLBA() > 0)) {
partitions[i].Empty();
numDeleted++;
} // if
} // for
return numDeleted;
} // BasicMBRData::DeleteExtendedParts()
// Finds any overlapping partitions and omits the smaller of the two.
void BasicMBRData::OmitOverlaps() {
int i, j;
for (i = 0; i < MAX_MBR_PARTS; i++) {
for (j = i + 1; j < MAX_MBR_PARTS; j++) {
if ((partitions[i].GetInclusion() != NONE) &&
partitions[i].DoTheyOverlap(partitions[j])) {
if (partitions[i].GetLengthLBA() < partitions[j].GetLengthLBA())
partitions[i].SetInclusion(NONE);
else
partitions[j].SetInclusion(NONE);
} // if
} // for (j...)
} // for (i...)
} // BasicMBRData::OmitOverlaps()
// Convert as many partitions into logicals as possible, except for
// the first partition, if possible.
void BasicMBRData::MaximizeLogicals() {
int earliestPart = 0, earliestPartWas = NONE, i;
for (i = MAX_MBR_PARTS - 1; i >= 0; i--) {
UpdateCanBeLogical();
earliestPart = i;
if (partitions[i].CanBeLogical()) {
partitions[i].SetInclusion(LOGICAL);
} else if (partitions[i].CanBePrimary()) {
partitions[i].SetInclusion(PRIMARY);
} else {
partitions[i].SetInclusion(NONE);
} // if/elseif/else
} // for
// If we have spare primaries, convert back the earliest partition to
// its original state....
if ((NumPrimaries() < 4) && (partitions[earliestPart].GetInclusion() == LOGICAL))
partitions[earliestPart].SetInclusion(earliestPartWas);
} // BasicMBRData::MaximizeLogicals()
// Add primaries up to the maximum allowed, from the omitted category.
void BasicMBRData::MaximizePrimaries() {
int num, i = 0;
num = NumPrimaries();
while ((num < 4) && (i < MAX_MBR_PARTS)) {
if ((partitions[i].GetInclusion() == NONE) && (partitions[i].CanBePrimary())) {
partitions[i].SetInclusion(PRIMARY);
num++;
UpdateCanBeLogical();
} // if
i++;
} // while
} // BasicMBRData::MaximizePrimaries()
// Remove primary partitions in excess of 4, starting with the later ones,
// in terms of the array location....
void BasicMBRData::TrimPrimaries(void) {
int numToDelete, i = MAX_MBR_PARTS - 1;
numToDelete = NumPrimaries() - 4;
while ((numToDelete > 0) && (i >= 0)) {
if (partitions[i].GetInclusion() == PRIMARY) {
partitions[i].SetInclusion(NONE);
numToDelete--;
} // if
i--;
} // while (numToDelete > 0)
} // BasicMBRData::TrimPrimaries()
// Locates primary partitions located between logical partitions and
// either converts the primaries into logicals (if possible) or omits
// them.
void BasicMBRData::MakeLogicalsContiguous(void) {
uint64_t firstLogicalLBA, lastLogicalLBA;
int i;
firstLogicalLBA = FirstLogicalLBA();
lastLogicalLBA = LastLogicalLBA();
for (i = 0; i < MAX_MBR_PARTS; i++) {
if ((partitions[i].GetInclusion() == PRIMARY) &&
(partitions[i].GetStartLBA() >= firstLogicalLBA) &&
(partitions[i].GetLastLBA() <= lastLogicalLBA)) {
if (SectorUsedAs(partitions[i].GetStartLBA() - 1) == NONE)
partitions[i].SetInclusion(LOGICAL);
else
partitions[i].SetInclusion(NONE);
} // if
} // for
} // BasicMBRData::MakeLogicalsContiguous()
// If MBR data aren't legal, adjust primary/logical assignments and,
// if necessary, drop partitions, to make the data legal.
void BasicMBRData::MakeItLegal(void) {
if (!IsLegal()) {
DeleteOversizedParts();
MaximizeLogicals();
MaximizePrimaries();
if (!AreLogicalsContiguous())
MakeLogicalsContiguous();
if (NumPrimaries() > 4)
TrimPrimaries();
OmitOverlaps();
} // if
} // BasicMBRData::MakeItLegal()
// Removes logical partitions and deactivated partitions from first four
// entries (primary space).
// Returns the number of partitions moved.
int BasicMBRData::RemoveLogicalsFromFirstFour(void) {
int i, j = 4, numMoved = 0, swapped = 0;
MBRPart temp;
for (i = 0; i < 4; i++) {
if ((partitions[i].GetInclusion() != PRIMARY) && (partitions[i].GetLengthLBA() > 0)) {
j = 4;
swapped = 0;
do {
if ((partitions[j].GetInclusion() == NONE) && (partitions[j].GetLengthLBA() == 0)) {
temp = partitions[j];
partitions[j] = partitions[i];
partitions[i] = temp;
swapped = 1;
numMoved++;
} // if
j++;
} while ((j < MAX_MBR_PARTS) && !swapped);
if (j >= MAX_MBR_PARTS)
cerr << "Warning! Too many partitions in BasicMBRData::RemoveLogicalsFromFirstFour()!\n";
} // if
} // for i...
return numMoved;
} // BasicMBRData::RemoveLogicalsFromFirstFour()
// Move all primaries into the first four partition spaces
// Returns the number of partitions moved.
int BasicMBRData::MovePrimariesToFirstFour(void) {
int i, j = 0, numMoved = 0, swapped = 0;
MBRPart temp;
for (i = 4; i < MAX_MBR_PARTS; i++) {
if (partitions[i].GetInclusion() == PRIMARY) {
j = 0;
swapped = 0;
do {
if (partitions[j].GetInclusion() != PRIMARY) {
temp = partitions[j];
partitions[j] = partitions[i];
partitions[i] = temp;
swapped = 1;
numMoved++;
} // if
j++;
} while ((j < 4) && !swapped);
} // if
} // for
return numMoved;
} // BasicMBRData::MovePrimariesToFirstFour()
// Create an extended partition, if necessary, to hold the logical partitions.
// This function also sorts the primaries into the first four positions of
// the table.
// Returns 1 on success, 0 on failure.
int BasicMBRData::CreateExtended(void) {
int allOK = 1, i = 0, swapped = 0;
MBRPart temp;
if (IsLegal()) {
// Move logicals out of primary space...
RemoveLogicalsFromFirstFour();
// Move primaries out of logical space...
MovePrimariesToFirstFour();
// Create the extended partition
if (NumLogicals() > 0) {
SortMBR(4); // sort starting from 4 -- that is, logicals only
temp.Empty();
temp.SetStartLBA(FirstLogicalLBA() - 1);
temp.SetLengthLBA(LastLogicalLBA() - FirstLogicalLBA() + 2);
temp.SetType(0x0f, 1);
temp.SetInclusion(PRIMARY);
do {
if ((partitions[i].GetInclusion() == NONE) || (partitions[i].GetLengthLBA() == 0)) {
partitions[i] = temp;
swapped = 1;
} // if
i++;
} while ((i < 4) && !swapped);
if (!swapped) {
cerr << "Could not create extended partition; no room in primary table!\n";
allOK = 0;
} // if
} // if (NumLogicals() > 0)
} else allOK = 0;
// Do a final check for EFI GPT (0xEE) partitions & flag as a problem if found
// along with an extended partition
for (i = 0; i < MAX_MBR_PARTS; i++)
if (swapped && partitions[i].GetType() == 0xEE)
allOK = 0;
return allOK;
} // BasicMBRData::CreateExtended()
/****************************************
* *
* Functions to find data on free space *
* *
****************************************/
// Finds the first free space on the disk from start onward; returns 0
// if none available....
uint64_t BasicMBRData::FindFirstAvailable(uint64_t start) {
uint64_t first;
uint64_t i;
int firstMoved;
if ((start >= (UINT32_MAX - 1)) || (start >= (diskSize - 1)))
return 0;
first = start;
// ...now search through all partitions; if first is within an
// existing partition, move it to the next sector after that
// partition and repeat. If first was moved, set firstMoved
// flag; repeat until firstMoved is not set, so as to catch
// cases where partitions are out of sequential order....
do {
firstMoved = 0;
for (i = 0; i < 4; i++) {
// Check if it's in the existing partition
if ((first >= partitions[i].GetStartLBA()) &&
(first < (partitions[i].GetStartLBA() + partitions[i].GetLengthLBA()))) {
first = partitions[i].GetStartLBA() + partitions[i].GetLengthLBA();
firstMoved = 1;
} // if
} // for
} while (firstMoved == 1);
if ((first >= diskSize) || (first > UINT32_MAX))
first = 0;
return (first);
} // BasicMBRData::FindFirstAvailable()
// Finds the last free sector on the disk from start forward.
uint64_t BasicMBRData::FindLastInFree(uint64_t start) {
uint64_t nearestStart;
uint64_t i;
if ((diskSize <= UINT32_MAX) && (diskSize > 0))
nearestStart = diskSize - 1;
else
nearestStart = UINT32_MAX - 1;
for (i = 0; i < 4; i++) {
if ((nearestStart > partitions[i].GetStartLBA()) &&
(partitions[i].GetStartLBA() > start)) {
nearestStart = partitions[i].GetStartLBA() - 1;
} // if
} // for
return (nearestStart);
} // BasicMBRData::FindLastInFree()
// Finds the first free sector on the disk from start backward.
uint64_t BasicMBRData::FindFirstInFree(uint64_t start) {
uint64_t bestLastLBA, thisLastLBA;
int i;
bestLastLBA = 1;
for (i = 0; i < 4; i++) {
thisLastLBA = partitions[i].GetLastLBA() + 1;
if (thisLastLBA > 0)
thisLastLBA--;
if ((thisLastLBA > bestLastLBA) && (thisLastLBA < start))
bestLastLBA = thisLastLBA + 1;
} // for
return (bestLastLBA);
} // BasicMBRData::FindFirstInFree()
// Returns NONE (unused), PRIMARY, LOGICAL, EBR (for EBR or MBR), or INVALID.
// Note: If the sector immediately before a logical partition is in use by
// another partition, this function returns PRIMARY or LOGICAL for that
// sector, rather than EBR.
int BasicMBRData::SectorUsedAs(uint64_t sector, int topPartNum) {
int i = 0, usedAs = NONE;
do {
if ((partitions[i].GetStartLBA() <= sector) && (partitions[i].GetLastLBA() >= sector))
usedAs = partitions[i].GetInclusion();
if ((partitions[i].GetStartLBA() == (sector + 1)) && (partitions[i].GetInclusion() == LOGICAL))
usedAs = EBR;
if (sector == 0)
usedAs = EBR;
if (sector >= diskSize)
usedAs = INVALID;
i++;
} while ((i < topPartNum) && ((usedAs == NONE) || (usedAs == EBR)));
return usedAs;
} // BasicMBRData::SectorUsedAs()
/******************************************************
* *
* Functions that extract data on specific partitions *
* *
******************************************************/
uint8_t BasicMBRData::GetStatus(int i) {
MBRPart* thePart;
uint8_t retval;
thePart = GetPartition(i);
if (thePart != NULL)
retval = thePart->GetStatus();
else
retval = UINT8_C(0);
return retval;
} // BasicMBRData::GetStatus()
uint8_t BasicMBRData::GetType(int i) {
MBRPart* thePart;
uint8_t retval;
thePart = GetPartition(i);
if (thePart != NULL)
retval = thePart->GetType();
else
retval = UINT8_C(0);
return retval;
} // BasicMBRData::GetType()
uint64_t BasicMBRData::GetFirstSector(int i) {
MBRPart* thePart;
uint64_t retval;
thePart = GetPartition(i);
if (thePart != NULL) {
retval = thePart->GetStartLBA();
} else
retval = UINT32_C(0);
return retval;
} // BasicMBRData::GetFirstSector()
uint64_t BasicMBRData::GetLength(int i) {
MBRPart* thePart;
uint64_t retval;
thePart = GetPartition(i);
if (thePart != NULL) {
retval = thePart->GetLengthLBA();
} else
retval = UINT64_C(0);
return retval;
} // BasicMBRData::GetLength()
/***********************
* *
* Protected functions *
* *
***********************/
// Return a pointer to a primary or logical partition, or NULL if
// the partition is out of range....
MBRPart* BasicMBRData::GetPartition(int i) {
MBRPart* thePart = NULL;
if ((i >= 0) && (i < MAX_MBR_PARTS))
thePart = &partitions[i];
return thePart;
} // GetPartition()
/*******************************************
* *
* Functions that involve user interaction *
* *
*******************************************/
// Present the MBR operations menu. Note that the 'w' option does not
// immediately write data; that's handled by the calling function.
// Returns the number of partitions defined on exit, or -1 if the
// user selected the 'q' option. (Thus, the caller should save data
// if the return value is >0, or possibly >=0 depending on intentions.)
int BasicMBRData::DoMenu(const string& prompt) {
int goOn = 1, quitting = 0, retval, num, haveShownInfo = 0;
unsigned int hexCode;
string tempStr;
do {
cout << prompt;
switch (ReadString()[0]) {
case '\0':
goOn = cin.good();
break;
case 'a': case 'A':
num = GetNumber(1, MAX_MBR_PARTS, 1, "Toggle active flag for partition: ") - 1;
if (partitions[num].GetInclusion() != NONE)
partitions[num].SetStatus(partitions[num].GetStatus() ^ 0x80);
break;
case 'c': case 'C':
for (num = 0; num < MAX_MBR_PARTS; num++)
RecomputeCHS(num);
break;
case 'l': case 'L':
num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to set as logical: ") - 1;
SetInclusionwChecks(num, LOGICAL);
break;
case 'o': case 'O':
num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to omit: ") - 1;
SetInclusionwChecks(num, NONE);
break;
case 'p': case 'P':
if (!haveShownInfo) {
cout << "\n** NOTE: Partition numbers do NOT indicate final primary/logical "
<< "status,\n** unlike in most MBR partitioning tools!\n\a";
cout << "\n** Extended partitions are not displayed, but will be generated "
<< "as required.\n";
haveShownInfo = 1;
} // if
DisplayMBRData();
break;
case 'q': case 'Q':
cout << "This will abandon your changes. Are you sure? ";
if (GetYN() == 'Y') {
goOn = 0;
quitting = 1;
} // if
break;
case 'r': case 'R':
num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to set as primary: ") - 1;
SetInclusionwChecks(num, PRIMARY);
break;
case 's': case 'S':
SortMBR();
break;
case 't': case 'T':
num = GetNumber(1, MAX_MBR_PARTS, 1, "Partition to change type code: ") - 1;
hexCode = 0x00;
if (partitions[num].GetLengthLBA() > 0) {
while ((hexCode <= 0) || (hexCode > 255)) {
cout << "Enter an MBR hex code: ";
tempStr = ReadString();
if (IsHex(tempStr))
sscanf(tempStr.c_str(), "%x", &hexCode);
} // while
partitions[num].SetType(hexCode);
} // if
break;
case 'w': case 'W':
goOn = 0;
break;
default:
ShowCommands();
break;
} // switch
} while (goOn);
if (quitting)
retval = -1;
else
retval = CountParts();
return (retval);
} // BasicMBRData::DoMenu()
void BasicMBRData::ShowCommands(void) {
cout << "a\ttoggle the active/boot flag\n";
cout << "c\trecompute all CHS values\n";
cout << "l\tset partition as logical\n";
cout << "o\tomit partition\n";
cout << "p\tprint the MBR partition table\n";
cout << "q\tquit without saving changes\n";
cout << "r\tset partition as primary\n";
cout << "s\tsort MBR partitions\n";
cout << "t\tchange partition type code\n";
cout << "w\twrite the MBR partition table to disk and exit\n";
} // BasicMBRData::ShowCommands()