Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
13b6931
Documentation
LICENSES
arch
alpha
arc
arm
arm64
csky
hexagon
loongarch
m68k
microblaze
mips
nios2
openrisc
parisc
powerpc
riscv
s390
sh
sparc
um
x86
boot
coco
sev
tdx
Makefile
core.c
configs
crypto
entry
events
hyperv
ia32
include
kernel
kvm
lib
math-emu
mm
net
pci
platform
power
purgatory
ras
realmode
tools
um
video
virt
xen
.gitignore
Kbuild
Kconfig
Kconfig.assembler
Kconfig.cpu
Kconfig.debug
Makefile
Makefile.postlink
Makefile.um
Makefile_32.cpu
xtensa
.gitignore
Kconfig
block
certs
crypto
drivers
fs
include
init
io_uring
ipc
kernel
lib
mm
net
rust
samples
scripts
security
sound
tools
usr
virt
.clang-format
.clippy.toml
.cocciconfig
.editorconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
.rustfmt.toml
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
arch
/
x86
/
coco
/
core.c
Blame
Blame
Latest commit
History
History
244 lines (216 loc) · 5.71 KB
Breadcrumbs
linux
/
arch
/
x86
/
coco
/
core.c
Top
File metadata and controls
Code
Blame
244 lines (216 loc) · 5.71 KB
Raw
// SPDX-License-Identifier: GPL-2.0-only /* * Confidential Computing Platform Capability checks * * Copyright (C) 2021 Advanced Micro Devices, Inc. * Copyright (C) 2024 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * * Author: Tom Lendacky <thomas.lendacky@amd.com> */ #include <linux/export.h> #include <linux/cc_platform.h> #include <linux/string.h> #include <linux/random.h> #include <asm/archrandom.h> #include <asm/coco.h> #include <asm/processor.h> enum cc_vendor cc_vendor __ro_after_init = CC_VENDOR_NONE; u64 cc_mask __ro_after_init; static struct cc_attr_flags { __u64 host_sev_snp : 1, __resv : 63; } cc_flags; static bool noinstr intel_cc_platform_has(enum cc_attr attr) { switch (attr) { case CC_ATTR_GUEST_UNROLL_STRING_IO: case CC_ATTR_GUEST_MEM_ENCRYPT: case CC_ATTR_MEM_ENCRYPT: return true; default: return false; } } /* * Handle the SEV-SNP vTOM case where sme_me_mask is zero, and * the other levels of SME/SEV functionality, including C-bit * based SEV-SNP, are not enabled. */ static __maybe_unused __always_inline bool amd_cc_platform_vtom(enum cc_attr attr) { switch (attr) { case CC_ATTR_GUEST_MEM_ENCRYPT: case CC_ATTR_MEM_ENCRYPT: return true; default: return false; } } /* * SME and SEV are very similar but they are not the same, so there are * times that the kernel will need to distinguish between SME and SEV. The * cc_platform_has() function is used for this. When a distinction isn't * needed, the CC_ATTR_MEM_ENCRYPT attribute can be used. * * The trampoline code is a good example for this requirement. Before * paging is activated, SME will access all memory as decrypted, but SEV * will access all memory as encrypted. So, when APs are being brought * up under SME the trampoline area cannot be encrypted, whereas under SEV * the trampoline area must be encrypted. */ static bool noinstr amd_cc_platform_has(enum cc_attr attr) { #ifdef CONFIG_AMD_MEM_ENCRYPT if (sev_status & MSR_AMD64_SNP_VTOM) return amd_cc_platform_vtom(attr); switch (attr) { case CC_ATTR_MEM_ENCRYPT: return sme_me_mask; case CC_ATTR_HOST_MEM_ENCRYPT: return sme_me_mask && !(sev_status & MSR_AMD64_SEV_ENABLED); case CC_ATTR_GUEST_MEM_ENCRYPT: return sev_status & MSR_AMD64_SEV_ENABLED; case CC_ATTR_GUEST_STATE_ENCRYPT: return sev_status & MSR_AMD64_SEV_ES_ENABLED; /* * With SEV, the rep string I/O instructions need to be unrolled * but SEV-ES supports them through the #VC handler. */ case CC_ATTR_GUEST_UNROLL_STRING_IO: return (sev_status & MSR_AMD64_SEV_ENABLED) && !(sev_status & MSR_AMD64_SEV_ES_ENABLED); case CC_ATTR_GUEST_SEV_SNP: return sev_status & MSR_AMD64_SEV_SNP_ENABLED; case CC_ATTR_GUEST_SNP_SECURE_TSC: return sev_status & MSR_AMD64_SNP_SECURE_TSC; case CC_ATTR_HOST_SEV_SNP: return cc_flags.host_sev_snp; default: return false; } #else return false; #endif } bool noinstr cc_platform_has(enum cc_attr attr) { switch (cc_vendor) { case CC_VENDOR_AMD: return amd_cc_platform_has(attr); case CC_VENDOR_INTEL: return intel_cc_platform_has(attr); default: return false; } } EXPORT_SYMBOL_GPL(cc_platform_has); u64 cc_mkenc(u64 val) { /* * Both AMD and Intel use a bit in the page table to indicate * encryption status of the page. * * - for AMD, bit *set* means the page is encrypted * - for AMD with vTOM and for Intel, *clear* means encrypted */ switch (cc_vendor) { case CC_VENDOR_AMD: if (sev_status & MSR_AMD64_SNP_VTOM) return val & ~cc_mask; else return val | cc_mask; case CC_VENDOR_INTEL: return val & ~cc_mask; default: return val; } } u64 cc_mkdec(u64 val) { /* See comment in cc_mkenc() */ switch (cc_vendor) { case CC_VENDOR_AMD: if (sev_status & MSR_AMD64_SNP_VTOM) return val | cc_mask; else return val & ~cc_mask; case CC_VENDOR_INTEL: return val | cc_mask; default: return val; } } EXPORT_SYMBOL_GPL(cc_mkdec); static void amd_cc_platform_clear(enum cc_attr attr) { switch (attr) { case CC_ATTR_HOST_SEV_SNP: cc_flags.host_sev_snp = 0; break; default: break; } } void cc_platform_clear(enum cc_attr attr) { switch (cc_vendor) { case CC_VENDOR_AMD: amd_cc_platform_clear(attr); break; default: break; } } static void amd_cc_platform_set(enum cc_attr attr) { switch (attr) { case CC_ATTR_HOST_SEV_SNP: cc_flags.host_sev_snp = 1; break; default: break; } } void cc_platform_set(enum cc_attr attr) { switch (cc_vendor) { case CC_VENDOR_AMD: amd_cc_platform_set(attr); break; default: break; } } __init void cc_random_init(void) { /* * The seed is 32 bytes (in units of longs), which is 256 bits, which * is the security level that the RNG is targeting. */ unsigned long rng_seed[32 / sizeof(long)]; size_t i, longs; if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) return; /* * Since the CoCo threat model includes the host, the only reliable * source of entropy that can be neither observed nor manipulated is * RDRAND. Usually, RDRAND failure is considered tolerable, but since * CoCo guests have no other unobservable source of entropy, it's * important to at least ensure the RNG gets some initial random seeds. */ for (i = 0; i < ARRAY_SIZE(rng_seed); i += longs) { longs = arch_get_random_longs(&rng_seed[i], ARRAY_SIZE(rng_seed) - i); /* * A zero return value means that the guest doesn't have RDRAND * or the CPU is physically broken, and in both cases that * means most crypto inside of the CoCo instance will be * broken, defeating the purpose of CoCo in the first place. So * just panic here because it's absolutely unsafe to continue * executing. */ if (longs == 0) panic("RDRAND is defective."); } add_device_randomness(rng_seed, sizeof(rng_seed)); memzero_explicit(rng_seed, sizeof(rng_seed)); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
You can’t perform that action at this time.