Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
7304d19
Documentation
LICENSES
arch
block
certs
crypto
drivers
accel
accessibility
acpi
amba
android
ata
atm
auxdisplay
base
bcma
block
bluetooth
bus
cache
cdrom
cdx
char
clk
clocksource
comedi
connector
counter
cpufreq
cpuidle
crypto
cxl
dax
dca
devfreq
dio
dma-buf
dma
dpll
edac
eisa
extcon
firewire
firmware
fpga
fsi
gnss
gpio
gpu
greybus
hid
hsi
hte
hv
hwmon
hwspinlock
hwtracing
i2c
i3c
idle
iio
infiniband
input
interconnect
iommu
ipack
irqchip
isdn
leds
macintosh
mailbox
mcb
md
media
memory
memstick
message
mfd
misc
mmc
most
mtd
mux
net
nfc
ntb
nubus
nvdimm
nvme
nvmem
of
opp
parisc
parport
pci
pcmcia
peci
perf
phy
pinctrl
platform
pmdomain
pnp
power
powercap
pps
ps3
ptp
pwm
rapidio
ras
regulator
remoteproc
reset
rpmsg
rtc
s390
sbus
scsi
sh
siox
slimbus
soc
soundwire
spi
Kconfig
Makefile
atmel-quadspi.c
internals.h
spi-airoha-snfi.c
spi-altera-core.c
spi-altera-dfl.c
spi-altera-platform.c
spi-amd.c
spi-amlogic-spifc-a1.c
spi-apple.c
spi-ar934x.c
spi-armada-3700.c
spi-aspeed-smc.c
spi-at91-usart.c
spi-ath79.c
spi-atmel.c
spi-au1550.c
spi-axi-spi-engine.c
spi-bcm-qspi.c
spi-bcm-qspi.h
spi-bcm2835.c
spi-bcm2835aux.c
spi-bcm63xx-hsspi.c
spi-bcm63xx.c
spi-bcmbca-hsspi.c
spi-bitbang-txrx.h
spi-bitbang.c
spi-brcmstb-qspi.c
spi-butterfly.c
spi-cadence-quadspi.c
spi-cadence-xspi.c
spi-cadence.c
spi-cavium-octeon.c
spi-cavium-thunderx.c
spi-cavium.c
spi-cavium.h
spi-ch341.c
spi-clps711x.c
spi-coldfire-qspi.c
spi-cs42l43.c
spi-davinci.c
spi-dln2.c
spi-dw-bt1.c
spi-dw-core.c
spi-dw-dma.c
spi-dw-mmio.c
spi-dw-pci.c
spi-dw.h
spi-ep93xx.c
spi-falcon.c
spi-fsi.c
spi-fsl-cpm.c
spi-fsl-cpm.h
spi-fsl-dspi.c
spi-fsl-espi.c
spi-fsl-lib.c
spi-fsl-lib.h
spi-fsl-lpspi.c
spi-fsl-qspi.c
spi-fsl-spi.c
spi-fsl-spi.h
spi-geni-qcom.c
spi-gpio.c
spi-gxp.c
spi-hisi-kunpeng.c
spi-hisi-sfc-v3xx.c
spi-img-spfi.c
spi-imx.c
spi-ingenic.c
spi-intel-pci.c
spi-intel-platform.c
spi-intel.c
spi-intel.h
spi-iproc-qspi.c
spi-jcore.c
spi-kspi2.c
spi-lantiq-ssc.c
spi-ljca.c
spi-lm70llp.c
spi-loongson-core.c
spi-loongson-pci.c
spi-loongson-plat.c
spi-loongson.h
spi-loopback-test.c
spi-lp8841-rtc.c
spi-mem.c
spi-meson-spicc.c
spi-meson-spifc.c
spi-microchip-core-qspi.c
spi-microchip-core.c
spi-mpc512x-psc.c
spi-mpc52xx-psc.c
spi-mpc52xx.c
spi-mt65xx.c
spi-mt7621.c
spi-mtk-nor.c
spi-mtk-snfi.c
spi-mux.c
spi-mxic.c
spi-mxs.c
spi-npcm-fiu.c
spi-npcm-pspi.c
spi-nxp-fspi.c
spi-oc-tiny.c
spi-offload-trigger-pwm.c
spi-offload.c
spi-omap-uwire.c
spi-omap2-mcspi.c
spi-orion.c
spi-pci1xxxx.c
spi-pic32-sqi.c
spi-pic32.c
spi-pl022.c
spi-ppc4xx.c
spi-pxa2xx-dma.c
spi-pxa2xx-pci.c
spi-pxa2xx-platform.c
spi-pxa2xx.c
spi-pxa2xx.h
spi-qcom-qspi.c
spi-qpic-snand.c
spi-qup.c
spi-rb4xx.c
spi-realtek-rtl-snand.c
spi-realtek-rtl.c
spi-rockchip-sfc.c
spi-rockchip.c
spi-rpc-if.c
spi-rspi.c
spi-rzv2m-csi.c
spi-s3c64xx.c
spi-sc18is602.c
spi-sh-hspi.c
spi-sh-msiof.c
spi-sh-sci.c
spi-sh.c
spi-sifive.c
spi-slave-mt27xx.c
spi-slave-system-control.c
spi-slave-time.c
spi-sn-f-ospi.c
spi-sprd-adi.c
spi-sprd.c
spi-st-ssc4.c
spi-stm32-qspi.c
spi-stm32.c
spi-sun4i.c
spi-sun6i.c
spi-sunplus-sp7021.c
spi-synquacer.c
spi-tegra114.c
spi-tegra20-sflash.c
spi-tegra20-slink.c
spi-tegra210-quad.c
spi-test.h
spi-ti-qspi.c
spi-tle62x0.c
spi-topcliff-pch.c
spi-uniphier.c
spi-wpcm-fiu.c
spi-xcomm.c
spi-xilinx.c
spi-xlp.c
spi-xtensa-xtfpga.c
spi-zynq-qspi.c
spi-zynqmp-gqspi.c
spi.c
spidev.c
spmi
ssb
staging
target
tc
tee
thermal
thunderbolt
tty
ufs
uio
usb
vdpa
vfio
vhost
video
virt
virtio
w1
watchdog
xen
zorro
Kconfig
Makefile
fs
include
init
io_uring
ipc
kernel
lib
mm
net
rust
samples
scripts
security
sound
tools
usr
virt
.clang-format
.clippy.toml
.cocciconfig
.editorconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
.rustfmt.toml
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
drivers
/
spi
/
spi-qpic-snand.c
Copy path
Blame
Blame
Latest commit
History
History
1631 lines (1320 loc) · 45.3 KB
Breadcrumbs
linux
/
drivers
/
spi
/
spi-qpic-snand.c
Top
File metadata and controls
Code
Blame
1631 lines (1320 loc) · 45.3 KB
Raw
/* * SPDX-License-Identifier: GPL-2.0 * * Copyright (c) 2023, Qualcomm Innovation Center, Inc. All rights reserved. * * Authors: * Md Sadre Alam <quic_mdalam@quicinc.com> * Sricharan R <quic_srichara@quicinc.com> * Varadarajan Narayanan <quic_varada@quicinc.com> */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/dma/qcom_adm.h> #include <linux/dma/qcom_bam_dma.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/mtd/nand-qpic-common.h> #include <linux/mtd/spinand.h> #include <linux/bitfield.h> #define NAND_FLASH_SPI_CFG 0xc0 #define NAND_NUM_ADDR_CYCLES 0xc4 #define NAND_BUSY_CHECK_WAIT_CNT 0xc8 #define NAND_FLASH_FEATURES 0xf64 /* QSPI NAND config reg bits */ #define LOAD_CLK_CNTR_INIT_EN BIT(28) #define CLK_CNTR_INIT_VAL_VEC 0x924 #define CLK_CNTR_INIT_VAL_VEC_MASK GENMASK(27, 16) #define FEA_STATUS_DEV_ADDR 0xc0 #define FEA_STATUS_DEV_ADDR_MASK GENMASK(15, 8) #define SPI_CFG BIT(0) #define SPI_NUM_ADDR 0xDA4DB #define SPI_WAIT_CNT 0x10 #define QPIC_QSPI_NUM_CS 1 #define SPI_TRANSFER_MODE_x1 BIT(29) #define SPI_TRANSFER_MODE_x4 (3 << 29) #define SPI_WP BIT(28) #define SPI_HOLD BIT(27) #define QPIC_SET_FEATURE BIT(31) #define SPINAND_RESET 0xff #define SPINAND_READID 0x9f #define SPINAND_GET_FEATURE 0x0f #define SPINAND_SET_FEATURE 0x1f #define SPINAND_READ 0x13 #define SPINAND_ERASE 0xd8 #define SPINAND_WRITE_EN 0x06 #define SPINAND_PROGRAM_EXECUTE 0x10 #define SPINAND_PROGRAM_LOAD 0x84 #define ACC_FEATURE 0xe #define BAD_BLOCK_MARKER_SIZE 0x2 #define OOB_BUF_SIZE 128 #define ecceng_to_qspi(eng) container_of(eng, struct qpic_spi_nand, ecc_eng) struct qpic_snand_op { u32 cmd_reg; u32 addr1_reg; u32 addr2_reg; }; struct snandc_read_status { __le32 snandc_flash; __le32 snandc_buffer; __le32 snandc_erased_cw; }; /* * ECC state struct * @corrected: ECC corrected * @bitflips: Max bit flip * @failed: ECC failed */ struct qcom_ecc_stats { u32 corrected; u32 bitflips; u32 failed; }; struct qpic_ecc { struct device *dev; int ecc_bytes_hw; int spare_bytes; int bbm_size; int ecc_mode; int bytes; int steps; int step_size; int strength; int cw_size; int cw_data; u32 cfg0; u32 cfg1; u32 cfg0_raw; u32 cfg1_raw; u32 ecc_buf_cfg; u32 ecc_bch_cfg; u32 clrflashstatus; u32 clrreadstatus; bool bch_enabled; }; struct qpic_spi_nand { struct qcom_nand_controller *snandc; struct spi_controller *ctlr; struct mtd_info *mtd; struct clk *iomacro_clk; struct qpic_ecc *ecc; struct qcom_ecc_stats ecc_stats; struct nand_ecc_engine ecc_eng; u8 *data_buf; u8 *oob_buf; u32 wlen; __le32 addr1; __le32 addr2; __le32 cmd; u32 num_cw; bool oob_rw; bool page_rw; bool raw_rw; }; static void qcom_spi_set_read_loc_first(struct qcom_nand_controller *snandc, int reg, int cw_offset, int read_size, int is_last_read_loc) { __le32 locreg_val; u32 val = (((cw_offset) << READ_LOCATION_OFFSET) | ((read_size) << READ_LOCATION_SIZE) | ((is_last_read_loc) << READ_LOCATION_LAST)); locreg_val = cpu_to_le32(val); if (reg == NAND_READ_LOCATION_0) snandc->regs->read_location0 = locreg_val; else if (reg == NAND_READ_LOCATION_1) snandc->regs->read_location1 = locreg_val; else if (reg == NAND_READ_LOCATION_2) snandc->regs->read_location1 = locreg_val; else if (reg == NAND_READ_LOCATION_3) snandc->regs->read_location3 = locreg_val; } static void qcom_spi_set_read_loc_last(struct qcom_nand_controller *snandc, int reg, int cw_offset, int read_size, int is_last_read_loc) { __le32 locreg_val; u32 val = (((cw_offset) << READ_LOCATION_OFFSET) | ((read_size) << READ_LOCATION_SIZE) | ((is_last_read_loc) << READ_LOCATION_LAST)); locreg_val = cpu_to_le32(val); if (reg == NAND_READ_LOCATION_LAST_CW_0) snandc->regs->read_location_last0 = locreg_val; else if (reg == NAND_READ_LOCATION_LAST_CW_1) snandc->regs->read_location_last1 = locreg_val; else if (reg == NAND_READ_LOCATION_LAST_CW_2) snandc->regs->read_location_last2 = locreg_val; else if (reg == NAND_READ_LOCATION_LAST_CW_3) snandc->regs->read_location_last3 = locreg_val; } static struct qcom_nand_controller *nand_to_qcom_snand(struct nand_device *nand) { struct nand_ecc_engine *eng = nand->ecc.engine; struct qpic_spi_nand *qspi = ecceng_to_qspi(eng); return qspi->snandc; } static int qcom_spi_init(struct qcom_nand_controller *snandc) { u32 snand_cfg_val = 0x0; int ret; snand_cfg_val = FIELD_PREP(CLK_CNTR_INIT_VAL_VEC_MASK, CLK_CNTR_INIT_VAL_VEC) | FIELD_PREP(LOAD_CLK_CNTR_INIT_EN, 0) | FIELD_PREP(FEA_STATUS_DEV_ADDR_MASK, FEA_STATUS_DEV_ADDR) | FIELD_PREP(SPI_CFG, 0); snandc->regs->spi_cfg = cpu_to_le32(snand_cfg_val); snandc->regs->num_addr_cycle = cpu_to_le32(SPI_NUM_ADDR); snandc->regs->busy_wait_cnt = cpu_to_le32(SPI_WAIT_CNT); qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0); snand_cfg_val &= ~LOAD_CLK_CNTR_INIT_EN; snandc->regs->spi_cfg = cpu_to_le32(snand_cfg_val); qcom_write_reg_dma(snandc, &snandc->regs->spi_cfg, NAND_FLASH_SPI_CFG, 1, 0); qcom_write_reg_dma(snandc, &snandc->regs->num_addr_cycle, NAND_NUM_ADDR_CYCLES, 1, 0); qcom_write_reg_dma(snandc, &snandc->regs->busy_wait_cnt, NAND_BUSY_CHECK_WAIT_CNT, 1, NAND_BAM_NEXT_SGL); ret = qcom_submit_descs(snandc); if (ret) { dev_err(snandc->dev, "failure in submitting spi init descriptor\n"); return ret; } return ret; } static int qcom_spi_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); struct qpic_ecc *qecc = snandc->qspi->ecc; if (section > 1) return -ERANGE; oobregion->length = qecc->ecc_bytes_hw + qecc->spare_bytes; oobregion->offset = mtd->oobsize - oobregion->length; return 0; } static int qcom_spi_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); struct qpic_ecc *qecc = snandc->qspi->ecc; if (section) return -ERANGE; oobregion->length = qecc->steps * 4; oobregion->offset = ((qecc->steps - 1) * qecc->bytes) + qecc->bbm_size; return 0; } static const struct mtd_ooblayout_ops qcom_spi_ooblayout = { .ecc = qcom_spi_ooblayout_ecc, .free = qcom_spi_ooblayout_free, }; static int qcom_spi_ecc_init_ctx_pipelined(struct nand_device *nand) { struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); struct nand_ecc_props *conf = &nand->ecc.ctx.conf; struct mtd_info *mtd = nanddev_to_mtd(nand); int cwperpage, bad_block_byte; struct qpic_ecc *ecc_cfg; cwperpage = mtd->writesize / NANDC_STEP_SIZE; snandc->qspi->num_cw = cwperpage; ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); if (!ecc_cfg) return -ENOMEM; snandc->qspi->oob_buf = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); if (!snandc->qspi->oob_buf) return -ENOMEM; memset(snandc->qspi->oob_buf, 0xff, mtd->writesize + mtd->oobsize); nand->ecc.ctx.priv = ecc_cfg; snandc->qspi->mtd = mtd; ecc_cfg->ecc_bytes_hw = 7; ecc_cfg->spare_bytes = 4; ecc_cfg->bbm_size = 1; ecc_cfg->bch_enabled = true; ecc_cfg->bytes = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes + ecc_cfg->bbm_size; ecc_cfg->steps = 4; ecc_cfg->strength = 4; ecc_cfg->step_size = 512; ecc_cfg->cw_data = 516; ecc_cfg->cw_size = ecc_cfg->cw_data + ecc_cfg->bytes; bad_block_byte = mtd->writesize - ecc_cfg->cw_size * (cwperpage - 1) + 1; mtd_set_ooblayout(mtd, &qcom_spi_ooblayout); ecc_cfg->cfg0 = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | FIELD_PREP(UD_SIZE_BYTES_MASK, ecc_cfg->cw_data) | FIELD_PREP(DISABLE_STATUS_AFTER_WRITE, 1) | FIELD_PREP(NUM_ADDR_CYCLES_MASK, 3) | FIELD_PREP(ECC_PARITY_SIZE_BYTES_RS, ecc_cfg->ecc_bytes_hw) | FIELD_PREP(STATUS_BFR_READ, 0) | FIELD_PREP(SET_RD_MODE_AFTER_STATUS, 1) | FIELD_PREP(SPARE_SIZE_BYTES_MASK, ecc_cfg->spare_bytes); ecc_cfg->cfg1 = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 0) | FIELD_PREP(CS_ACTIVE_BSY, 0) | FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, bad_block_byte) | FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 0) | FIELD_PREP(WR_RD_BSY_GAP_MASK, 20) | FIELD_PREP(WIDE_FLASH, 0) | FIELD_PREP(ENABLE_BCH_ECC, ecc_cfg->bch_enabled); ecc_cfg->cfg0_raw = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) | FIELD_PREP(NUM_ADDR_CYCLES_MASK, 3) | FIELD_PREP(UD_SIZE_BYTES_MASK, ecc_cfg->cw_size) | FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0); ecc_cfg->cfg1_raw = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 0) | FIELD_PREP(CS_ACTIVE_BSY, 0) | FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) | FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) | FIELD_PREP(WR_RD_BSY_GAP_MASK, 20) | FIELD_PREP(WIDE_FLASH, 0) | FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1); ecc_cfg->ecc_bch_cfg = FIELD_PREP(ECC_CFG_ECC_DISABLE, !ecc_cfg->bch_enabled) | FIELD_PREP(ECC_SW_RESET, 0) | FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, ecc_cfg->cw_data) | FIELD_PREP(ECC_FORCE_CLK_OPEN, 1) | FIELD_PREP(ECC_MODE_MASK, 0) | FIELD_PREP(ECC_PARITY_SIZE_BYTES_BCH_MASK, ecc_cfg->ecc_bytes_hw); ecc_cfg->ecc_buf_cfg = 0x203 << NUM_STEPS; ecc_cfg->clrflashstatus = FS_READY_BSY_N; ecc_cfg->clrreadstatus = 0xc0; conf->step_size = ecc_cfg->step_size; conf->strength = ecc_cfg->strength; snandc->regs->erased_cw_detect_cfg_clr = cpu_to_le32(CLR_ERASED_PAGE_DET); snandc->regs->erased_cw_detect_cfg_set = cpu_to_le32(SET_ERASED_PAGE_DET); dev_dbg(snandc->dev, "ECC strength: %u bits per %u bytes\n", ecc_cfg->strength, ecc_cfg->step_size); return 0; } static void qcom_spi_ecc_cleanup_ctx_pipelined(struct nand_device *nand) { struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand); kfree(ecc_cfg); } static int qcom_spi_ecc_prepare_io_req_pipelined(struct nand_device *nand, struct nand_page_io_req *req) { struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); struct qpic_ecc *ecc_cfg = nand_to_ecc_ctx(nand); snandc->qspi->ecc = ecc_cfg; snandc->qspi->raw_rw = false; snandc->qspi->oob_rw = false; snandc->qspi->page_rw = false; if (req->datalen) snandc->qspi->page_rw = true; if (req->ooblen) snandc->qspi->oob_rw = true; if (req->mode == MTD_OPS_RAW) snandc->qspi->raw_rw = true; return 0; } static int qcom_spi_ecc_finish_io_req_pipelined(struct nand_device *nand, struct nand_page_io_req *req) { struct qcom_nand_controller *snandc = nand_to_qcom_snand(nand); struct mtd_info *mtd = nanddev_to_mtd(nand); if (req->mode == MTD_OPS_RAW || req->type != NAND_PAGE_READ) return 0; if (snandc->qspi->ecc_stats.failed) mtd->ecc_stats.failed += snandc->qspi->ecc_stats.failed; else mtd->ecc_stats.corrected += snandc->qspi->ecc_stats.corrected; if (snandc->qspi->ecc_stats.failed) return -EBADMSG; else return snandc->qspi->ecc_stats.bitflips; } static struct nand_ecc_engine_ops qcom_spi_ecc_engine_ops_pipelined = { .init_ctx = qcom_spi_ecc_init_ctx_pipelined, .cleanup_ctx = qcom_spi_ecc_cleanup_ctx_pipelined, .prepare_io_req = qcom_spi_ecc_prepare_io_req_pipelined, .finish_io_req = qcom_spi_ecc_finish_io_req_pipelined, }; /* helper to configure location register values */ static void qcom_spi_set_read_loc(struct qcom_nand_controller *snandc, int cw, int reg, int cw_offset, int read_size, int is_last_read_loc) { int reg_base = NAND_READ_LOCATION_0; int num_cw = snandc->qspi->num_cw; if (cw == (num_cw - 1)) reg_base = NAND_READ_LOCATION_LAST_CW_0; reg_base += reg * 4; if (cw == (num_cw - 1)) return qcom_spi_set_read_loc_last(snandc, reg_base, cw_offset, read_size, is_last_read_loc); else return qcom_spi_set_read_loc_first(snandc, reg_base, cw_offset, read_size, is_last_read_loc); } static void qcom_spi_config_cw_read(struct qcom_nand_controller *snandc, bool use_ecc, int cw) { __le32 *reg = &snandc->regs->read_location0; int num_cw = snandc->qspi->num_cw; qcom_write_reg_dma(snandc, reg, NAND_READ_LOCATION_0, 4, NAND_BAM_NEXT_SGL); if (cw == (num_cw - 1)) { reg = &snandc->regs->read_location_last0; qcom_write_reg_dma(snandc, reg, NAND_READ_LOCATION_LAST_CW_0, 4, NAND_BAM_NEXT_SGL); } qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 2, 0); qcom_read_reg_dma(snandc, NAND_ERASED_CW_DETECT_STATUS, 1, NAND_BAM_NEXT_SGL); } static int qcom_spi_block_erase(struct qcom_nand_controller *snandc) { struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; int ret; snandc->buf_count = 0; snandc->buf_start = 0; qcom_clear_read_regs(snandc); qcom_clear_bam_transaction(snandc); snandc->regs->cmd = snandc->qspi->cmd; snandc->regs->addr0 = snandc->qspi->addr1; snandc->regs->addr1 = snandc->qspi->addr2; snandc->regs->cfg0 = cpu_to_le32(ecc_cfg->cfg0_raw & ~(7 << CW_PER_PAGE)); snandc->regs->cfg1 = cpu_to_le32(ecc_cfg->cfg1_raw); snandc->regs->exec = cpu_to_le32(1); qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); ret = qcom_submit_descs(snandc); if (ret) { dev_err(snandc->dev, "failure to erase block\n"); return ret; } return 0; } static void qcom_spi_config_single_cw_page_read(struct qcom_nand_controller *snandc, bool use_ecc, int cw) { __le32 *reg = &snandc->regs->read_location0; int num_cw = snandc->qspi->num_cw; qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr, NAND_ERASED_CW_DETECT_CFG, 1, 0); qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set, NAND_ERASED_CW_DETECT_CFG, 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); if (cw == (num_cw - 1)) { reg = &snandc->regs->read_location_last0; qcom_write_reg_dma(snandc, reg, NAND_READ_LOCATION_LAST_CW_0, 4, NAND_BAM_NEXT_SGL); } qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 1, 0); } static int qcom_spi_read_last_cw(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; struct mtd_info *mtd = snandc->qspi->mtd; int size, ret = 0; int col, bbpos; u32 cfg0, cfg1, ecc_bch_cfg; u32 num_cw = snandc->qspi->num_cw; qcom_clear_bam_transaction(snandc); qcom_clear_read_regs(snandc); size = ecc_cfg->cw_size; col = ecc_cfg->cw_size * (num_cw - 1); memset(snandc->data_buffer, 0xff, size); snandc->regs->addr0 = (snandc->qspi->addr1 | cpu_to_le32(col)); snandc->regs->addr1 = snandc->qspi->addr2; cfg0 = (ecc_cfg->cfg0_raw & ~(7U << CW_PER_PAGE)) | 0 << CW_PER_PAGE; cfg1 = ecc_cfg->cfg1_raw; ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; snandc->regs->cmd = snandc->qspi->cmd; snandc->regs->cfg0 = cpu_to_le32(cfg0); snandc->regs->cfg1 = cpu_to_le32(cfg1); snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg); snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus); snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus); snandc->regs->exec = cpu_to_le32(1); qcom_spi_set_read_loc(snandc, num_cw - 1, 0, 0, ecc_cfg->cw_size, 1); qcom_spi_config_single_cw_page_read(snandc, false, num_cw - 1); qcom_read_data_dma(snandc, FLASH_BUF_ACC, snandc->data_buffer, size, 0); ret = qcom_submit_descs(snandc); if (ret) { dev_err(snandc->dev, "failed to read last cw\n"); return ret; } qcom_nandc_dev_to_mem(snandc, true); u32 flash = le32_to_cpu(snandc->reg_read_buf[0]); if (flash & (FS_OP_ERR | FS_MPU_ERR)) return -EIO; bbpos = mtd->writesize - ecc_cfg->cw_size * (num_cw - 1); if (snandc->data_buffer[bbpos] == 0xff) snandc->data_buffer[bbpos + 1] = 0xff; if (snandc->data_buffer[bbpos] != 0xff) snandc->data_buffer[bbpos + 1] = snandc->data_buffer[bbpos]; memcpy(op->data.buf.in, snandc->data_buffer + bbpos, op->data.nbytes); return ret; } static int qcom_spi_check_error(struct qcom_nand_controller *snandc, u8 *data_buf, u8 *oob_buf) { struct snandc_read_status *buf; struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; int i, num_cw = snandc->qspi->num_cw; bool flash_op_err = false, erased; unsigned int max_bitflips = 0; unsigned int uncorrectable_cws = 0; snandc->qspi->ecc_stats.failed = 0; snandc->qspi->ecc_stats.corrected = 0; qcom_nandc_dev_to_mem(snandc, true); buf = (struct snandc_read_status *)snandc->reg_read_buf; for (i = 0; i < num_cw; i++, buf++) { u32 flash, buffer, erased_cw; int data_len, oob_len; if (i == (num_cw - 1)) { data_len = NANDC_STEP_SIZE - ((num_cw - 1) << 2); oob_len = num_cw << 2; } else { data_len = ecc_cfg->cw_data; oob_len = 0; } flash = le32_to_cpu(buf->snandc_flash); buffer = le32_to_cpu(buf->snandc_buffer); erased_cw = le32_to_cpu(buf->snandc_erased_cw); if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { if (ecc_cfg->bch_enabled) erased = (erased_cw & ERASED_CW) == ERASED_CW; else erased = false; if (!erased) uncorrectable_cws |= BIT(i); } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { flash_op_err = true; } else { unsigned int stat; stat = buffer & BS_CORRECTABLE_ERR_MSK; snandc->qspi->ecc_stats.corrected += stat; max_bitflips = max(max_bitflips, stat); } if (data_buf) data_buf += data_len; if (oob_buf) oob_buf += oob_len + ecc_cfg->bytes; } if (flash_op_err) return -EIO; if (!uncorrectable_cws) snandc->qspi->ecc_stats.bitflips = max_bitflips; else snandc->qspi->ecc_stats.failed++; return 0; } static int qcom_spi_check_raw_flash_errors(struct qcom_nand_controller *snandc, int cw_cnt) { int i; qcom_nandc_dev_to_mem(snandc, true); for (i = 0; i < cw_cnt; i++) { u32 flash = le32_to_cpu(snandc->reg_read_buf[i]); if (flash & (FS_OP_ERR | FS_MPU_ERR)) return -EIO; } return 0; } static int qcom_spi_read_cw_raw(struct qcom_nand_controller *snandc, u8 *data_buf, u8 *oob_buf, int cw) { struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; struct mtd_info *mtd = snandc->qspi->mtd; int data_size1, data_size2, oob_size1, oob_size2; int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; int raw_cw = cw; u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw; int col; snandc->buf_count = 0; snandc->buf_start = 0; qcom_clear_read_regs(snandc); qcom_clear_bam_transaction(snandc); raw_cw = num_cw - 1; cfg0 = (ecc_cfg->cfg0_raw & ~(7U << CW_PER_PAGE)) | 0 << CW_PER_PAGE; cfg1 = ecc_cfg->cfg1_raw; ecc_bch_cfg = ECC_CFG_ECC_DISABLE; col = ecc_cfg->cw_size * cw; snandc->regs->addr0 = (snandc->qspi->addr1 | cpu_to_le32(col)); snandc->regs->addr1 = snandc->qspi->addr2; snandc->regs->cmd = snandc->qspi->cmd; snandc->regs->cfg0 = cpu_to_le32(cfg0); snandc->regs->cfg1 = cpu_to_le32(cfg1); snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg); snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus); snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus); snandc->regs->exec = cpu_to_le32(1); qcom_spi_set_read_loc(snandc, raw_cw, 0, 0, ecc_cfg->cw_size, 1); qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); qcom_write_reg_dma(snandc, &snandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, 0); qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr, NAND_ERASED_CW_DETECT_CFG, 1, 0); qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set, NAND_ERASED_CW_DETECT_CFG, 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); data_size1 = mtd->writesize - ecc_cfg->cw_size * (num_cw - 1); oob_size1 = ecc_cfg->bbm_size; if (cw == (num_cw - 1)) { data_size2 = NANDC_STEP_SIZE - data_size1 - ((num_cw - 1) * 4); oob_size2 = (num_cw * 4) + ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; } else { data_size2 = ecc_cfg->cw_data - data_size1; oob_size2 = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; } qcom_spi_set_read_loc(snandc, cw, 0, read_loc, data_size1, 0); read_loc += data_size1; qcom_spi_set_read_loc(snandc, cw, 1, read_loc, oob_size1, 0); read_loc += oob_size1; qcom_spi_set_read_loc(snandc, cw, 2, read_loc, data_size2, 0); read_loc += data_size2; qcom_spi_set_read_loc(snandc, cw, 3, read_loc, oob_size2, 1); qcom_spi_config_cw_read(snandc, false, raw_cw); qcom_read_data_dma(snandc, reg_off, data_buf, data_size1, 0); reg_off += data_size1; qcom_read_data_dma(snandc, reg_off, oob_buf, oob_size1, 0); reg_off += oob_size1; qcom_read_data_dma(snandc, reg_off, data_buf + data_size1, data_size2, 0); reg_off += data_size2; qcom_read_data_dma(snandc, reg_off, oob_buf + oob_size1, oob_size2, 0); ret = qcom_submit_descs(snandc); if (ret) { dev_err(snandc->dev, "failure to read raw cw %d\n", cw); return ret; } return qcom_spi_check_raw_flash_errors(snandc, 1); } static int qcom_spi_read_page_raw(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; u8 *data_buf = NULL, *oob_buf = NULL; int ret, cw; u32 num_cw = snandc->qspi->num_cw; if (snandc->qspi->page_rw) data_buf = op->data.buf.in; oob_buf = snandc->qspi->oob_buf; memset(oob_buf, 0xff, OOB_BUF_SIZE); for (cw = 0; cw < num_cw; cw++) { ret = qcom_spi_read_cw_raw(snandc, data_buf, oob_buf, cw); if (ret) return ret; if (data_buf) data_buf += ecc_cfg->cw_data; if (oob_buf) oob_buf += ecc_cfg->bytes; } return 0; } static int qcom_spi_read_page_ecc(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; u8 *data_buf = NULL, *data_buf_start, *oob_buf = NULL, *oob_buf_start; int ret, i; u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw; data_buf = op->data.buf.in; data_buf_start = data_buf; oob_buf = snandc->qspi->oob_buf; oob_buf_start = oob_buf; snandc->buf_count = 0; snandc->buf_start = 0; qcom_clear_read_regs(snandc); cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | (num_cw - 1) << CW_PER_PAGE; cfg1 = ecc_cfg->cfg1; ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; snandc->regs->addr0 = snandc->qspi->addr1; snandc->regs->addr1 = snandc->qspi->addr2; snandc->regs->cmd = snandc->qspi->cmd; snandc->regs->cfg0 = cpu_to_le32(cfg0); snandc->regs->cfg1 = cpu_to_le32(cfg1); snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg); snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus); snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus); snandc->regs->exec = cpu_to_le32(1); qcom_spi_set_read_loc(snandc, 0, 0, 0, ecc_cfg->cw_data, 1); qcom_clear_bam_transaction(snandc); qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr, NAND_ERASED_CW_DETECT_CFG, 1, 0); qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set, NAND_ERASED_CW_DETECT_CFG, 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); for (i = 0; i < num_cw; i++) { int data_size, oob_size; if (i == (num_cw - 1)) { data_size = 512 - ((num_cw - 1) << 2); oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; } else { data_size = ecc_cfg->cw_data; oob_size = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; } if (data_buf && oob_buf) { qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 0); qcom_spi_set_read_loc(snandc, i, 1, data_size, oob_size, 1); } else if (data_buf) { qcom_spi_set_read_loc(snandc, i, 0, 0, data_size, 1); } else { qcom_spi_set_read_loc(snandc, i, 0, data_size, oob_size, 1); } qcom_spi_config_cw_read(snandc, true, i); if (data_buf) qcom_read_data_dma(snandc, FLASH_BUF_ACC, data_buf, data_size, 0); if (oob_buf) { int j; for (j = 0; j < ecc_cfg->bbm_size; j++) *oob_buf++ = 0xff; qcom_read_data_dma(snandc, FLASH_BUF_ACC + data_size, oob_buf, oob_size, 0); } if (data_buf) data_buf += data_size; if (oob_buf) oob_buf += oob_size; } ret = qcom_submit_descs(snandc); if (ret) { dev_err(snandc->dev, "failure to read page\n"); return ret; } return qcom_spi_check_error(snandc, data_buf_start, oob_buf_start); } static int qcom_spi_read_page_oob(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; u8 *data_buf = NULL, *data_buf_start, *oob_buf = NULL, *oob_buf_start; int ret, i; u32 cfg0, cfg1, ecc_bch_cfg, num_cw = snandc->qspi->num_cw; oob_buf = op->data.buf.in; oob_buf_start = oob_buf; data_buf_start = data_buf; snandc->buf_count = 0; snandc->buf_start = 0; qcom_clear_read_regs(snandc); qcom_clear_bam_transaction(snandc); cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | (num_cw - 1) << CW_PER_PAGE; cfg1 = ecc_cfg->cfg1; ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; snandc->regs->addr0 = snandc->qspi->addr1; snandc->regs->addr1 = snandc->qspi->addr2; snandc->regs->cmd = snandc->qspi->cmd; snandc->regs->cfg0 = cpu_to_le32(cfg0); snandc->regs->cfg1 = cpu_to_le32(cfg1); snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg); snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus); snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus); snandc->regs->exec = cpu_to_le32(1); qcom_spi_set_read_loc(snandc, 0, 0, 0, ecc_cfg->cw_data, 1); qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_clr, NAND_ERASED_CW_DETECT_CFG, 1, 0); qcom_write_reg_dma(snandc, &snandc->regs->erased_cw_detect_cfg_set, NAND_ERASED_CW_DETECT_CFG, 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); for (i = 0; i < num_cw; i++) { int data_size, oob_size; if (i == (num_cw - 1)) { data_size = NANDC_STEP_SIZE - ((num_cw - 1) << 2); oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; } else { data_size = ecc_cfg->cw_data; oob_size = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; } qcom_spi_set_read_loc(snandc, i, 0, data_size, oob_size, 1); qcom_spi_config_cw_read(snandc, true, i); if (oob_buf) { int j; for (j = 0; j < ecc_cfg->bbm_size; j++) *oob_buf++ = 0xff; qcom_read_data_dma(snandc, FLASH_BUF_ACC + data_size, oob_buf, oob_size, 0); } if (oob_buf) oob_buf += oob_size; } ret = qcom_submit_descs(snandc); if (ret) { dev_err(snandc->dev, "failure to read oob\n"); return ret; } return qcom_spi_check_error(snandc, data_buf_start, oob_buf_start); } static int qcom_spi_read_page(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { if (snandc->qspi->page_rw && snandc->qspi->raw_rw) return qcom_spi_read_page_raw(snandc, op); if (snandc->qspi->page_rw) return qcom_spi_read_page_ecc(snandc, op); if (snandc->qspi->oob_rw && snandc->qspi->raw_rw) return qcom_spi_read_last_cw(snandc, op); if (snandc->qspi->oob_rw) return qcom_spi_read_page_oob(snandc, op); return 0; } static void qcom_spi_config_page_write(struct qcom_nand_controller *snandc) { qcom_write_reg_dma(snandc, &snandc->regs->addr0, NAND_ADDR0, 2, 0); qcom_write_reg_dma(snandc, &snandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0); qcom_write_reg_dma(snandc, &snandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, NAND_BAM_NEXT_SGL); } static void qcom_spi_config_cw_write(struct qcom_nand_controller *snandc) { qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); qcom_read_reg_dma(snandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); qcom_write_reg_dma(snandc, &snandc->regs->clrflashstatus, NAND_FLASH_STATUS, 1, 0); qcom_write_reg_dma(snandc, &snandc->regs->clrreadstatus, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); } static int qcom_spi_program_raw(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; struct mtd_info *mtd = snandc->qspi->mtd; u8 *data_buf = NULL, *oob_buf = NULL; int i, ret; int num_cw = snandc->qspi->num_cw; u32 cfg0, cfg1, ecc_bch_cfg; cfg0 = (ecc_cfg->cfg0_raw & ~(7U << CW_PER_PAGE)) | (num_cw - 1) << CW_PER_PAGE; cfg1 = ecc_cfg->cfg1_raw; ecc_bch_cfg = ECC_CFG_ECC_DISABLE; data_buf = snandc->qspi->data_buf; oob_buf = snandc->qspi->oob_buf; memset(oob_buf, 0xff, OOB_BUF_SIZE); snandc->buf_count = 0; snandc->buf_start = 0; qcom_clear_read_regs(snandc); qcom_clear_bam_transaction(snandc); snandc->regs->addr0 = snandc->qspi->addr1; snandc->regs->addr1 = snandc->qspi->addr2; snandc->regs->cmd = snandc->qspi->cmd; snandc->regs->cfg0 = cpu_to_le32(cfg0); snandc->regs->cfg1 = cpu_to_le32(cfg1); snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg); snandc->regs->clrflashstatus = cpu_to_le32(ecc_cfg->clrflashstatus); snandc->regs->clrreadstatus = cpu_to_le32(ecc_cfg->clrreadstatus); snandc->regs->exec = cpu_to_le32(1); qcom_spi_config_page_write(snandc); for (i = 0; i < num_cw; i++) { int data_size1, data_size2, oob_size1, oob_size2; int reg_off = FLASH_BUF_ACC; data_size1 = mtd->writesize - ecc_cfg->cw_size * (num_cw - 1); oob_size1 = ecc_cfg->bbm_size; if (i == (num_cw - 1)) { data_size2 = NANDC_STEP_SIZE - data_size1 - ((num_cw - 1) << 2); oob_size2 = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; } else { data_size2 = ecc_cfg->cw_data - data_size1; oob_size2 = ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; } qcom_write_data_dma(snandc, reg_off, data_buf, data_size1, NAND_BAM_NO_EOT); reg_off += data_size1; data_buf += data_size1; qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size1, NAND_BAM_NO_EOT); oob_buf += oob_size1; reg_off += oob_size1; qcom_write_data_dma(snandc, reg_off, data_buf, data_size2, NAND_BAM_NO_EOT); reg_off += data_size2; data_buf += data_size2; qcom_write_data_dma(snandc, reg_off, oob_buf, oob_size2, 0); oob_buf += oob_size2; qcom_spi_config_cw_write(snandc); } ret = qcom_submit_descs(snandc); if (ret) { dev_err(snandc->dev, "failure to write raw page\n"); return ret; } return 0; } static int qcom_spi_program_ecc(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; u8 *data_buf = NULL, *oob_buf = NULL; int i, ret; int num_cw = snandc->qspi->num_cw; u32 cfg0, cfg1, ecc_bch_cfg, ecc_buf_cfg; cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | (num_cw - 1) << CW_PER_PAGE; cfg1 = ecc_cfg->cfg1; ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; ecc_buf_cfg = ecc_cfg->ecc_buf_cfg; if (snandc->qspi->data_buf) data_buf = snandc->qspi->data_buf; oob_buf = snandc->qspi->oob_buf; snandc->buf_count = 0; snandc->buf_start = 0; qcom_clear_read_regs(snandc); qcom_clear_bam_transaction(snandc); snandc->regs->addr0 = snandc->qspi->addr1; snandc->regs->addr1 = snandc->qspi->addr2; snandc->regs->cmd = snandc->qspi->cmd; snandc->regs->cfg0 = cpu_to_le32(cfg0); snandc->regs->cfg1 = cpu_to_le32(cfg1); snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg); snandc->regs->ecc_buf_cfg = cpu_to_le32(ecc_buf_cfg); snandc->regs->exec = cpu_to_le32(1); qcom_spi_config_page_write(snandc); for (i = 0; i < num_cw; i++) { int data_size, oob_size; if (i == (num_cw - 1)) { data_size = NANDC_STEP_SIZE - ((num_cw - 1) << 2); oob_size = (num_cw << 2) + ecc_cfg->ecc_bytes_hw + ecc_cfg->spare_bytes; } else { data_size = ecc_cfg->cw_data; oob_size = ecc_cfg->bytes; } if (data_buf) qcom_write_data_dma(snandc, FLASH_BUF_ACC, data_buf, data_size, i == (num_cw - 1) ? NAND_BAM_NO_EOT : 0); if (i == (num_cw - 1)) { if (oob_buf) { oob_buf += ecc_cfg->bbm_size; qcom_write_data_dma(snandc, FLASH_BUF_ACC + data_size, oob_buf, oob_size, 0); } } qcom_spi_config_cw_write(snandc); if (data_buf) data_buf += data_size; if (oob_buf) oob_buf += oob_size; } ret = qcom_submit_descs(snandc); if (ret) { dev_err(snandc->dev, "failure to write page\n"); return ret; } return 0; } static int qcom_spi_program_oob(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { struct qpic_ecc *ecc_cfg = snandc->qspi->ecc; u8 *oob_buf = NULL; int ret, col, data_size, oob_size; int num_cw = snandc->qspi->num_cw; u32 cfg0, cfg1, ecc_bch_cfg, ecc_buf_cfg; cfg0 = (ecc_cfg->cfg0 & ~(7U << CW_PER_PAGE)) | (num_cw - 1) << CW_PER_PAGE; cfg1 = ecc_cfg->cfg1; ecc_bch_cfg = ecc_cfg->ecc_bch_cfg; ecc_buf_cfg = ecc_cfg->ecc_buf_cfg; col = ecc_cfg->cw_size * (num_cw - 1); oob_buf = snandc->qspi->data_buf; snandc->buf_count = 0; snandc->buf_start = 0; qcom_clear_read_regs(snandc); qcom_clear_bam_transaction(snandc); snandc->regs->addr0 = (snandc->qspi->addr1 | cpu_to_le32(col)); snandc->regs->addr1 = snandc->qspi->addr2; snandc->regs->cmd = snandc->qspi->cmd; snandc->regs->cfg0 = cpu_to_le32(cfg0); snandc->regs->cfg1 = cpu_to_le32(cfg1); snandc->regs->ecc_bch_cfg = cpu_to_le32(ecc_bch_cfg); snandc->regs->ecc_buf_cfg = cpu_to_le32(ecc_buf_cfg); snandc->regs->exec = cpu_to_le32(1); /* calculate the data and oob size for the last codeword/step */ data_size = NANDC_STEP_SIZE - ((num_cw - 1) << 2); oob_size = snandc->qspi->mtd->oobavail; memset(snandc->data_buffer, 0xff, ecc_cfg->cw_data); /* override new oob content to last codeword */ mtd_ooblayout_get_databytes(snandc->qspi->mtd, snandc->data_buffer + data_size, oob_buf, 0, snandc->qspi->mtd->oobavail); qcom_spi_config_page_write(snandc); qcom_write_data_dma(snandc, FLASH_BUF_ACC, snandc->data_buffer, data_size + oob_size, 0); qcom_spi_config_cw_write(snandc); ret = qcom_submit_descs(snandc); if (ret) { dev_err(snandc->dev, "failure to write oob\n"); return ret; } return 0; } static int qcom_spi_program_execute(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { if (snandc->qspi->page_rw && snandc->qspi->raw_rw) return qcom_spi_program_raw(snandc, op); if (snandc->qspi->page_rw) return qcom_spi_program_ecc(snandc, op); if (snandc->qspi->oob_rw) return qcom_spi_program_oob(snandc, op); return 0; } static int qcom_spi_cmd_mapping(struct qcom_nand_controller *snandc, u32 opcode, u32 *cmd) { switch (opcode) { case SPINAND_RESET: *cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_RESET_DEVICE); break; case SPINAND_READID: *cmd = (SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1 | OP_FETCH_ID); break; case SPINAND_GET_FEATURE: *cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE); break; case SPINAND_SET_FEATURE: *cmd = (SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | ACC_FEATURE | QPIC_SET_FEATURE); break; case SPINAND_READ: if (snandc->qspi->raw_rw) { *cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | OP_PAGE_READ); } else { *cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | OP_PAGE_READ_WITH_ECC); } break; case SPINAND_ERASE: *cmd = OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE | SPI_WP | SPI_HOLD | SPI_TRANSFER_MODE_x1; break; case SPINAND_WRITE_EN: *cmd = SPINAND_WRITE_EN; break; case SPINAND_PROGRAM_EXECUTE: *cmd = (PAGE_ACC | LAST_PAGE | SPI_TRANSFER_MODE_x1 | SPI_WP | SPI_HOLD | OP_PROGRAM_PAGE); break; case SPINAND_PROGRAM_LOAD: *cmd = SPINAND_PROGRAM_LOAD; break; default: dev_err(snandc->dev, "Opcode not supported: %u\n", opcode); return -EOPNOTSUPP; } return 0; } static int qcom_spi_write_page(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { int ret; u32 cmd; ret = qcom_spi_cmd_mapping(snandc, op->cmd.opcode, &cmd); if (ret < 0) return ret; if (op->cmd.opcode == SPINAND_PROGRAM_LOAD) snandc->qspi->data_buf = (u8 *)op->data.buf.out; return 0; } static int qcom_spi_send_cmdaddr(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { struct qpic_snand_op s_op = {}; u32 cmd; int ret, opcode; ret = qcom_spi_cmd_mapping(snandc, op->cmd.opcode, &cmd); if (ret < 0) return ret; s_op.cmd_reg = cmd; s_op.addr1_reg = op->addr.val; s_op.addr2_reg = 0; opcode = op->cmd.opcode; switch (opcode) { case SPINAND_WRITE_EN: return 0; case SPINAND_PROGRAM_EXECUTE: s_op.addr1_reg = op->addr.val << 16; s_op.addr2_reg = op->addr.val >> 16 & 0xff; snandc->qspi->addr1 = cpu_to_le32(s_op.addr1_reg); snandc->qspi->addr2 = cpu_to_le32(s_op.addr2_reg); snandc->qspi->cmd = cpu_to_le32(cmd); return qcom_spi_program_execute(snandc, op); case SPINAND_READ: s_op.addr1_reg = (op->addr.val << 16); s_op.addr2_reg = op->addr.val >> 16 & 0xff; snandc->qspi->addr1 = cpu_to_le32(s_op.addr1_reg); snandc->qspi->addr2 = cpu_to_le32(s_op.addr2_reg); snandc->qspi->cmd = cpu_to_le32(cmd); return 0; case SPINAND_ERASE: s_op.addr2_reg = (op->addr.val >> 16) & 0xffff; s_op.addr1_reg = op->addr.val; snandc->qspi->addr1 = cpu_to_le32(s_op.addr1_reg << 16); snandc->qspi->addr2 = cpu_to_le32(s_op.addr2_reg); snandc->qspi->cmd = cpu_to_le32(cmd); qcom_spi_block_erase(snandc); return 0; default: break; } snandc->buf_count = 0; snandc->buf_start = 0; qcom_clear_read_regs(snandc); qcom_clear_bam_transaction(snandc); snandc->regs->cmd = cpu_to_le32(s_op.cmd_reg); snandc->regs->exec = cpu_to_le32(1); snandc->regs->addr0 = cpu_to_le32(s_op.addr1_reg); snandc->regs->addr1 = cpu_to_le32(s_op.addr2_reg); qcom_write_reg_dma(snandc, &snandc->regs->cmd, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); qcom_write_reg_dma(snandc, &snandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); ret = qcom_submit_descs(snandc); if (ret) dev_err(snandc->dev, "failure in submitting cmd descriptor\n"); return ret; } static int qcom_spi_io_op(struct qcom_nand_controller *snandc, const struct spi_mem_op *op) { int ret, val, opcode; bool copy = false, copy_ftr = false; ret = qcom_spi_send_cmdaddr(snandc, op); if (ret) return ret; snandc->buf_count = 0; snandc->buf_start = 0; qcom_clear_read_regs(snandc); qcom_clear_bam_transaction(snandc); opcode = op->cmd.opcode; switch (opcode) { case SPINAND_READID: snandc->buf_count = 4; qcom_read_reg_dma(snandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); copy = true; break; case SPINAND_GET_FEATURE: snandc->buf_count = 4; qcom_read_reg_dma(snandc, NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); copy_ftr = true; break; case SPINAND_SET_FEATURE: snandc->regs->flash_feature = cpu_to_le32(*(u32 *)op->data.buf.out); qcom_write_reg_dma(snandc, &snandc->regs->flash_feature, NAND_FLASH_FEATURES, 1, NAND_BAM_NEXT_SGL); break; case SPINAND_PROGRAM_EXECUTE: case SPINAND_WRITE_EN: case SPINAND_RESET: case SPINAND_ERASE: case SPINAND_READ: return 0; default: return -EOPNOTSUPP; } ret = qcom_submit_descs(snandc); if (ret) dev_err(snandc->dev, "failure in submitting descriptor for:%d\n", opcode); if (copy) { qcom_nandc_dev_to_mem(snandc, true); memcpy(op->data.buf.in, snandc->reg_read_buf, snandc->buf_count); } if (copy_ftr) { qcom_nandc_dev_to_mem(snandc, true); val = le32_to_cpu(*(__le32 *)snandc->reg_read_buf); val >>= 8; memcpy(op->data.buf.in, &val, snandc->buf_count); } return ret; } static bool qcom_spi_is_page_op(const struct spi_mem_op *op) { if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && op->addr.buswidth != 4) return false; if (op->data.dir == SPI_MEM_DATA_IN) { if (op->addr.buswidth == 4 && op->data.buswidth == 4) return true; if (op->addr.nbytes == 2 && op->addr.buswidth == 1) return true; } else if (op->data.dir == SPI_MEM_DATA_OUT) { if (op->data.buswidth == 4) return true; if (op->addr.nbytes == 2 && op->addr.buswidth == 1) return true; } return false; } static bool qcom_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (!spi_mem_default_supports_op(mem, op)) return false; if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) return false; if (qcom_spi_is_page_op(op)) return true; return ((!op->addr.nbytes || op->addr.buswidth == 1) && (!op->dummy.nbytes || op->dummy.buswidth == 1) && (!op->data.nbytes || op->data.buswidth == 1)); } static int qcom_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct qcom_nand_controller *snandc = spi_controller_get_devdata(mem->spi->controller); dev_dbg(snandc->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, op->addr.val, op->addr.buswidth, op->addr.nbytes, op->data.buswidth, op->data.nbytes); if (qcom_spi_is_page_op(op)) { if (op->data.dir == SPI_MEM_DATA_IN) return qcom_spi_read_page(snandc, op); if (op->data.dir == SPI_MEM_DATA_OUT) return qcom_spi_write_page(snandc, op); } else { return qcom_spi_io_op(snandc, op); } return 0; } static const struct spi_controller_mem_ops qcom_spi_mem_ops = { .supports_op = qcom_spi_supports_op, .exec_op = qcom_spi_exec_op, }; static const struct spi_controller_mem_caps qcom_spi_mem_caps = { .ecc = true, }; static int qcom_spi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct spi_controller *ctlr; struct qcom_nand_controller *snandc; struct qpic_spi_nand *qspi; struct qpic_ecc *ecc; struct resource *res; const void *dev_data; int ret; ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); if (!ecc) return -ENOMEM; qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL); if (!qspi) return -ENOMEM; ctlr = __devm_spi_alloc_controller(dev, sizeof(*snandc), false); if (!ctlr) return -ENOMEM; platform_set_drvdata(pdev, ctlr); snandc = spi_controller_get_devdata(ctlr); qspi->snandc = snandc; snandc->dev = dev; snandc->qspi = qspi; snandc->qspi->ctlr = ctlr; snandc->qspi->ecc = ecc; dev_data = of_device_get_match_data(dev); if (!dev_data) { dev_err(&pdev->dev, "failed to get device data\n"); return -ENODEV; } snandc->props = dev_data; snandc->dev = &pdev->dev; snandc->core_clk = devm_clk_get(dev, "core"); if (IS_ERR(snandc->core_clk)) return PTR_ERR(snandc->core_clk); snandc->aon_clk = devm_clk_get(dev, "aon"); if (IS_ERR(snandc->aon_clk)) return PTR_ERR(snandc->aon_clk); snandc->qspi->iomacro_clk = devm_clk_get(dev, "iom"); if (IS_ERR(snandc->qspi->iomacro_clk)) return PTR_ERR(snandc->qspi->iomacro_clk); snandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(snandc->base)) return PTR_ERR(snandc->base); snandc->base_phys = res->start; snandc->base_dma = dma_map_resource(dev, res->start, resource_size(res), DMA_BIDIRECTIONAL, 0); if (dma_mapping_error(dev, snandc->base_dma)) return -ENXIO; ret = clk_prepare_enable(snandc->core_clk); if (ret) goto err_dis_core_clk; ret = clk_prepare_enable(snandc->aon_clk); if (ret) goto err_dis_aon_clk; ret = clk_prepare_enable(snandc->qspi->iomacro_clk); if (ret) goto err_dis_iom_clk; ret = qcom_nandc_alloc(snandc); if (ret) goto err_snand_alloc; ret = qcom_spi_init(snandc); if (ret) goto err_spi_init; /* setup ECC engine */ snandc->qspi->ecc_eng.dev = &pdev->dev; snandc->qspi->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; snandc->qspi->ecc_eng.ops = &qcom_spi_ecc_engine_ops_pipelined; snandc->qspi->ecc_eng.priv = snandc; ret = nand_ecc_register_on_host_hw_engine(&snandc->qspi->ecc_eng); if (ret) { dev_err(&pdev->dev, "failed to register ecc engine:%d\n", ret); goto err_spi_init; } ctlr->num_chipselect = QPIC_QSPI_NUM_CS; ctlr->mem_ops = &qcom_spi_mem_ops; ctlr->mem_caps = &qcom_spi_mem_caps; ctlr->dev.of_node = pdev->dev.of_node; ctlr->mode_bits = SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD; ret = spi_register_controller(ctlr); if (ret) { dev_err(&pdev->dev, "spi_register_controller failed.\n"); goto err_spi_init; } return 0; err_spi_init: qcom_nandc_unalloc(snandc); err_snand_alloc: clk_disable_unprepare(snandc->qspi->iomacro_clk); err_dis_iom_clk: clk_disable_unprepare(snandc->aon_clk); err_dis_aon_clk: clk_disable_unprepare(snandc->core_clk); err_dis_core_clk: dma_unmap_resource(dev, res->start, resource_size(res), DMA_BIDIRECTIONAL, 0); return ret; } static void qcom_spi_remove(struct platform_device *pdev) { struct spi_controller *ctlr = platform_get_drvdata(pdev); struct qcom_nand_controller *snandc = spi_controller_get_devdata(ctlr); struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); spi_unregister_controller(ctlr); qcom_nandc_unalloc(snandc); clk_disable_unprepare(snandc->aon_clk); clk_disable_unprepare(snandc->core_clk); clk_disable_unprepare(snandc->qspi->iomacro_clk); dma_unmap_resource(&pdev->dev, snandc->base_dma, resource_size(res), DMA_BIDIRECTIONAL, 0); } static const struct qcom_nandc_props ipq9574_snandc_props = { .dev_cmd_reg_start = 0x7000, .supports_bam = true, }; static const struct of_device_id qcom_snandc_of_match[] = { { .compatible = "qcom,ipq9574-snand", .data = &ipq9574_snandc_props, }, {} } MODULE_DEVICE_TABLE(of, qcom_snandc_of_match); static struct platform_driver qcom_spi_driver = { .driver = { .name = "qcom_snand", .of_match_table = qcom_snandc_of_match, }, .probe = qcom_spi_probe, .remove = qcom_spi_remove, }; module_platform_driver(qcom_spi_driver); MODULE_DESCRIPTION("SPI driver for QPIC QSPI cores"); MODULE_AUTHOR("Md Sadre Alam <quic_mdalam@quicinc.com>"); MODULE_LICENSE("GPL");
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
You can’t perform that action at this time.