Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
71f676e
Documentation
LICENSES
arch
alpha
arc
arm
arm64
c6x
csky
h8300
hexagon
ia64
m68k
microblaze
mips
nds32
nios2
openrisc
parisc
powerpc
riscv
s390
sh
sparc
um
x86
boot
configs
crypto
entry
events
hyperv
ia32
include
kernel
acpi
apic
cpu
mce
microcode
mtrr
resctrl
.gitignore
Makefile
acrn.c
amd.c
aperfmperf.c
bugs.c
cacheinfo.c
centaur.c
common.c
cpu.h
cpuid-deps.c
cyrix.c
feat_ctl.c
hygon.c
hypervisor.c
intel.c
intel_epb.c
intel_pconfig.c
match.c
mkcapflags.sh
mshyperv.c
perfctr-watchdog.c
powerflags.c
proc.c
rdrand.c
scattered.c
topology.c
transmeta.c
tsx.c
umc.c
umwait.c
vmware.c
zhaoxin.c
fpu
kprobes
.gitignore
Makefile
alternative.c
amd_gart_64.c
amd_nb.c
apb_timer.c
aperture_64.c
apm_32.c
asm-offsets.c
asm-offsets_32.c
asm-offsets_64.c
audit_64.c
bootflag.c
check.c
cpuid.c
crash.c
crash_core_32.c
crash_core_64.c
crash_dump_32.c
crash_dump_64.c
devicetree.c
doublefault_32.c
dumpstack.c
dumpstack_32.c
dumpstack_64.c
e820.c
early-quirks.c
early_printk.c
ebda.c
eisa.c
espfix_64.c
ftrace.c
ftrace_32.S
ftrace_64.S
head32.c
head64.c
head_32.S
head_64.S
hpet.c
hw_breakpoint.c
i8237.c
i8253.c
i8259.c
idt.c
ima_arch.c
io_delay.c
ioport.c
irq.c
irq_32.c
irq_64.c
irq_work.c
irqflags.S
irqinit.c
itmt.c
jailhouse.c
jump_label.c
kdebugfs.c
kexec-bzimage64.c
kgdb.c
ksysfs.c
kvm.c
kvmclock.c
ldt.c
machine_kexec_32.c
machine_kexec_64.c
mmconf-fam10h_64.c
module.c
mpparse.c
msr.c
nmi.c
nmi_selftest.c
paravirt-spinlocks.c
paravirt.c
paravirt_patch.c
pci-dma.c
pci-iommu_table.c
pci-swiotlb.c
pcspeaker.c
perf_regs.c
platform-quirks.c
pmem.c
probe_roms.c
process.c
process.h
process_32.c
process_64.c
ptrace.c
pvclock.c
quirks.c
reboot.c
reboot_fixups_32.c
relocate_kernel_32.S
relocate_kernel_64.S
resource.c
rtc.c
setup.c
setup_percpu.c
sev-es-shared.c
sev-es.c
sev_verify_cbit.S
signal.c
signal_compat.c
smp.c
smpboot.c
stacktrace.c
static_call.c
step.c
sys_ia32.c
sys_x86_64.c
sysfb.c
sysfb_efi.c
sysfb_simplefb.c
tboot.c
time.c
tls.c
tls.h
topology.c
trace_clock.c
tracepoint.c
traps.c
tsc.c
tsc_msr.c
tsc_sync.c
umip.c
unwind_frame.c
unwind_guess.c
unwind_orc.c
uprobes.c
verify_cpu.S
vm86_32.c
vmlinux.lds.S
vsmp_64.c
x86_init.c
kvm
lib
math-emu
mm
net
oprofile
pci
platform
power
purgatory
ras
realmode
tools
um
video
xen
.gitignore
Kbuild
Kconfig
Kconfig.assembler
Kconfig.cpu
Kconfig.debug
Makefile
Makefile.um
Makefile_32.cpu
xtensa
.gitignore
Kconfig
block
certs
crypto
debian.master
debian
drivers
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
ubuntu
usr
virt
.clang-format
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
snapcraft.yaml
update-version-dkms
Breadcrumbs
linux
/
arch
/
x86
/
kernel
/
cpu
/
cacheinfo.c
Copy path
Blame
Blame
Latest commit
History
History
1038 lines (886 loc) · 28.4 KB
Breadcrumbs
linux
/
arch
/
x86
/
kernel
/
cpu
/
cacheinfo.c
Top
File metadata and controls
Code
Blame
1038 lines (886 loc) · 28.4 KB
Raw
// SPDX-License-Identifier: GPL-2.0 /* * Routines to identify caches on Intel CPU. * * Changes: * Venkatesh Pallipadi : Adding cache identification through cpuid(4) * Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. */ #include <linux/slab.h> #include <linux/cacheinfo.h> #include <linux/cpu.h> #include <linux/sched.h> #include <linux/capability.h> #include <linux/sysfs.h> #include <linux/pci.h> #include <asm/cpufeature.h> #include <asm/cacheinfo.h> #include <asm/amd_nb.h> #include <asm/smp.h> #include "cpu.h" #define LVL_1_INST 1 #define LVL_1_DATA 2 #define LVL_2 3 #define LVL_3 4 #define LVL_TRACE 5 struct _cache_table { unsigned char descriptor; char cache_type; short size; }; #define MB(x) ((x) * 1024) /* All the cache descriptor types we care about (no TLB or trace cache entries) */ static const struct _cache_table cache_table[] = { { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */ { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */ { 0x0e, LVL_1_DATA, 24 }, /* 6-way set assoc, 64 byte line size */ { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */ { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */ { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */ { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */ { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */ { 0x48, LVL_2, MB(3) }, /* 12-way set assoc, 64 byte line size */ { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */ { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */ { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */ { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */ { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */ { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */ { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ { 0x80, LVL_2, 512 }, /* 8-way set assoc, 64 byte line size */ { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */ { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */ { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */ { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */ { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */ { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */ { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */ { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */ { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */ { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */ { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */ { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */ { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */ { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */ { 0x00, 0, 0} }; enum _cache_type { CTYPE_NULL = 0, CTYPE_DATA = 1, CTYPE_INST = 2, CTYPE_UNIFIED = 3 }; union _cpuid4_leaf_eax { struct { enum _cache_type type:5; unsigned int level:3; unsigned int is_self_initializing:1; unsigned int is_fully_associative:1; unsigned int reserved:4; unsigned int num_threads_sharing:12; unsigned int num_cores_on_die:6; } split; u32 full; }; union _cpuid4_leaf_ebx { struct { unsigned int coherency_line_size:12; unsigned int physical_line_partition:10; unsigned int ways_of_associativity:10; } split; u32 full; }; union _cpuid4_leaf_ecx { struct { unsigned int number_of_sets:32; } split; u32 full; }; struct _cpuid4_info_regs { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned int id; unsigned long size; struct amd_northbridge *nb; }; static unsigned short num_cache_leaves; /* AMD doesn't have CPUID4. Emulate it here to report the same information to the user. This makes some assumptions about the machine: L2 not shared, no SMT etc. that is currently true on AMD CPUs. In theory the TLBs could be reported as fake type (they are in "dummy"). Maybe later */ union l1_cache { struct { unsigned line_size:8; unsigned lines_per_tag:8; unsigned assoc:8; unsigned size_in_kb:8; }; unsigned val; }; union l2_cache { struct { unsigned line_size:8; unsigned lines_per_tag:4; unsigned assoc:4; unsigned size_in_kb:16; }; unsigned val; }; union l3_cache { struct { unsigned line_size:8; unsigned lines_per_tag:4; unsigned assoc:4; unsigned res:2; unsigned size_encoded:14; }; unsigned val; }; static const unsigned short assocs[] = { [1] = 1, [2] = 2, [4] = 4, [6] = 8, [8] = 16, [0xa] = 32, [0xb] = 48, [0xc] = 64, [0xd] = 96, [0xe] = 128, [0xf] = 0xffff /* fully associative - no way to show this currently */ }; static const unsigned char levels[] = { 1, 1, 2, 3 }; static const unsigned char types[] = { 1, 2, 3, 3 }; static const enum cache_type cache_type_map[] = { [CTYPE_NULL] = CACHE_TYPE_NOCACHE, [CTYPE_DATA] = CACHE_TYPE_DATA, [CTYPE_INST] = CACHE_TYPE_INST, [CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED, }; static void amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, union _cpuid4_leaf_ebx *ebx, union _cpuid4_leaf_ecx *ecx) { unsigned dummy; unsigned line_size, lines_per_tag, assoc, size_in_kb; union l1_cache l1i, l1d; union l2_cache l2; union l3_cache l3; union l1_cache *l1 = &l1d; eax->full = 0; ebx->full = 0; ecx->full = 0; cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); switch (leaf) { case 1: l1 = &l1i; fallthrough; case 0: if (!l1->val) return; assoc = assocs[l1->assoc]; line_size = l1->line_size; lines_per_tag = l1->lines_per_tag; size_in_kb = l1->size_in_kb; break; case 2: if (!l2.val) return; assoc = assocs[l2.assoc]; line_size = l2.line_size; lines_per_tag = l2.lines_per_tag; /* cpu_data has errata corrections for K7 applied */ size_in_kb = __this_cpu_read(cpu_info.x86_cache_size); break; case 3: if (!l3.val) return; assoc = assocs[l3.assoc]; line_size = l3.line_size; lines_per_tag = l3.lines_per_tag; size_in_kb = l3.size_encoded * 512; if (boot_cpu_has(X86_FEATURE_AMD_DCM)) { size_in_kb = size_in_kb >> 1; assoc = assoc >> 1; } break; default: return; } eax->split.is_self_initializing = 1; eax->split.type = types[leaf]; eax->split.level = levels[leaf]; eax->split.num_threads_sharing = 0; eax->split.num_cores_on_die = __this_cpu_read(cpu_info.x86_max_cores) - 1; if (assoc == 0xffff) eax->split.is_fully_associative = 1; ebx->split.coherency_line_size = line_size - 1; ebx->split.ways_of_associativity = assoc - 1; ebx->split.physical_line_partition = lines_per_tag - 1; ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / (ebx->split.ways_of_associativity + 1) - 1; } #if defined(CONFIG_AMD_NB) && defined(CONFIG_SYSFS) /* * L3 cache descriptors */ static void amd_calc_l3_indices(struct amd_northbridge *nb) { struct amd_l3_cache *l3 = &nb->l3_cache; unsigned int sc0, sc1, sc2, sc3; u32 val = 0; pci_read_config_dword(nb->misc, 0x1C4, &val); /* calculate subcache sizes */ l3->subcaches[0] = sc0 = !(val & BIT(0)); l3->subcaches[1] = sc1 = !(val & BIT(4)); if (boot_cpu_data.x86 == 0x15) { l3->subcaches[0] = sc0 += !(val & BIT(1)); l3->subcaches[1] = sc1 += !(val & BIT(5)); } l3->subcaches[2] = sc2 = !(val & BIT(8)) + !(val & BIT(9)); l3->subcaches[3] = sc3 = !(val & BIT(12)) + !(val & BIT(13)); l3->indices = (max(max3(sc0, sc1, sc2), sc3) << 10) - 1; } /* * check whether a slot used for disabling an L3 index is occupied. * @l3: L3 cache descriptor * @slot: slot number (0..1) * * @returns: the disabled index if used or negative value if slot free. */ static int amd_get_l3_disable_slot(struct amd_northbridge *nb, unsigned slot) { unsigned int reg = 0; pci_read_config_dword(nb->misc, 0x1BC + slot * 4, ®); /* check whether this slot is activated already */ if (reg & (3UL << 30)) return reg & 0xfff; return -1; } static ssize_t show_cache_disable(struct cacheinfo *this_leaf, char *buf, unsigned int slot) { int index; struct amd_northbridge *nb = this_leaf->priv; index = amd_get_l3_disable_slot(nb, slot); if (index >= 0) return sprintf(buf, "%d\n", index); return sprintf(buf, "FREE\n"); } #define SHOW_CACHE_DISABLE(slot) \ static ssize_t \ cache_disable_##slot##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ return show_cache_disable(this_leaf, buf, slot); \ } SHOW_CACHE_DISABLE(0) SHOW_CACHE_DISABLE(1) static void amd_l3_disable_index(struct amd_northbridge *nb, int cpu, unsigned slot, unsigned long idx) { int i; idx |= BIT(30); /* * disable index in all 4 subcaches */ for (i = 0; i < 4; i++) { u32 reg = idx | (i << 20); if (!nb->l3_cache.subcaches[i]) continue; pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); /* * We need to WBINVD on a core on the node containing the L3 * cache which indices we disable therefore a simple wbinvd() * is not sufficient. */ wbinvd_on_cpu(cpu); reg |= BIT(31); pci_write_config_dword(nb->misc, 0x1BC + slot * 4, reg); } } /* * disable a L3 cache index by using a disable-slot * * @l3: L3 cache descriptor * @cpu: A CPU on the node containing the L3 cache * @slot: slot number (0..1) * @index: index to disable * * @return: 0 on success, error status on failure */ static int amd_set_l3_disable_slot(struct amd_northbridge *nb, int cpu, unsigned slot, unsigned long index) { int ret = 0; /* check if @slot is already used or the index is already disabled */ ret = amd_get_l3_disable_slot(nb, slot); if (ret >= 0) return -EEXIST; if (index > nb->l3_cache.indices) return -EINVAL; /* check whether the other slot has disabled the same index already */ if (index == amd_get_l3_disable_slot(nb, !slot)) return -EEXIST; amd_l3_disable_index(nb, cpu, slot, index); return 0; } static ssize_t store_cache_disable(struct cacheinfo *this_leaf, const char *buf, size_t count, unsigned int slot) { unsigned long val = 0; int cpu, err = 0; struct amd_northbridge *nb = this_leaf->priv; if (!capable(CAP_SYS_ADMIN)) return -EPERM; cpu = cpumask_first(&this_leaf->shared_cpu_map); if (kstrtoul(buf, 10, &val) < 0) return -EINVAL; err = amd_set_l3_disable_slot(nb, cpu, slot, val); if (err) { if (err == -EEXIST) pr_warn("L3 slot %d in use/index already disabled!\n", slot); return err; } return count; } #define STORE_CACHE_DISABLE(slot) \ static ssize_t \ cache_disable_##slot##_store(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t count) \ { \ struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ return store_cache_disable(this_leaf, buf, count, slot); \ } STORE_CACHE_DISABLE(0) STORE_CACHE_DISABLE(1) static ssize_t subcaches_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); int cpu = cpumask_first(&this_leaf->shared_cpu_map); return sprintf(buf, "%x\n", amd_get_subcaches(cpu)); } static ssize_t subcaches_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct cacheinfo *this_leaf = dev_get_drvdata(dev); int cpu = cpumask_first(&this_leaf->shared_cpu_map); unsigned long val; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (kstrtoul(buf, 16, &val) < 0) return -EINVAL; if (amd_set_subcaches(cpu, val)) return -EINVAL; return count; } static DEVICE_ATTR_RW(cache_disable_0); static DEVICE_ATTR_RW(cache_disable_1); static DEVICE_ATTR_RW(subcaches); static umode_t cache_private_attrs_is_visible(struct kobject *kobj, struct attribute *attr, int unused) { struct device *dev = kobj_to_dev(kobj); struct cacheinfo *this_leaf = dev_get_drvdata(dev); umode_t mode = attr->mode; if (!this_leaf->priv) return 0; if ((attr == &dev_attr_subcaches.attr) && amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) return mode; if ((attr == &dev_attr_cache_disable_0.attr || attr == &dev_attr_cache_disable_1.attr) && amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) return mode; return 0; } static struct attribute_group cache_private_group = { .is_visible = cache_private_attrs_is_visible, }; static void init_amd_l3_attrs(void) { int n = 1; static struct attribute **amd_l3_attrs; if (amd_l3_attrs) /* already initialized */ return; if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) n += 2; if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) n += 1; amd_l3_attrs = kcalloc(n, sizeof(*amd_l3_attrs), GFP_KERNEL); if (!amd_l3_attrs) return; n = 0; if (amd_nb_has_feature(AMD_NB_L3_INDEX_DISABLE)) { amd_l3_attrs[n++] = &dev_attr_cache_disable_0.attr; amd_l3_attrs[n++] = &dev_attr_cache_disable_1.attr; } if (amd_nb_has_feature(AMD_NB_L3_PARTITIONING)) amd_l3_attrs[n++] = &dev_attr_subcaches.attr; cache_private_group.attrs = amd_l3_attrs; } const struct attribute_group * cache_get_priv_group(struct cacheinfo *this_leaf) { struct amd_northbridge *nb = this_leaf->priv; if (this_leaf->level < 3 || !nb) return NULL; if (nb && nb->l3_cache.indices) init_amd_l3_attrs(); return &cache_private_group; } static void amd_init_l3_cache(struct _cpuid4_info_regs *this_leaf, int index) { int node; /* only for L3, and not in virtualized environments */ if (index < 3) return; node = amd_get_nb_id(smp_processor_id()); this_leaf->nb = node_to_amd_nb(node); if (this_leaf->nb && !this_leaf->nb->l3_cache.indices) amd_calc_l3_indices(this_leaf->nb); } #else #define amd_init_l3_cache(x, y) #endif /* CONFIG_AMD_NB && CONFIG_SYSFS */ static int cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf) { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned edx; if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { if (boot_cpu_has(X86_FEATURE_TOPOEXT)) cpuid_count(0x8000001d, index, &eax.full, &ebx.full, &ecx.full, &edx); else amd_cpuid4(index, &eax, &ebx, &ecx); amd_init_l3_cache(this_leaf, index); } else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { cpuid_count(0x8000001d, index, &eax.full, &ebx.full, &ecx.full, &edx); amd_init_l3_cache(this_leaf, index); } else { cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); } if (eax.split.type == CTYPE_NULL) return -EIO; /* better error ? */ this_leaf->eax = eax; this_leaf->ebx = ebx; this_leaf->ecx = ecx; this_leaf->size = (ecx.split.number_of_sets + 1) * (ebx.split.coherency_line_size + 1) * (ebx.split.physical_line_partition + 1) * (ebx.split.ways_of_associativity + 1); return 0; } static int find_num_cache_leaves(struct cpuinfo_x86 *c) { unsigned int eax, ebx, ecx, edx, op; union _cpuid4_leaf_eax cache_eax; int i = -1; if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) op = 0x8000001d; else op = 4; do { ++i; /* Do cpuid(op) loop to find out num_cache_leaves */ cpuid_count(op, i, &eax, &ebx, &ecx, &edx); cache_eax.full = eax; } while (cache_eax.split.type != CTYPE_NULL); return i; } void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, int cpu) { /* * We may have multiple LLCs if L3 caches exist, so check if we * have an L3 cache by looking at the L3 cache CPUID leaf. */ if (!cpuid_edx(0x80000006)) return; if (c->x86 < 0x17) { /* LLC is at the node level. */ per_cpu(cpu_llc_id, cpu) = c->cpu_die_id; } else if (c->x86 == 0x17 && c->x86_model <= 0x1F) { /* * LLC is at the core complex level. * Core complex ID is ApicId[3] for these processors. */ per_cpu(cpu_llc_id, cpu) = c->apicid >> 3; } else { /* * LLC ID is calculated from the number of threads sharing the * cache. * */ u32 eax, ebx, ecx, edx, num_sharing_cache = 0; u32 llc_index = find_num_cache_leaves(c) - 1; cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx); if (eax) num_sharing_cache = ((eax >> 14) & 0xfff) + 1; if (num_sharing_cache) { int bits = get_count_order(num_sharing_cache); per_cpu(cpu_llc_id, cpu) = c->apicid >> bits; } } } void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c, int cpu) { /* * We may have multiple LLCs if L3 caches exist, so check if we * have an L3 cache by looking at the L3 cache CPUID leaf. */ if (!cpuid_edx(0x80000006)) return; /* * LLC is at the core complex level. * Core complex ID is ApicId[3] for these processors. */ per_cpu(cpu_llc_id, cpu) = c->apicid >> 3; } void init_amd_cacheinfo(struct cpuinfo_x86 *c) { if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { num_cache_leaves = find_num_cache_leaves(c); } else if (c->extended_cpuid_level >= 0x80000006) { if (cpuid_edx(0x80000006) & 0xf000) num_cache_leaves = 4; else num_cache_leaves = 3; } } void init_hygon_cacheinfo(struct cpuinfo_x86 *c) { num_cache_leaves = find_num_cache_leaves(c); } void init_intel_cacheinfo(struct cpuinfo_x86 *c) { /* Cache sizes */ unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; #ifdef CONFIG_SMP unsigned int cpu = c->cpu_index; #endif if (c->cpuid_level > 3) { static int is_initialized; if (is_initialized == 0) { /* Init num_cache_leaves from boot CPU */ num_cache_leaves = find_num_cache_leaves(c); is_initialized++; } /* * Whenever possible use cpuid(4), deterministic cache * parameters cpuid leaf to find the cache details */ for (i = 0; i < num_cache_leaves; i++) { struct _cpuid4_info_regs this_leaf = {}; int retval; retval = cpuid4_cache_lookup_regs(i, &this_leaf); if (retval < 0) continue; switch (this_leaf.eax.split.level) { case 1: if (this_leaf.eax.split.type == CTYPE_DATA) new_l1d = this_leaf.size/1024; else if (this_leaf.eax.split.type == CTYPE_INST) new_l1i = this_leaf.size/1024; break; case 2: new_l2 = this_leaf.size/1024; num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; index_msb = get_count_order(num_threads_sharing); l2_id = c->apicid & ~((1 << index_msb) - 1); break; case 3: new_l3 = this_leaf.size/1024; num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; index_msb = get_count_order(num_threads_sharing); l3_id = c->apicid & ~((1 << index_msb) - 1); break; default: break; } } } /* * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for * trace cache */ if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { /* supports eax=2 call */ int j, n; unsigned int regs[4]; unsigned char *dp = (unsigned char *)regs; int only_trace = 0; if (num_cache_leaves != 0 && c->x86 == 15) only_trace = 1; /* Number of times to iterate */ n = cpuid_eax(2) & 0xFF; for (i = 0 ; i < n ; i++) { cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); /* If bit 31 is set, this is an unknown format */ for (j = 0 ; j < 3 ; j++) if (regs[j] & (1 << 31)) regs[j] = 0; /* Byte 0 is level count, not a descriptor */ for (j = 1 ; j < 16 ; j++) { unsigned char des = dp[j]; unsigned char k = 0; /* look up this descriptor in the table */ while (cache_table[k].descriptor != 0) { if (cache_table[k].descriptor == des) { if (only_trace && cache_table[k].cache_type != LVL_TRACE) break; switch (cache_table[k].cache_type) { case LVL_1_INST: l1i += cache_table[k].size; break; case LVL_1_DATA: l1d += cache_table[k].size; break; case LVL_2: l2 += cache_table[k].size; break; case LVL_3: l3 += cache_table[k].size; break; case LVL_TRACE: trace += cache_table[k].size; break; } break; } k++; } } } } if (new_l1d) l1d = new_l1d; if (new_l1i) l1i = new_l1i; if (new_l2) { l2 = new_l2; #ifdef CONFIG_SMP per_cpu(cpu_llc_id, cpu) = l2_id; #endif } if (new_l3) { l3 = new_l3; #ifdef CONFIG_SMP per_cpu(cpu_llc_id, cpu) = l3_id; #endif } #ifdef CONFIG_SMP /* * If cpu_llc_id is not yet set, this means cpuid_level < 4 which in * turns means that the only possibility is SMT (as indicated in * cpuid1). Since cpuid2 doesn't specify shared caches, and we know * that SMT shares all caches, we can unconditionally set cpu_llc_id to * c->phys_proc_id. */ if (per_cpu(cpu_llc_id, cpu) == BAD_APICID) per_cpu(cpu_llc_id, cpu) = c->phys_proc_id; #endif c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); if (!l2) cpu_detect_cache_sizes(c); } static int __cache_amd_cpumap_setup(unsigned int cpu, int index, struct _cpuid4_info_regs *base) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct cacheinfo *this_leaf; int i, sibling; /* * For L3, always use the pre-calculated cpu_llc_shared_mask * to derive shared_cpu_map. */ if (index == 3) { for_each_cpu(i, cpu_llc_shared_mask(cpu)) { this_cpu_ci = get_cpu_cacheinfo(i); if (!this_cpu_ci->info_list) continue; this_leaf = this_cpu_ci->info_list + index; for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) { if (!cpu_online(sibling)) continue; cpumask_set_cpu(sibling, &this_leaf->shared_cpu_map); } } } else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { unsigned int apicid, nshared, first, last; nshared = base->eax.split.num_threads_sharing + 1; apicid = cpu_data(cpu).apicid; first = apicid - (apicid % nshared); last = first + nshared - 1; for_each_online_cpu(i) { this_cpu_ci = get_cpu_cacheinfo(i); if (!this_cpu_ci->info_list) continue; apicid = cpu_data(i).apicid; if ((apicid < first) || (apicid > last)) continue; this_leaf = this_cpu_ci->info_list + index; for_each_online_cpu(sibling) { apicid = cpu_data(sibling).apicid; if ((apicid < first) || (apicid > last)) continue; cpumask_set_cpu(sibling, &this_leaf->shared_cpu_map); } } } else return 0; return 1; } static void __cache_cpumap_setup(unsigned int cpu, int index, struct _cpuid4_info_regs *base) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct cacheinfo *this_leaf, *sibling_leaf; unsigned long num_threads_sharing; int index_msb, i; struct cpuinfo_x86 *c = &cpu_data(cpu); if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) { if (__cache_amd_cpumap_setup(cpu, index, base)) return; } this_leaf = this_cpu_ci->info_list + index; num_threads_sharing = 1 + base->eax.split.num_threads_sharing; cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); if (num_threads_sharing == 1) return; index_msb = get_count_order(num_threads_sharing); for_each_online_cpu(i) if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) { struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); if (i == cpu || !sib_cpu_ci->info_list) continue;/* skip if itself or no cacheinfo */ sibling_leaf = sib_cpu_ci->info_list + index; cpumask_set_cpu(i, &this_leaf->shared_cpu_map); cpumask_set_cpu(cpu, &sibling_leaf->shared_cpu_map); } } static void ci_leaf_init(struct cacheinfo *this_leaf, struct _cpuid4_info_regs *base) { this_leaf->id = base->id; this_leaf->attributes = CACHE_ID; this_leaf->level = base->eax.split.level; this_leaf->type = cache_type_map[base->eax.split.type]; this_leaf->coherency_line_size = base->ebx.split.coherency_line_size + 1; this_leaf->ways_of_associativity = base->ebx.split.ways_of_associativity + 1; this_leaf->size = base->size; this_leaf->number_of_sets = base->ecx.split.number_of_sets + 1; this_leaf->physical_line_partition = base->ebx.split.physical_line_partition + 1; this_leaf->priv = base->nb; } static int __init_cache_level(unsigned int cpu) { struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); if (!num_cache_leaves) return -ENOENT; if (!this_cpu_ci) return -EINVAL; this_cpu_ci->num_levels = 3; this_cpu_ci->num_leaves = num_cache_leaves; return 0; } /* * The max shared threads number comes from CPUID.4:EAX[25-14] with input * ECX as cache index. Then right shift apicid by the number's order to get * cache id for this cache node. */ static void get_cache_id(int cpu, struct _cpuid4_info_regs *id4_regs) { struct cpuinfo_x86 *c = &cpu_data(cpu); unsigned long num_threads_sharing; int index_msb; num_threads_sharing = 1 + id4_regs->eax.split.num_threads_sharing; index_msb = get_count_order(num_threads_sharing); id4_regs->id = c->apicid >> index_msb; } static int __populate_cache_leaves(unsigned int cpu) { unsigned int idx, ret; struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); struct cacheinfo *this_leaf = this_cpu_ci->info_list; struct _cpuid4_info_regs id4_regs = {}; for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) { ret = cpuid4_cache_lookup_regs(idx, &id4_regs); if (ret) return ret; get_cache_id(cpu, &id4_regs); ci_leaf_init(this_leaf++, &id4_regs); __cache_cpumap_setup(cpu, idx, &id4_regs); } this_cpu_ci->cpu_map_populated = true; return 0; } DEFINE_SMP_CALL_CACHE_FUNCTION(init_cache_level) DEFINE_SMP_CALL_CACHE_FUNCTION(populate_cache_leaves)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
You can’t perform that action at this time.