Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
32aaeff
Documentation
arch
alpha
arm
boot
common
configs
include
kernel
.gitignore
Makefile
armksyms.c
arthur.c
asm-offsets.c
atags.c
atags.h
bios32.c
calls.S
compat.c
compat.h
crash_dump.c
crunch-bits.S
crunch.c
debug.S
devtree.c
dma-isa.c
dma.c
early_printk.c
ecard.c
ecard.h
elf.c
entry-armv.S
entry-common.S
entry-header.S
etm.c
fiq.c
fiqasm.S
ftrace.c
head-common.S
head-nommu.S
head.S
hw_breakpoint.c
init_task.c
io.c
irq.c
isa.c
iwmmxt.S
kgdb.c
kprobes-arm.c
kprobes-common.c
kprobes-test-arm.c
kprobes-test-thumb.c
kprobes-test.c
kprobes-test.h
kprobes-thumb.c
kprobes.c
kprobes.h
leds.c
machine_kexec.c
module.c
perf_event.c
perf_event_v6.c
perf_event_v7.c
perf_event_xscale.c
pj4-cp0.c
pmu.c
process.c
ptrace.c
relocate_kernel.S
return_address.c
sched_clock.c
setup.c
signal.c
signal.h
sleep.S
smp.c
smp_scu.c
smp_tlb.c
smp_twd.c
stacktrace.c
suspend.c
swp_emulate.c
sys_arm.c
sys_oabi-compat.c
tcm.c
tcm.h
thumbee.c
time.c
topology.c
traps.c
unwind.c
vmlinux.lds.S
xscale-cp0.c
lib
mach-at91
mach-bcmring
mach-clps711x
mach-cns3xxx
mach-davinci
mach-dove
mach-ebsa110
mach-ep93xx
mach-exynos
mach-footbridge
mach-gemini
mach-h720x
mach-highbank
mach-imx
mach-integrator
mach-iop13xx
mach-iop32x
mach-iop33x
mach-ixp2000
mach-ixp23xx
mach-ixp4xx
mach-kirkwood
mach-ks8695
mach-l7200
mach-lpc32xx
mach-mmp
mach-msm
mach-mv78xx0
mach-mx5
mach-mxs
mach-netx
mach-nomadik
mach-omap1
mach-omap2
mach-orion5x
mach-picoxcell
mach-pnx4008
mach-prima2
mach-pxa
mach-realview
mach-rpc
mach-s3c2410
mach-s3c2412
mach-s3c2416
mach-s3c2440
mach-s3c2443
mach-s3c64xx
mach-s5p64x0
mach-s5pc100
mach-s5pv210
mach-sa1100
mach-shark
mach-shmobile
mach-spear3xx
mach-spear6xx
mach-tcc8k
mach-tegra
mach-u300
mach-ux500
mach-versatile
mach-vexpress
mach-vt8500
mach-w90x900
mach-zynq
mm
nwfpe
oprofile
plat-iop
plat-mxc
plat-nomadik
plat-omap
plat-orion
plat-pxa
plat-s3c24xx
plat-s5p
plat-samsung
plat-spear
plat-tcc
plat-versatile
tools
vfp
Kconfig
Kconfig-nommu
Kconfig.debug
Makefile
avr32
blackfin
cris
frv
h8300
hexagon
ia64
m32r
m68k
microblaze
mips
mn10300
openrisc
parisc
powerpc
s390
score
sh
sparc
tile
um
unicore32
x86
xtensa
.gitignore
Kconfig
block
crypto
drivers
firmware
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
arch
/
arm
/
kernel
/
perf_event.c
Copy path
Blame
Blame
Latest commit
History
History
814 lines (674 loc) · 19 KB
Breadcrumbs
linux
/
arch
/
arm
/
kernel
/
perf_event.c
Top
File metadata and controls
Code
Blame
814 lines (674 loc) · 19 KB
Raw
#undef DEBUG /* * ARM performance counter support. * * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> * * This code is based on the sparc64 perf event code, which is in turn based * on the x86 code. Callchain code is based on the ARM OProfile backtrace * code. */ #define pr_fmt(fmt) "hw perfevents: " fmt #include <linux/bitmap.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/perf_event.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include <linux/uaccess.h> #include <asm/cputype.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/pmu.h> #include <asm/stacktrace.h> /* * ARMv6 supports a maximum of 3 events, starting from index 0. If we add * another platform that supports more, we need to increase this to be the * largest of all platforms. * * ARMv7 supports up to 32 events: * cycle counter CCNT + 31 events counters CNT0..30. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters. */ #define ARMPMU_MAX_HWEVENTS 32 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events); static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask); static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events); #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu)) /* Set at runtime when we know what CPU type we are. */ static struct arm_pmu *cpu_pmu; enum arm_perf_pmu_ids armpmu_get_pmu_id(void) { int id = -ENODEV; if (cpu_pmu != NULL) id = cpu_pmu->id; return id; } EXPORT_SYMBOL_GPL(armpmu_get_pmu_id); int armpmu_get_max_events(void) { int max_events = 0; if (cpu_pmu != NULL) max_events = cpu_pmu->num_events; return max_events; } EXPORT_SYMBOL_GPL(armpmu_get_max_events); int perf_num_counters(void) { return armpmu_get_max_events(); } EXPORT_SYMBOL_GPL(perf_num_counters); #define HW_OP_UNSUPPORTED 0xFFFF #define C(_x) \ PERF_COUNT_HW_CACHE_##_x #define CACHE_OP_UNSUPPORTED 0xFFFF static int armpmu_map_cache_event(const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u64 config) { unsigned int cache_type, cache_op, cache_result, ret; cache_type = (config >> 0) & 0xff; if (cache_type >= PERF_COUNT_HW_CACHE_MAX) return -EINVAL; cache_op = (config >> 8) & 0xff; if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) return -EINVAL; cache_result = (config >> 16) & 0xff; if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) return -EINVAL; ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; if (ret == CACHE_OP_UNSUPPORTED) return -ENOENT; return ret; } static int armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) { int mapping = (*event_map)[config]; return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; } static int armpmu_map_raw_event(u32 raw_event_mask, u64 config) { return (int)(config & raw_event_mask); } static int map_cpu_event(struct perf_event *event, const unsigned (*event_map)[PERF_COUNT_HW_MAX], const unsigned (*cache_map) [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX], u32 raw_event_mask) { u64 config = event->attr.config; switch (event->attr.type) { case PERF_TYPE_HARDWARE: return armpmu_map_event(event_map, config); case PERF_TYPE_HW_CACHE: return armpmu_map_cache_event(cache_map, config); case PERF_TYPE_RAW: return armpmu_map_raw_event(raw_event_mask, config); } return -ENOENT; } int armpmu_event_set_period(struct perf_event *event, struct hw_perf_event *hwc, int idx) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); s64 left = local64_read(&hwc->period_left); s64 period = hwc->sample_period; int ret = 0; if (unlikely(left <= -period)) { left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (unlikely(left <= 0)) { left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; ret = 1; } if (left > (s64)armpmu->max_period) left = armpmu->max_period; local64_set(&hwc->prev_count, (u64)-left); armpmu->write_counter(idx, (u64)(-left) & 0xffffffff); perf_event_update_userpage(event); return ret; } u64 armpmu_event_update(struct perf_event *event, struct hw_perf_event *hwc, int idx, int overflow) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); u64 delta, prev_raw_count, new_raw_count; again: prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = armpmu->read_counter(idx); if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count) goto again; new_raw_count &= armpmu->max_period; prev_raw_count &= armpmu->max_period; if (overflow) delta = armpmu->max_period - prev_raw_count + new_raw_count + 1; else delta = new_raw_count - prev_raw_count; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); return new_raw_count; } static void armpmu_read(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; /* Don't read disabled counters! */ if (hwc->idx < 0) return; armpmu_event_update(event, hwc, hwc->idx, 0); } static void armpmu_stop(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to update the counter, so ignore * PERF_EF_UPDATE, see comments in armpmu_start(). */ if (!(hwc->state & PERF_HES_STOPPED)) { armpmu->disable(hwc, hwc->idx); barrier(); /* why? */ armpmu_event_update(event, hwc, hwc->idx, 0); hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; } } static void armpmu_start(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; /* * ARM pmu always has to reprogram the period, so ignore * PERF_EF_RELOAD, see the comment below. */ if (flags & PERF_EF_RELOAD) WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; /* * Set the period again. Some counters can't be stopped, so when we * were stopped we simply disabled the IRQ source and the counter * may have been left counting. If we don't do this step then we may * get an interrupt too soon or *way* too late if the overflow has * happened since disabling. */ armpmu_event_set_period(event, hwc, hwc->idx); armpmu->enable(hwc, hwc->idx); } static void armpmu_del(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = armpmu->get_hw_events(); struct hw_perf_event *hwc = &event->hw; int idx = hwc->idx; WARN_ON(idx < 0); armpmu_stop(event, PERF_EF_UPDATE); hw_events->events[idx] = NULL; clear_bit(idx, hw_events->used_mask); perf_event_update_userpage(event); } static int armpmu_add(struct perf_event *event, int flags) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct pmu_hw_events *hw_events = armpmu->get_hw_events(); struct hw_perf_event *hwc = &event->hw; int idx; int err = 0; perf_pmu_disable(event->pmu); /* If we don't have a space for the counter then finish early. */ idx = armpmu->get_event_idx(hw_events, hwc); if (idx < 0) { err = idx; goto out; } /* * If there is an event in the counter we are going to use then make * sure it is disabled. */ event->hw.idx = idx; armpmu->disable(hwc, idx); hw_events->events[idx] = event; hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) armpmu_start(event, PERF_EF_RELOAD); /* Propagate our changes to the userspace mapping. */ perf_event_update_userpage(event); out: perf_pmu_enable(event->pmu); return err; } static int validate_event(struct pmu_hw_events *hw_events, struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event fake_event = event->hw; struct pmu *leader_pmu = event->group_leader->pmu; if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF) return 1; return armpmu->get_event_idx(hw_events, &fake_event) >= 0; } static int validate_group(struct perf_event *event) { struct perf_event *sibling, *leader = event->group_leader; struct pmu_hw_events fake_pmu; memset(&fake_pmu, 0, sizeof(fake_pmu)); if (!validate_event(&fake_pmu, leader)) return -ENOSPC; list_for_each_entry(sibling, &leader->sibling_list, group_entry) { if (!validate_event(&fake_pmu, sibling)) return -ENOSPC; } if (!validate_event(&fake_pmu, event)) return -ENOSPC; return 0; } static irqreturn_t armpmu_platform_irq(int irq, void *dev) { struct arm_pmu *armpmu = (struct arm_pmu *) dev; struct platform_device *plat_device = armpmu->plat_device; struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev); return plat->handle_irq(irq, dev, armpmu->handle_irq); } static void armpmu_release_hardware(struct arm_pmu *armpmu) { int i, irq, irqs; struct platform_device *pmu_device = armpmu->plat_device; irqs = min(pmu_device->num_resources, num_possible_cpus()); for (i = 0; i < irqs; ++i) { if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs)) continue; irq = platform_get_irq(pmu_device, i); if (irq >= 0) free_irq(irq, armpmu); } release_pmu(armpmu->type); } static int armpmu_reserve_hardware(struct arm_pmu *armpmu) { struct arm_pmu_platdata *plat; irq_handler_t handle_irq; int i, err, irq, irqs; struct platform_device *pmu_device = armpmu->plat_device; err = reserve_pmu(armpmu->type); if (err) { pr_warning("unable to reserve pmu\n"); return err; } plat = dev_get_platdata(&pmu_device->dev); if (plat && plat->handle_irq) handle_irq = armpmu_platform_irq; else handle_irq = armpmu->handle_irq; irqs = min(pmu_device->num_resources, num_possible_cpus()); if (irqs < 1) { pr_err("no irqs for PMUs defined\n"); return -ENODEV; } for (i = 0; i < irqs; ++i) { err = 0; irq = platform_get_irq(pmu_device, i); if (irq < 0) continue; /* * If we have a single PMU interrupt that we can't shift, * assume that we're running on a uniprocessor machine and * continue. Otherwise, continue without this interrupt. */ if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) { pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n", irq, i); continue; } err = request_irq(irq, handle_irq, IRQF_DISABLED | IRQF_NOBALANCING, "arm-pmu", armpmu); if (err) { pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); armpmu_release_hardware(armpmu); return err; } cpumask_set_cpu(i, &armpmu->active_irqs); } return 0; } static void hw_perf_event_destroy(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); atomic_t *active_events = &armpmu->active_events; struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex; if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) { armpmu_release_hardware(armpmu); mutex_unlock(pmu_reserve_mutex); } } static int event_requires_mode_exclusion(struct perf_event_attr *attr) { return attr->exclude_idle || attr->exclude_user || attr->exclude_kernel || attr->exclude_hv; } static int __hw_perf_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int mapping, err; mapping = armpmu->map_event(event); if (mapping < 0) { pr_debug("event %x:%llx not supported\n", event->attr.type, event->attr.config); return mapping; } /* * We don't assign an index until we actually place the event onto * hardware. Use -1 to signify that we haven't decided where to put it * yet. For SMP systems, each core has it's own PMU so we can't do any * clever allocation or constraints checking at this point. */ hwc->idx = -1; hwc->config_base = 0; hwc->config = 0; hwc->event_base = 0; /* * Check whether we need to exclude the counter from certain modes. */ if ((!armpmu->set_event_filter || armpmu->set_event_filter(hwc, &event->attr)) && event_requires_mode_exclusion(&event->attr)) { pr_debug("ARM performance counters do not support " "mode exclusion\n"); return -EPERM; } /* * Store the event encoding into the config_base field. */ hwc->config_base |= (unsigned long)mapping; if (!hwc->sample_period) { hwc->sample_period = armpmu->max_period; hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); } err = 0; if (event->group_leader != event) { err = validate_group(event); if (err) return -EINVAL; } return err; } static int armpmu_event_init(struct perf_event *event) { struct arm_pmu *armpmu = to_arm_pmu(event->pmu); int err = 0; atomic_t *active_events = &armpmu->active_events; if (armpmu->map_event(event) == -ENOENT) return -ENOENT; event->destroy = hw_perf_event_destroy; if (!atomic_inc_not_zero(active_events)) { mutex_lock(&armpmu->reserve_mutex); if (atomic_read(active_events) == 0) err = armpmu_reserve_hardware(armpmu); if (!err) atomic_inc(active_events); mutex_unlock(&armpmu->reserve_mutex); } if (err) return err; err = __hw_perf_event_init(event); if (err) hw_perf_event_destroy(event); return err; } static void armpmu_enable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); struct pmu_hw_events *hw_events = armpmu->get_hw_events(); int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); if (enabled) armpmu->start(); } static void armpmu_disable(struct pmu *pmu) { struct arm_pmu *armpmu = to_arm_pmu(pmu); armpmu->stop(); } static void __init armpmu_init(struct arm_pmu *armpmu) { atomic_set(&armpmu->active_events, 0); mutex_init(&armpmu->reserve_mutex); armpmu->pmu = (struct pmu) { .pmu_enable = armpmu_enable, .pmu_disable = armpmu_disable, .event_init = armpmu_event_init, .add = armpmu_add, .del = armpmu_del, .start = armpmu_start, .stop = armpmu_stop, .read = armpmu_read, }; } int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type) { armpmu_init(armpmu); return perf_pmu_register(&armpmu->pmu, name, type); } /* Include the PMU-specific implementations. */ #include "perf_event_xscale.c" #include "perf_event_v6.c" #include "perf_event_v7.c" /* * Ensure the PMU has sane values out of reset. * This requires SMP to be available, so exists as a separate initcall. */ static int __init cpu_pmu_reset(void) { if (cpu_pmu && cpu_pmu->reset) return on_each_cpu(cpu_pmu->reset, NULL, 1); return 0; } arch_initcall(cpu_pmu_reset); /* * PMU platform driver and devicetree bindings. */ static struct of_device_id armpmu_of_device_ids[] = { {.compatible = "arm,cortex-a9-pmu"}, {.compatible = "arm,cortex-a8-pmu"}, {.compatible = "arm,arm1136-pmu"}, {.compatible = "arm,arm1176-pmu"}, {}, }; static struct platform_device_id armpmu_plat_device_ids[] = { {.name = "arm-pmu"}, {}, }; static int __devinit armpmu_device_probe(struct platform_device *pdev) { cpu_pmu->plat_device = pdev; return 0; } static struct platform_driver armpmu_driver = { .driver = { .name = "arm-pmu", .of_match_table = armpmu_of_device_ids, }, .probe = armpmu_device_probe, .id_table = armpmu_plat_device_ids, }; static int __init register_pmu_driver(void) { return platform_driver_register(&armpmu_driver); } device_initcall(register_pmu_driver); static struct pmu_hw_events *armpmu_get_cpu_events(void) { return &__get_cpu_var(cpu_hw_events); } static void __init cpu_pmu_init(struct arm_pmu *armpmu) { int cpu; for_each_possible_cpu(cpu) { struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu); events->events = per_cpu(hw_events, cpu); events->used_mask = per_cpu(used_mask, cpu); raw_spin_lock_init(&events->pmu_lock); } armpmu->get_hw_events = armpmu_get_cpu_events; armpmu->type = ARM_PMU_DEVICE_CPU; } /* * CPU PMU identification and registration. */ static int __init init_hw_perf_events(void) { unsigned long cpuid = read_cpuid_id(); unsigned long implementor = (cpuid & 0xFF000000) >> 24; unsigned long part_number = (cpuid & 0xFFF0); /* ARM Ltd CPUs. */ if (0x41 == implementor) { switch (part_number) { case 0xB360: /* ARM1136 */ case 0xB560: /* ARM1156 */ case 0xB760: /* ARM1176 */ cpu_pmu = armv6pmu_init(); break; case 0xB020: /* ARM11mpcore */ cpu_pmu = armv6mpcore_pmu_init(); break; case 0xC080: /* Cortex-A8 */ cpu_pmu = armv7_a8_pmu_init(); break; case 0xC090: /* Cortex-A9 */ cpu_pmu = armv7_a9_pmu_init(); break; case 0xC050: /* Cortex-A5 */ cpu_pmu = armv7_a5_pmu_init(); break; case 0xC0F0: /* Cortex-A15 */ cpu_pmu = armv7_a15_pmu_init(); break; } /* Intel CPUs [xscale]. */ } else if (0x69 == implementor) { part_number = (cpuid >> 13) & 0x7; switch (part_number) { case 1: cpu_pmu = xscale1pmu_init(); break; case 2: cpu_pmu = xscale2pmu_init(); break; } } if (cpu_pmu) { pr_info("enabled with %s PMU driver, %d counters available\n", cpu_pmu->name, cpu_pmu->num_events); cpu_pmu_init(cpu_pmu); armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW); } else { pr_info("no hardware support available\n"); } return 0; } early_initcall(init_hw_perf_events); /* * Callchain handling code. */ /* * The registers we're interested in are at the end of the variable * length saved register structure. The fp points at the end of this * structure so the address of this struct is: * (struct frame_tail *)(xxx->fp)-1 * * This code has been adapted from the ARM OProfile support. */ struct frame_tail { struct frame_tail __user *fp; unsigned long sp; unsigned long lr; } __attribute__((packed)); /* * Get the return address for a single stackframe and return a pointer to the * next frame tail. */ static struct frame_tail __user * user_backtrace(struct frame_tail __user *tail, struct perf_callchain_entry *entry) { struct frame_tail buftail; /* Also check accessibility of one struct frame_tail beyond */ if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) return NULL; if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail))) return NULL; perf_callchain_store(entry, buftail.lr); /* * Frame pointers should strictly progress back up the stack * (towards higher addresses). */ if (tail + 1 >= buftail.fp) return NULL; return buftail.fp - 1; } void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) { struct frame_tail __user *tail; tail = (struct frame_tail __user *)regs->ARM_fp - 1; while ((entry->nr < PERF_MAX_STACK_DEPTH) && tail && !((unsigned long)tail & 0x3)) tail = user_backtrace(tail, entry); } /* * Gets called by walk_stackframe() for every stackframe. This will be called * whist unwinding the stackframe and is like a subroutine return so we use * the PC. */ static int callchain_trace(struct stackframe *fr, void *data) { struct perf_callchain_entry *entry = data; perf_callchain_store(entry, fr->pc); return 0; } void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) { struct stackframe fr; fr.fp = regs->ARM_fp; fr.sp = regs->ARM_sp; fr.lr = regs->ARM_lr; fr.pc = regs->ARM_pc; walk_stackframe(&fr, callchain_trace, entry); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
You can’t perform that action at this time.