Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
29633d0
Documentation
LICENSES
arch
block
certs
crypto
drivers
accessibility
acpi
amba
android
ata
atm
auxdisplay
base
bcma
block
bluetooth
bus
cdrom
char
clk
clocksource
connector
counter
cpufreq
cpuidle
crypto
dax
dca
devfreq
dio
dma-buf
dma
edac
eisa
extcon
firewire
firmware
fpga
fsi
gnss
gpio
gpu
drm
amd
acp
amdgpu
amdkfd
Kconfig
Makefile
cik_event_interrupt.c
cik_int.h
cik_regs.h
cwsr_trap_handler.h
cwsr_trap_handler_gfx10.asm
cwsr_trap_handler_gfx8.asm
cwsr_trap_handler_gfx9.asm
kfd_chardev.c
kfd_crat.c
kfd_crat.h
kfd_dbgdev.c
kfd_dbgdev.h
kfd_dbgmgr.c
kfd_dbgmgr.h
kfd_debugfs.c
kfd_device.c
kfd_device_queue_manager.c
kfd_device_queue_manager.h
kfd_device_queue_manager_cik.c
kfd_device_queue_manager_v10.c
kfd_device_queue_manager_v9.c
kfd_device_queue_manager_vi.c
kfd_doorbell.c
kfd_events.c
kfd_events.h
kfd_flat_memory.c
kfd_int_process_v9.c
kfd_interrupt.c
kfd_iommu.c
kfd_iommu.h
kfd_kernel_queue.c
kfd_kernel_queue.h
kfd_module.c
kfd_mqd_manager.c
kfd_mqd_manager.h
kfd_mqd_manager_cik.c
kfd_mqd_manager_v10.c
kfd_mqd_manager_v9.c
kfd_mqd_manager_vi.c
kfd_packet_manager.c
kfd_packet_manager_v9.c
kfd_packet_manager_vi.c
kfd_pasid.c
kfd_pm4_headers.h
kfd_pm4_headers_ai.h
kfd_pm4_headers_diq.h
kfd_pm4_headers_vi.h
kfd_pm4_opcodes.h
kfd_priv.h
kfd_process.c
kfd_process_queue_manager.c
kfd_queue.c
kfd_topology.c
kfd_topology.h
soc15_int.h
display
include
powerplay
arc
arm
armada
aspeed
ast
atmel-hlcdc
bochs
bridge
cirrus
etnaviv
exynos
fsl-dcu
gma500
hisilicon
i2c
i810
i915
imx
ingenic
lib
lima
mcde
mediatek
meson
mga
mgag200
msm
mxsfb
nouveau
omapdrm
panel
panfrost
pl111
qxl
r128
radeon
rcar-du
rockchip
savage
scheduler
selftests
shmobile
sis
sti
stm
sun4i
tdfx
tegra
tidss
tilcdc
tiny
ttm
tve200
udl
v3d
vboxvideo
vc4
vgem
via
virtio
vkms
vmwgfx
xen
zte
Kconfig
Makefile
drm_agpsupport.c
drm_atomic.c
drm_atomic_helper.c
drm_atomic_state_helper.c
drm_atomic_uapi.c
drm_auth.c
drm_blend.c
drm_bridge.c
drm_bridge_connector.c
drm_bufs.c
drm_cache.c
drm_client.c
drm_client_modeset.c
drm_color_mgmt.c
drm_connector.c
drm_context.c
drm_crtc.c
drm_crtc_helper.c
drm_crtc_helper_internal.h
drm_crtc_internal.h
drm_damage_helper.c
drm_debugfs.c
drm_debugfs_crc.c
drm_dma.c
drm_dp_aux_dev.c
drm_dp_cec.c
drm_dp_dual_mode_helper.c
drm_dp_helper.c
drm_dp_mst_topology.c
drm_dp_mst_topology_internal.h
drm_drv.c
drm_dsc.c
drm_dumb_buffers.c
drm_edid.c
drm_edid_load.c
drm_encoder.c
drm_encoder_slave.c
drm_fb_cma_helper.c
drm_fb_helper.c
drm_file.c
drm_flip_work.c
drm_format_helper.c
drm_fourcc.c
drm_framebuffer.c
drm_gem.c
drm_gem_cma_helper.c
drm_gem_framebuffer_helper.c
drm_gem_shmem_helper.c
drm_gem_ttm_helper.c
drm_gem_vram_helper.c
drm_hashtab.c
drm_hdcp.c
drm_internal.h
drm_ioc32.c
drm_ioctl.c
drm_irq.c
drm_kms_helper_common.c
drm_lease.c
drm_legacy.h
drm_legacy_misc.c
drm_lock.c
drm_memory.c
drm_mipi_dbi.c
drm_mipi_dsi.c
drm_mm.c
drm_mode_config.c
drm_mode_object.c
drm_modes.c
drm_modeset_helper.c
drm_modeset_lock.c
drm_of.c
drm_panel.c
drm_panel_orientation_quirks.c
drm_pci.c
drm_plane.c
drm_plane_helper.c
drm_prime.c
drm_print.c
drm_probe_helper.c
drm_property.c
drm_rect.c
drm_scatter.c
drm_scdc_helper.c
drm_self_refresh_helper.c
drm_simple_kms_helper.c
drm_syncobj.c
drm_sysfs.c
drm_trace.h
drm_trace_points.c
drm_vblank.c
drm_vm.c
drm_vma_manager.c
drm_vram_helper_common.c
drm_writeback.c
host1x
ipu-v3
vga
Makefile
greybus
hid
hsi
hv
hwmon
hwspinlock
hwtracing
i2c
i3c
ide
idle
iio
infiniband
input
interconnect
iommu
ipack
irqchip
isdn
leds
lightnvm
macintosh
mailbox
mcb
md
media
memory
memstick
message
mfd
misc
mmc
mtd
mux
net
nfc
ntb
nubus
nvdimm
nvme
nvmem
of
opp
oprofile
parisc
parport
pci
pcmcia
perf
phy
pinctrl
platform
pnp
power
powercap
pps
ps3
ptp
pwm
rapidio
ras
regulator
remoteproc
reset
rpmsg
rtc
s390
sbus
scsi
sfi
sh
siox
slimbus
soc
soundwire
spi
spmi
ssb
staging
target
tc
tee
thermal
thunderbolt
tty
uio
usb
vfio
vhost
video
virt
virtio
visorbus
vlynq
vme
w1
watchdog
xen
zorro
Kconfig
Makefile
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.clang-format
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
drivers
/
gpu
/
drm
/
amd
/
amdkfd
/
kfd_device.c
Copy path
Blame
Blame
Latest commit
History
History
1210 lines (1036 loc) · 32.4 KB
Breadcrumbs
linux
/
drivers
/
gpu
/
drm
/
amd
/
amdkfd
/
kfd_device.c
Top
File metadata and controls
Code
Blame
1210 lines (1036 loc) · 32.4 KB
Raw
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/bsearch.h> #include <linux/pci.h> #include <linux/slab.h> #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_pm4_headers_vi.h" #include "cwsr_trap_handler.h" #include "kfd_iommu.h" #include "amdgpu_amdkfd.h" #define MQD_SIZE_ALIGNED 768 /* * kfd_locked is used to lock the kfd driver during suspend or reset * once locked, kfd driver will stop any further GPU execution. * create process (open) will return -EAGAIN. */ static atomic_t kfd_locked = ATOMIC_INIT(0); #ifdef CONFIG_DRM_AMDGPU_CIK extern const struct kfd2kgd_calls gfx_v7_kfd2kgd; #endif extern const struct kfd2kgd_calls gfx_v8_kfd2kgd; extern const struct kfd2kgd_calls gfx_v9_kfd2kgd; extern const struct kfd2kgd_calls arcturus_kfd2kgd; extern const struct kfd2kgd_calls gfx_v10_kfd2kgd; static const struct kfd2kgd_calls *kfd2kgd_funcs[] = { #ifdef KFD_SUPPORT_IOMMU_V2 #ifdef CONFIG_DRM_AMDGPU_CIK [CHIP_KAVERI] = &gfx_v7_kfd2kgd, #endif [CHIP_CARRIZO] = &gfx_v8_kfd2kgd, [CHIP_RAVEN] = &gfx_v9_kfd2kgd, #endif #ifdef CONFIG_DRM_AMDGPU_CIK [CHIP_HAWAII] = &gfx_v7_kfd2kgd, #endif [CHIP_TONGA] = &gfx_v8_kfd2kgd, [CHIP_FIJI] = &gfx_v8_kfd2kgd, [CHIP_POLARIS10] = &gfx_v8_kfd2kgd, [CHIP_POLARIS11] = &gfx_v8_kfd2kgd, [CHIP_POLARIS12] = &gfx_v8_kfd2kgd, [CHIP_VEGAM] = &gfx_v8_kfd2kgd, [CHIP_VEGA10] = &gfx_v9_kfd2kgd, [CHIP_VEGA12] = &gfx_v9_kfd2kgd, [CHIP_VEGA20] = &gfx_v9_kfd2kgd, [CHIP_RENOIR] = &gfx_v9_kfd2kgd, [CHIP_ARCTURUS] = &arcturus_kfd2kgd, [CHIP_NAVI10] = &gfx_v10_kfd2kgd, [CHIP_NAVI12] = &gfx_v10_kfd2kgd, [CHIP_NAVI14] = &gfx_v10_kfd2kgd, }; #ifdef KFD_SUPPORT_IOMMU_V2 static const struct kfd_device_info kaveri_device_info = { .asic_family = CHIP_KAVERI, .asic_name = "kaveri", .max_pasid_bits = 16, /* max num of queues for KV.TODO should be a dynamic value */ .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = false, .needs_iommu_device = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info carrizo_device_info = { .asic_family = CHIP_CARRIZO, .asic_name = "carrizo", .max_pasid_bits = 16, /* max num of queues for CZ.TODO should be a dynamic value */ .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info raven_device_info = { .asic_family = CHIP_RAVEN, .asic_name = "raven", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = true, .needs_pci_atomics = true, .num_sdma_engines = 1, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; #endif static const struct kfd_device_info hawaii_device_info = { .asic_family = CHIP_HAWAII, .asic_name = "hawaii", .max_pasid_bits = 16, /* max num of queues for KV.TODO should be a dynamic value */ .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = false, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info tonga_device_info = { .asic_family = CHIP_TONGA, .asic_name = "tonga", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = false, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info fiji_device_info = { .asic_family = CHIP_FIJI, .asic_name = "fiji", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info fiji_vf_device_info = { .asic_family = CHIP_FIJI, .asic_name = "fiji", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info polaris10_device_info = { .asic_family = CHIP_POLARIS10, .asic_name = "polaris10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info polaris10_vf_device_info = { .asic_family = CHIP_POLARIS10, .asic_name = "polaris10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info polaris11_device_info = { .asic_family = CHIP_POLARIS11, .asic_name = "polaris11", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info polaris12_device_info = { .asic_family = CHIP_POLARIS12, .asic_name = "polaris12", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vegam_device_info = { .asic_family = CHIP_VEGAM, .asic_name = "vegam", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vega10_device_info = { .asic_family = CHIP_VEGA10, .asic_name = "vega10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vega10_vf_device_info = { .asic_family = CHIP_VEGA10, .asic_name = "vega10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vega12_device_info = { .asic_family = CHIP_VEGA12, .asic_name = "vega12", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vega20_device_info = { .asic_family = CHIP_VEGA20, .asic_name = "vega20", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 8, }; static const struct kfd_device_info arcturus_device_info = { .asic_family = CHIP_ARCTURUS, .asic_name = "arcturus", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 6, .num_sdma_queues_per_engine = 8, }; static const struct kfd_device_info renoir_device_info = { .asic_family = CHIP_RENOIR, .asic_name = "renoir", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 1, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info navi10_device_info = { .asic_family = CHIP_NAVI10, .asic_name = "navi10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .needs_iommu_device = false, .supports_cwsr = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 8, }; static const struct kfd_device_info navi12_device_info = { .asic_family = CHIP_NAVI12, .asic_name = "navi12", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .needs_iommu_device = false, .supports_cwsr = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 8, }; static const struct kfd_device_info navi14_device_info = { .asic_family = CHIP_NAVI14, .asic_name = "navi14", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .needs_iommu_device = false, .supports_cwsr = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 8, }; /* For each entry, [0] is regular and [1] is virtualisation device. */ static const struct kfd_device_info *kfd_supported_devices[][2] = { #ifdef KFD_SUPPORT_IOMMU_V2 [CHIP_KAVERI] = {&kaveri_device_info, NULL}, [CHIP_CARRIZO] = {&carrizo_device_info, NULL}, [CHIP_RAVEN] = {&raven_device_info, NULL}, #endif [CHIP_HAWAII] = {&hawaii_device_info, NULL}, [CHIP_TONGA] = {&tonga_device_info, NULL}, [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info}, [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info}, [CHIP_POLARIS11] = {&polaris11_device_info, NULL}, [CHIP_POLARIS12] = {&polaris12_device_info, NULL}, [CHIP_VEGAM] = {&vegam_device_info, NULL}, [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info}, [CHIP_VEGA12] = {&vega12_device_info, NULL}, [CHIP_VEGA20] = {&vega20_device_info, NULL}, [CHIP_RENOIR] = {&renoir_device_info, NULL}, [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info}, [CHIP_NAVI10] = {&navi10_device_info, NULL}, [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info}, [CHIP_NAVI14] = {&navi14_device_info, NULL}, }; static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, unsigned int chunk_size); static void kfd_gtt_sa_fini(struct kfd_dev *kfd); static int kfd_resume(struct kfd_dev *kfd); struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev, unsigned int asic_type, bool vf) { struct kfd_dev *kfd; const struct kfd_device_info *device_info; const struct kfd2kgd_calls *f2g; if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2) || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) { dev_err(kfd_device, "asic_type %d out of range\n", asic_type); return NULL; /* asic_type out of range */ } device_info = kfd_supported_devices[asic_type][vf]; f2g = kfd2kgd_funcs[asic_type]; if (!device_info || !f2g) { dev_err(kfd_device, "%s %s not supported in kfd\n", amdgpu_asic_name[asic_type], vf ? "VF" : ""); return NULL; } kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); if (!kfd) return NULL; /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps. * 32 and 64-bit requests are possible and must be * supported. */ kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd); if (device_info->needs_pci_atomics && !kfd->pci_atomic_requested) { dev_info(kfd_device, "skipped device %x:%x, PCI rejects atomics\n", pdev->vendor, pdev->device); kfree(kfd); return NULL; } kfd->kgd = kgd; kfd->device_info = device_info; kfd->pdev = pdev; kfd->init_complete = false; kfd->kfd2kgd = f2g; atomic_set(&kfd->compute_profile, 0); mutex_init(&kfd->doorbell_mutex); memset(&kfd->doorbell_available_index, 0, sizeof(kfd->doorbell_available_index)); atomic_set(&kfd->sram_ecc_flag, 0); return kfd; } static void kfd_cwsr_init(struct kfd_dev *kfd) { if (cwsr_enable && kfd->device_info->supports_cwsr) { if (kfd->device_info->asic_family < CHIP_VEGA10) { BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx8_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex); } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) { BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_arcturus_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex); } else if (kfd->device_info->asic_family < CHIP_NAVI10) { BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx9_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex); } else { BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx10_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex); } kfd->cwsr_enabled = true; } } static int kfd_gws_init(struct kfd_dev *kfd) { int ret = 0; if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) return 0; if (hws_gws_support || (kfd->device_info->asic_family >= CHIP_VEGA10 && kfd->device_info->asic_family <= CHIP_RAVEN && kfd->mec2_fw_version >= 0x1b3)) ret = amdgpu_amdkfd_alloc_gws(kfd->kgd, amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws); return ret; } bool kgd2kfd_device_init(struct kfd_dev *kfd, struct drm_device *ddev, const struct kgd2kfd_shared_resources *gpu_resources) { unsigned int size; kfd->ddev = ddev; kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, KGD_ENGINE_MEC1); kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, KGD_ENGINE_MEC2); kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, KGD_ENGINE_SDMA1); kfd->shared_resources = *gpu_resources; kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1; kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1; kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd - kfd->vm_info.first_vmid_kfd + 1; /* Verify module parameters regarding mapped process number*/ if ((hws_max_conc_proc < 0) || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) { dev_err(kfd_device, "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n", hws_max_conc_proc, kfd->vm_info.vmid_num_kfd, kfd->vm_info.vmid_num_kfd); kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd; } else kfd->max_proc_per_quantum = hws_max_conc_proc; /* calculate max size of mqds needed for queues */ size = max_num_of_queues_per_device * kfd->device_info->mqd_size_aligned; /* * calculate max size of runlist packet. * There can be only 2 packets at once */ size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) + max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues) + sizeof(struct pm4_mes_runlist)) * 2; /* Add size of HIQ & DIQ */ size += KFD_KERNEL_QUEUE_SIZE * 2; /* add another 512KB for all other allocations on gart (HPD, fences) */ size += 512 * 1024; if (amdgpu_amdkfd_alloc_gtt_mem( kfd->kgd, size, &kfd->gtt_mem, &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr, false)) { dev_err(kfd_device, "Could not allocate %d bytes\n", size); goto alloc_gtt_mem_failure; } dev_info(kfd_device, "Allocated %d bytes on gart\n", size); /* Initialize GTT sa with 512 byte chunk size */ if (kfd_gtt_sa_init(kfd, size, 512) != 0) { dev_err(kfd_device, "Error initializing gtt sub-allocator\n"); goto kfd_gtt_sa_init_error; } if (kfd_doorbell_init(kfd)) { dev_err(kfd_device, "Error initializing doorbell aperture\n"); goto kfd_doorbell_error; } if (kfd->kfd2kgd->get_hive_id) kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd); if (kfd->kfd2kgd->get_unique_id) kfd->unique_id = kfd->kfd2kgd->get_unique_id(kfd->kgd); if (kfd_interrupt_init(kfd)) { dev_err(kfd_device, "Error initializing interrupts\n"); goto kfd_interrupt_error; } kfd->dqm = device_queue_manager_init(kfd); if (!kfd->dqm) { dev_err(kfd_device, "Error initializing queue manager\n"); goto device_queue_manager_error; } /* If supported on this device, allocate global GWS that is shared * by all KFD processes */ if (kfd_gws_init(kfd)) { dev_err(kfd_device, "Could not allocate %d gws\n", amdgpu_amdkfd_get_num_gws(kfd->kgd)); goto gws_error; } if (kfd_iommu_device_init(kfd)) { dev_err(kfd_device, "Error initializing iommuv2\n"); goto device_iommu_error; } kfd_cwsr_init(kfd); if (kfd_resume(kfd)) goto kfd_resume_error; kfd->dbgmgr = NULL; if (kfd_topology_add_device(kfd)) { dev_err(kfd_device, "Error adding device to topology\n"); goto kfd_topology_add_device_error; } kfd->init_complete = true; dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor, kfd->pdev->device); pr_debug("Starting kfd with the following scheduling policy %d\n", kfd->dqm->sched_policy); goto out; kfd_topology_add_device_error: kfd_resume_error: device_iommu_error: gws_error: device_queue_manager_uninit(kfd->dqm); device_queue_manager_error: kfd_interrupt_exit(kfd); kfd_interrupt_error: kfd_doorbell_fini(kfd); kfd_doorbell_error: kfd_gtt_sa_fini(kfd); kfd_gtt_sa_init_error: amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); alloc_gtt_mem_failure: if (kfd->gws) amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); dev_err(kfd_device, "device %x:%x NOT added due to errors\n", kfd->pdev->vendor, kfd->pdev->device); out: return kfd->init_complete; } void kgd2kfd_device_exit(struct kfd_dev *kfd) { if (kfd->init_complete) { kgd2kfd_suspend(kfd, false); device_queue_manager_uninit(kfd->dqm); kfd_interrupt_exit(kfd); kfd_topology_remove_device(kfd); kfd_doorbell_fini(kfd); kfd_gtt_sa_fini(kfd); amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); if (kfd->gws) amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); } kfree(kfd); } int kgd2kfd_pre_reset(struct kfd_dev *kfd) { if (!kfd->init_complete) return 0; kfd->dqm->ops.pre_reset(kfd->dqm); kgd2kfd_suspend(kfd, false); kfd_signal_reset_event(kfd); return 0; } /* * Fix me. KFD won't be able to resume existing process for now. * We will keep all existing process in a evicted state and * wait the process to be terminated. */ int kgd2kfd_post_reset(struct kfd_dev *kfd) { int ret; if (!kfd->init_complete) return 0; ret = kfd_resume(kfd); if (ret) return ret; atomic_dec(&kfd_locked); atomic_set(&kfd->sram_ecc_flag, 0); return 0; } bool kfd_is_locked(void) { return (atomic_read(&kfd_locked) > 0); } void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm) { if (!kfd->init_complete) return; /* for runtime suspend, skip locking kfd */ if (!run_pm) { /* For first KFD device suspend all the KFD processes */ if (atomic_inc_return(&kfd_locked) == 1) kfd_suspend_all_processes(); } kfd->dqm->ops.stop(kfd->dqm); kfd_iommu_suspend(kfd); } int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm) { int ret, count; if (!kfd->init_complete) return 0; ret = kfd_resume(kfd); if (ret) return ret; /* for runtime resume, skip unlocking kfd */ if (!run_pm) { count = atomic_dec_return(&kfd_locked); WARN_ONCE(count < 0, "KFD suspend / resume ref. error"); if (count == 0) ret = kfd_resume_all_processes(); } return ret; } static int kfd_resume(struct kfd_dev *kfd) { int err = 0; err = kfd_iommu_resume(kfd); if (err) { dev_err(kfd_device, "Failed to resume IOMMU for device %x:%x\n", kfd->pdev->vendor, kfd->pdev->device); return err; } err = kfd->dqm->ops.start(kfd->dqm); if (err) { dev_err(kfd_device, "Error starting queue manager for device %x:%x\n", kfd->pdev->vendor, kfd->pdev->device); goto dqm_start_error; } return err; dqm_start_error: kfd_iommu_suspend(kfd); return err; } static inline void kfd_queue_work(struct workqueue_struct *wq, struct work_struct *work) { int cpu, new_cpu; cpu = new_cpu = smp_processor_id(); do { new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids; if (cpu_to_node(new_cpu) == numa_node_id()) break; } while (cpu != new_cpu); queue_work_on(new_cpu, wq, work); } /* This is called directly from KGD at ISR. */ void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) { uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE]; bool is_patched = false; unsigned long flags; if (!kfd->init_complete) return; if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) { dev_err_once(kfd_device, "Ring entry too small\n"); return; } spin_lock_irqsave(&kfd->interrupt_lock, flags); if (kfd->interrupts_active && interrupt_is_wanted(kfd, ih_ring_entry, patched_ihre, &is_patched) && enqueue_ih_ring_entry(kfd, is_patched ? patched_ihre : ih_ring_entry)) kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work); spin_unlock_irqrestore(&kfd->interrupt_lock, flags); } int kgd2kfd_quiesce_mm(struct mm_struct *mm) { struct kfd_process *p; int r; /* Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ p = kfd_lookup_process_by_mm(mm); if (!p) return -ESRCH; r = kfd_process_evict_queues(p); kfd_unref_process(p); return r; } int kgd2kfd_resume_mm(struct mm_struct *mm) { struct kfd_process *p; int r; /* Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ p = kfd_lookup_process_by_mm(mm); if (!p) return -ESRCH; r = kfd_process_restore_queues(p); kfd_unref_process(p); return r; } /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will * prepare for safe eviction of KFD BOs that belong to the specified * process. * * @mm: mm_struct that identifies the specified KFD process * @fence: eviction fence attached to KFD process BOs * */ int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm, struct dma_fence *fence) { struct kfd_process *p; unsigned long active_time; unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS); if (!fence) return -EINVAL; if (dma_fence_is_signaled(fence)) return 0; p = kfd_lookup_process_by_mm(mm); if (!p) return -ENODEV; if (fence->seqno == p->last_eviction_seqno) goto out; p->last_eviction_seqno = fence->seqno; /* Avoid KFD process starvation. Wait for at least * PROCESS_ACTIVE_TIME_MS before evicting the process again */ active_time = get_jiffies_64() - p->last_restore_timestamp; if (delay_jiffies > active_time) delay_jiffies -= active_time; else delay_jiffies = 0; /* During process initialization eviction_work.dwork is initialized * to kfd_evict_bo_worker */ schedule_delayed_work(&p->eviction_work, delay_jiffies); out: kfd_unref_process(p); return 0; } static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, unsigned int chunk_size) { unsigned int num_of_longs; if (WARN_ON(buf_size < chunk_size)) return -EINVAL; if (WARN_ON(buf_size == 0)) return -EINVAL; if (WARN_ON(chunk_size == 0)) return -EINVAL; kfd->gtt_sa_chunk_size = chunk_size; kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) / BITS_PER_LONG; kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL); if (!kfd->gtt_sa_bitmap) return -ENOMEM; pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); mutex_init(&kfd->gtt_sa_lock); return 0; } static void kfd_gtt_sa_fini(struct kfd_dev *kfd) { mutex_destroy(&kfd->gtt_sa_lock); kfree(kfd->gtt_sa_bitmap); } static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, unsigned int bit_num, unsigned int chunk_size) { return start_addr + bit_num * chunk_size; } static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, unsigned int bit_num, unsigned int chunk_size) { return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); } int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, struct kfd_mem_obj **mem_obj) { unsigned int found, start_search, cur_size; if (size == 0) return -EINVAL; if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) return -ENOMEM; *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); if (!(*mem_obj)) return -ENOMEM; pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size); start_search = 0; mutex_lock(&kfd->gtt_sa_lock); kfd_gtt_restart_search: /* Find the first chunk that is free */ found = find_next_zero_bit(kfd->gtt_sa_bitmap, kfd->gtt_sa_num_of_chunks, start_search); pr_debug("Found = %d\n", found); /* If there wasn't any free chunk, bail out */ if (found == kfd->gtt_sa_num_of_chunks) goto kfd_gtt_no_free_chunk; /* Update fields of mem_obj */ (*mem_obj)->range_start = found; (*mem_obj)->range_end = found; (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( kfd->gtt_start_gpu_addr, found, kfd->gtt_sa_chunk_size); (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( kfd->gtt_start_cpu_ptr, found, kfd->gtt_sa_chunk_size); pr_debug("gpu_addr = %p, cpu_addr = %p\n", (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); /* If we need only one chunk, mark it as allocated and get out */ if (size <= kfd->gtt_sa_chunk_size) { pr_debug("Single bit\n"); set_bit(found, kfd->gtt_sa_bitmap); goto kfd_gtt_out; } /* Otherwise, try to see if we have enough contiguous chunks */ cur_size = size - kfd->gtt_sa_chunk_size; do { (*mem_obj)->range_end = find_next_zero_bit(kfd->gtt_sa_bitmap, kfd->gtt_sa_num_of_chunks, ++found); /* * If next free chunk is not contiguous than we need to * restart our search from the last free chunk we found (which * wasn't contiguous to the previous ones */ if ((*mem_obj)->range_end != found) { start_search = found; goto kfd_gtt_restart_search; } /* * If we reached end of buffer, bail out with error */ if (found == kfd->gtt_sa_num_of_chunks) goto kfd_gtt_no_free_chunk; /* Check if we don't need another chunk */ if (cur_size <= kfd->gtt_sa_chunk_size) cur_size = 0; else cur_size -= kfd->gtt_sa_chunk_size; } while (cur_size > 0); pr_debug("range_start = %d, range_end = %d\n", (*mem_obj)->range_start, (*mem_obj)->range_end); /* Mark the chunks as allocated */ for (found = (*mem_obj)->range_start; found <= (*mem_obj)->range_end; found++) set_bit(found, kfd->gtt_sa_bitmap); kfd_gtt_out: mutex_unlock(&kfd->gtt_sa_lock); return 0; kfd_gtt_no_free_chunk: pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj); mutex_unlock(&kfd->gtt_sa_lock); kfree(*mem_obj); return -ENOMEM; } int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj) { unsigned int bit; /* Act like kfree when trying to free a NULL object */ if (!mem_obj) return 0; pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n", mem_obj, mem_obj->range_start, mem_obj->range_end); mutex_lock(&kfd->gtt_sa_lock); /* Mark the chunks as free */ for (bit = mem_obj->range_start; bit <= mem_obj->range_end; bit++) clear_bit(bit, kfd->gtt_sa_bitmap); mutex_unlock(&kfd->gtt_sa_lock); kfree(mem_obj); return 0; } void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd) { if (kfd) atomic_inc(&kfd->sram_ecc_flag); } void kfd_inc_compute_active(struct kfd_dev *kfd) { if (atomic_inc_return(&kfd->compute_profile) == 1) amdgpu_amdkfd_set_compute_idle(kfd->kgd, false); } void kfd_dec_compute_active(struct kfd_dev *kfd) { int count = atomic_dec_return(&kfd->compute_profile); if (count == 0) amdgpu_amdkfd_set_compute_idle(kfd->kgd, true); WARN_ONCE(count < 0, "Compute profile ref. count error"); } #if defined(CONFIG_DEBUG_FS) /* This function will send a package to HIQ to hang the HWS * which will trigger a GPU reset and bring the HWS back to normal state */ int kfd_debugfs_hang_hws(struct kfd_dev *dev) { int r = 0; if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) { pr_err("HWS is not enabled"); return -EINVAL; } r = pm_debugfs_hang_hws(&dev->dqm->packets); if (!r) r = dqm_debugfs_execute_queues(dev->dqm); return r; } #endif
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
You can’t perform that action at this time.