Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
1
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
0c64991
Documentation
LICENSES
arch
alpha
arc
arm
arm64
boot
configs
crypto
hyperv
include
kernel
probes
vdso
vdso32
.gitignore
Makefile
acpi.c
acpi_numa.c
acpi_parking_protocol.c
alternative.c
armv8_deprecated.c
asm-offsets.c
cacheinfo.c
cpu-reset.S
cpu_errata.c
cpu_ops.c
cpufeature.c
cpuidle.c
cpuinfo.c
crash_core.c
crash_dump.c
debug-monitors.c
efi-entry.S
efi-header.S
efi-rt-wrapper.S
efi.c
elfcore.c
entry-common.c
entry-fpsimd.S
entry-ftrace.S
entry.S
fpsimd.c
ftrace.c
head.S
hibernate-asm.S
hibernate.c
hw_breakpoint.c
hyp-stub.S
idle.c
idreg-override.c
image-vars.h
image.h
io.c
irq.c
jump_label.c
kaslr.c
kexec_image.c
kgdb.c
kuser32.S
machine_kexec.c
machine_kexec_file.c
module-plts.c
module.c
mte.c
paravirt.c
patching.c
pci.c
perf_callchain.c
perf_event.c
perf_regs.c
pointer_auth.c
process.c
proton-pack.c
psci.c
ptrace.c
reloc_test_core.c
reloc_test_syms.S
relocate_kernel.S
return_address.c
sdei.c
setup.c
signal.c
signal32.c
sigreturn32.S
sleep.S
smccc-call.S
smp.c
smp_spin_table.c
stacktrace.c
suspend.c
sys.c
sys32.c
sys_compat.c
syscall.c
time.c
topology.c
trace-events-emulation.h
traps.c
vdso-wrap.S
vdso.c
vdso32-wrap.S
vmlinux.lds.S
kvm
lib
mm
net
tools
xen
Kbuild
Kconfig
Kconfig.debug
Kconfig.platforms
Makefile
csky
h8300
hexagon
ia64
m68k
microblaze
mips
nios2
openrisc
parisc
powerpc
riscv
s390
sh
sparc
um
x86
xtensa
.gitignore
Kconfig
block
certs
crypto
drivers
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.clang-format
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
arch
/
arm64
/
kernel
/
process.c
Copy path
Blame
Blame
Latest commit
History
History
723 lines (613 loc) · 18.2 KB
Breadcrumbs
linux
/
arch
/
arm64
/
kernel
/
process.c
Top
File metadata and controls
Code
Blame
723 lines (613 loc) · 18.2 KB
Raw
// SPDX-License-Identifier: GPL-2.0-only /* * Based on arch/arm/kernel/process.c * * Original Copyright (C) 1995 Linus Torvalds * Copyright (C) 1996-2000 Russell King - Converted to ARM. * Copyright (C) 2012 ARM Ltd. */ #include <linux/compat.h> #include <linux/efi.h> #include <linux/elf.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/kernel.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/nospec.h> #include <linux/stddef.h> #include <linux/sysctl.h> #include <linux/unistd.h> #include <linux/user.h> #include <linux/delay.h> #include <linux/reboot.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/elfcore.h> #include <linux/pm.h> #include <linux/tick.h> #include <linux/utsname.h> #include <linux/uaccess.h> #include <linux/random.h> #include <linux/hw_breakpoint.h> #include <linux/personality.h> #include <linux/notifier.h> #include <trace/events/power.h> #include <linux/percpu.h> #include <linux/thread_info.h> #include <linux/prctl.h> #include <linux/stacktrace.h> #include <asm/alternative.h> #include <asm/compat.h> #include <asm/cpufeature.h> #include <asm/cacheflush.h> #include <asm/exec.h> #include <asm/fpsimd.h> #include <asm/mmu_context.h> #include <asm/mte.h> #include <asm/processor.h> #include <asm/pointer_auth.h> #include <asm/stacktrace.h> #include <asm/switch_to.h> #include <asm/system_misc.h> #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) #include <linux/stackprotector.h> unsigned long __stack_chk_guard __ro_after_init; EXPORT_SYMBOL(__stack_chk_guard); #endif /* * Function pointers to optional machine specific functions */ void (*pm_power_off)(void); EXPORT_SYMBOL_GPL(pm_power_off); #ifdef CONFIG_HOTPLUG_CPU void arch_cpu_idle_dead(void) { cpu_die(); } #endif /* * Called by kexec, immediately prior to machine_kexec(). * * This must completely disable all secondary CPUs; simply causing those CPUs * to execute e.g. a RAM-based pin loop is not sufficient. This allows the * kexec'd kernel to use any and all RAM as it sees fit, without having to * avoid any code or data used by any SW CPU pin loop. The CPU hotplug * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. */ void machine_shutdown(void) { smp_shutdown_nonboot_cpus(reboot_cpu); } /* * Halting simply requires that the secondary CPUs stop performing any * activity (executing tasks, handling interrupts). smp_send_stop() * achieves this. */ void machine_halt(void) { local_irq_disable(); smp_send_stop(); while (1); } /* * Power-off simply requires that the secondary CPUs stop performing any * activity (executing tasks, handling interrupts). smp_send_stop() * achieves this. When the system power is turned off, it will take all CPUs * with it. */ void machine_power_off(void) { local_irq_disable(); smp_send_stop(); do_kernel_power_off(); } /* * Restart requires that the secondary CPUs stop performing any activity * while the primary CPU resets the system. Systems with multiple CPUs must * provide a HW restart implementation, to ensure that all CPUs reset at once. * This is required so that any code running after reset on the primary CPU * doesn't have to co-ordinate with other CPUs to ensure they aren't still * executing pre-reset code, and using RAM that the primary CPU's code wishes * to use. Implementing such co-ordination would be essentially impossible. */ void machine_restart(char *cmd) { /* Disable interrupts first */ local_irq_disable(); smp_send_stop(); /* * UpdateCapsule() depends on the system being reset via * ResetSystem(). */ if (efi_enabled(EFI_RUNTIME_SERVICES)) efi_reboot(reboot_mode, NULL); /* Now call the architecture specific reboot code. */ do_kernel_restart(cmd); /* * Whoops - the architecture was unable to reboot. */ printk("Reboot failed -- System halted\n"); while (1); } #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str static const char *const btypes[] = { bstr(NONE, "--"), bstr( JC, "jc"), bstr( C, "-c"), bstr( J , "j-") }; #undef bstr static void print_pstate(struct pt_regs *regs) { u64 pstate = regs->pstate; if (compat_user_mode(regs)) { printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", pstate, pstate & PSR_AA32_N_BIT ? 'N' : 'n', pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', pstate & PSR_AA32_C_BIT ? 'C' : 'c', pstate & PSR_AA32_V_BIT ? 'V' : 'v', pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', pstate & PSR_AA32_T_BIT ? "T32" : "A32", pstate & PSR_AA32_E_BIT ? "BE" : "LE", pstate & PSR_AA32_A_BIT ? 'A' : 'a', pstate & PSR_AA32_I_BIT ? 'I' : 'i', pstate & PSR_AA32_F_BIT ? 'F' : 'f', pstate & PSR_AA32_DIT_BIT ? '+' : '-', pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); } else { const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> PSR_BTYPE_SHIFT]; printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", pstate, pstate & PSR_N_BIT ? 'N' : 'n', pstate & PSR_Z_BIT ? 'Z' : 'z', pstate & PSR_C_BIT ? 'C' : 'c', pstate & PSR_V_BIT ? 'V' : 'v', pstate & PSR_D_BIT ? 'D' : 'd', pstate & PSR_A_BIT ? 'A' : 'a', pstate & PSR_I_BIT ? 'I' : 'i', pstate & PSR_F_BIT ? 'F' : 'f', pstate & PSR_PAN_BIT ? '+' : '-', pstate & PSR_UAO_BIT ? '+' : '-', pstate & PSR_TCO_BIT ? '+' : '-', pstate & PSR_DIT_BIT ? '+' : '-', pstate & PSR_SSBS_BIT ? '+' : '-', btype_str); } } void __show_regs(struct pt_regs *regs) { int i, top_reg; u64 lr, sp; if (compat_user_mode(regs)) { lr = regs->compat_lr; sp = regs->compat_sp; top_reg = 12; } else { lr = regs->regs[30]; sp = regs->sp; top_reg = 29; } show_regs_print_info(KERN_DEFAULT); print_pstate(regs); if (!user_mode(regs)) { printk("pc : %pS\n", (void *)regs->pc); printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); } else { printk("pc : %016llx\n", regs->pc); printk("lr : %016llx\n", lr); } printk("sp : %016llx\n", sp); if (system_uses_irq_prio_masking()) printk("pmr_save: %08llx\n", regs->pmr_save); i = top_reg; while (i >= 0) { printk("x%-2d: %016llx", i, regs->regs[i]); while (i-- % 3) pr_cont(" x%-2d: %016llx", i, regs->regs[i]); pr_cont("\n"); } } void show_regs(struct pt_regs *regs) { __show_regs(regs); dump_backtrace(regs, NULL, KERN_DEFAULT); } static void tls_thread_flush(void) { write_sysreg(0, tpidr_el0); if (is_compat_task()) { current->thread.uw.tp_value = 0; /* * We need to ensure ordering between the shadow state and the * hardware state, so that we don't corrupt the hardware state * with a stale shadow state during context switch. */ barrier(); write_sysreg(0, tpidrro_el0); } } static void flush_tagged_addr_state(void) { if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) clear_thread_flag(TIF_TAGGED_ADDR); } void flush_thread(void) { fpsimd_flush_thread(); tls_thread_flush(); flush_ptrace_hw_breakpoint(current); flush_tagged_addr_state(); } void release_thread(struct task_struct *dead_task) { } void arch_release_task_struct(struct task_struct *tsk) { fpsimd_release_task(tsk); } int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { if (current->mm) fpsimd_preserve_current_state(); *dst = *src; /* We rely on the above assignment to initialize dst's thread_flags: */ BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); /* * Detach src's sve_state (if any) from dst so that it does not * get erroneously used or freed prematurely. dst's sve_state * will be allocated on demand later on if dst uses SVE. * For consistency, also clear TIF_SVE here: this could be done * later in copy_process(), but to avoid tripping up future * maintainers it is best not to leave TIF_SVE and sve_state in * an inconsistent state, even temporarily. */ dst->thread.sve_state = NULL; clear_tsk_thread_flag(dst, TIF_SVE); /* clear any pending asynchronous tag fault raised by the parent */ clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); return 0; } asmlinkage void ret_from_fork(void) asm("ret_from_fork"); int copy_thread(unsigned long clone_flags, unsigned long stack_start, unsigned long stk_sz, struct task_struct *p, unsigned long tls) { struct pt_regs *childregs = task_pt_regs(p); memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); /* * In case p was allocated the same task_struct pointer as some * other recently-exited task, make sure p is disassociated from * any cpu that may have run that now-exited task recently. * Otherwise we could erroneously skip reloading the FPSIMD * registers for p. */ fpsimd_flush_task_state(p); ptrauth_thread_init_kernel(p); if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) { *childregs = *current_pt_regs(); childregs->regs[0] = 0; /* * Read the current TLS pointer from tpidr_el0 as it may be * out-of-sync with the saved value. */ *task_user_tls(p) = read_sysreg(tpidr_el0); if (stack_start) { if (is_compat_thread(task_thread_info(p))) childregs->compat_sp = stack_start; else childregs->sp = stack_start; } /* * If a TLS pointer was passed to clone, use it for the new * thread. */ if (clone_flags & CLONE_SETTLS) p->thread.uw.tp_value = tls; } else { /* * A kthread has no context to ERET to, so ensure any buggy * ERET is treated as an illegal exception return. * * When a user task is created from a kthread, childregs will * be initialized by start_thread() or start_compat_thread(). */ memset(childregs, 0, sizeof(struct pt_regs)); childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; p->thread.cpu_context.x19 = stack_start; p->thread.cpu_context.x20 = stk_sz; } p->thread.cpu_context.pc = (unsigned long)ret_from_fork; p->thread.cpu_context.sp = (unsigned long)childregs; /* * For the benefit of the unwinder, set up childregs->stackframe * as the final frame for the new task. */ p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; ptrace_hw_copy_thread(p); return 0; } void tls_preserve_current_state(void) { *task_user_tls(current) = read_sysreg(tpidr_el0); } static void tls_thread_switch(struct task_struct *next) { tls_preserve_current_state(); if (is_compat_thread(task_thread_info(next))) write_sysreg(next->thread.uw.tp_value, tpidrro_el0); else if (!arm64_kernel_unmapped_at_el0()) write_sysreg(0, tpidrro_el0); write_sysreg(*task_user_tls(next), tpidr_el0); } /* * Force SSBS state on context-switch, since it may be lost after migrating * from a CPU which treats the bit as RES0 in a heterogeneous system. */ static void ssbs_thread_switch(struct task_struct *next) { /* * Nothing to do for kernel threads, but 'regs' may be junk * (e.g. idle task) so check the flags and bail early. */ if (unlikely(next->flags & PF_KTHREAD)) return; /* * If all CPUs implement the SSBS extension, then we just need to * context-switch the PSTATE field. */ if (cpus_have_const_cap(ARM64_SSBS)) return; spectre_v4_enable_task_mitigation(next); } /* * We store our current task in sp_el0, which is clobbered by userspace. Keep a * shadow copy so that we can restore this upon entry from userspace. * * This is *only* for exception entry from EL0, and is not valid until we * __switch_to() a user task. */ DEFINE_PER_CPU(struct task_struct *, __entry_task); static void entry_task_switch(struct task_struct *next) { __this_cpu_write(__entry_task, next); } /* * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. * Ensure access is disabled when switching to a 32bit task, ensure * access is enabled when switching to a 64bit task. */ static void erratum_1418040_thread_switch(struct task_struct *next) { if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) || !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) return; if (is_compat_thread(task_thread_info(next))) sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); else sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); } static void erratum_1418040_new_exec(void) { preempt_disable(); erratum_1418040_thread_switch(current); preempt_enable(); } /* * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore * this function must be called with preemption disabled and the update to * sctlr_user must be made in the same preemption disabled block so that * __switch_to() does not see the variable update before the SCTLR_EL1 one. */ void update_sctlr_el1(u64 sctlr) { /* * EnIA must not be cleared while in the kernel as this is necessary for * in-kernel PAC. It will be cleared on kernel exit if needed. */ sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); /* ISB required for the kernel uaccess routines when setting TCF0. */ isb(); } /* * Thread switching. */ __notrace_funcgraph __sched struct task_struct *__switch_to(struct task_struct *prev, struct task_struct *next) { struct task_struct *last; fpsimd_thread_switch(next); tls_thread_switch(next); hw_breakpoint_thread_switch(next); contextidr_thread_switch(next); entry_task_switch(next); ssbs_thread_switch(next); erratum_1418040_thread_switch(next); ptrauth_thread_switch_user(next); /* * Complete any pending TLB or cache maintenance on this CPU in case * the thread migrates to a different CPU. * This full barrier is also required by the membarrier system * call. */ dsb(ish); /* * MTE thread switching must happen after the DSB above to ensure that * any asynchronous tag check faults have been logged in the TFSR*_EL1 * registers. */ mte_thread_switch(next); /* avoid expensive SCTLR_EL1 accesses if no change */ if (prev->thread.sctlr_user != next->thread.sctlr_user) update_sctlr_el1(next->thread.sctlr_user); /* the actual thread switch */ last = cpu_switch_to(prev, next); return last; } struct wchan_info { unsigned long pc; int count; }; static bool get_wchan_cb(void *arg, unsigned long pc) { struct wchan_info *wchan_info = arg; if (!in_sched_functions(pc)) { wchan_info->pc = pc; return false; } return wchan_info->count++ < 16; } unsigned long __get_wchan(struct task_struct *p) { struct wchan_info wchan_info = { .pc = 0, .count = 0, }; if (!try_get_task_stack(p)) return 0; arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); put_task_stack(p); return wchan_info.pc; } unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) sp -= get_random_int() & ~PAGE_MASK; return sp & ~0xf; } #ifdef CONFIG_COMPAT int compat_elf_check_arch(const struct elf32_hdr *hdr) { if (!system_supports_32bit_el0()) return false; if ((hdr)->e_machine != EM_ARM) return false; if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) return false; /* * Prevent execve() of a 32-bit program from a deadline task * if the restricted affinity mask would be inadmissible on an * asymmetric system. */ return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || !dl_task_check_affinity(current, system_32bit_el0_cpumask()); } #endif /* * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. */ void arch_setup_new_exec(void) { unsigned long mmflags = 0; if (is_compat_task()) { mmflags = MMCF_AARCH32; /* * Restrict the CPU affinity mask for a 32-bit task so that * it contains only 32-bit-capable CPUs. * * From the perspective of the task, this looks similar to * what would happen if the 64-bit-only CPUs were hot-unplugged * at the point of execve(), although we try a bit harder to * honour the cpuset hierarchy. */ if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) force_compatible_cpus_allowed_ptr(current); } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { relax_compatible_cpus_allowed_ptr(current); } current->mm->context.flags = mmflags; ptrauth_thread_init_user(); mte_thread_init_user(); erratum_1418040_new_exec(); if (task_spec_ssb_noexec(current)) { arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, PR_SPEC_ENABLE); } } #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI /* * Control the relaxed ABI allowing tagged user addresses into the kernel. */ static unsigned int tagged_addr_disabled; long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) { unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; struct thread_info *ti = task_thread_info(task); if (is_compat_thread(ti)) return -EINVAL; if (system_supports_mte()) valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ | PR_MTE_TAG_MASK; if (arg & ~valid_mask) return -EINVAL; /* * Do not allow the enabling of the tagged address ABI if globally * disabled via sysctl abi.tagged_addr_disabled. */ if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) return -EINVAL; if (set_mte_ctrl(task, arg) != 0) return -EINVAL; update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); return 0; } long get_tagged_addr_ctrl(struct task_struct *task) { long ret = 0; struct thread_info *ti = task_thread_info(task); if (is_compat_thread(ti)) return -EINVAL; if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) ret = PR_TAGGED_ADDR_ENABLE; ret |= get_mte_ctrl(task); return ret; } /* * Global sysctl to disable the tagged user addresses support. This control * only prevents the tagged address ABI enabling via prctl() and does not * disable it for tasks that already opted in to the relaxed ABI. */ static struct ctl_table tagged_addr_sysctl_table[] = { { .procname = "tagged_addr_disabled", .mode = 0644, .data = &tagged_addr_disabled, .maxlen = sizeof(int), .proc_handler = proc_dointvec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, { } }; static int __init tagged_addr_init(void) { if (!register_sysctl("abi", tagged_addr_sysctl_table)) return -EINVAL; return 0; } core_initcall(tagged_addr_init); #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ #ifdef CONFIG_BINFMT_ELF int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, bool has_interp, bool is_interp) { /* * For dynamically linked executables the interpreter is * responsible for setting PROT_BTI on everything except * itself. */ if (is_interp != has_interp) return prot; if (!(state->flags & ARM64_ELF_BTI)) return prot; if (prot & PROT_EXEC) prot |= PROT_BTI; return prot; } #endif
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
You can’t perform that action at this time.