Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
7421669
Documentation
arch
block
certs
crypto
drivers
accessibility
acpi
acpica
apei
pmic
Kconfig
Makefile
ac.c
acpi_amba.c
acpi_apd.c
acpi_cmos_rtc.c
acpi_dbg.c
acpi_extlog.c
acpi_ipmi.c
acpi_lpat.c
acpi_lpss.c
acpi_memhotplug.c
acpi_pad.c
acpi_platform.c
acpi_pnp.c
acpi_processor.c
acpi_video.c
battery.c
battery.h
bgrt.c
blacklist.c
bus.c
button.c
cm_sbs.c
container.c
cppc_acpi.c
custom_method.c
debugfs.c
device_pm.c
device_sysfs.c
dock.c
ec.c
ec_sys.c
event.c
fan.c
glue.c
gsi.c
hed.c
int340x_thermal.c
internal.h
ioapic.c
nfit.c
nfit.h
numa.c
nvs.c
osl.c
pci_irq.c
pci_link.c
pci_root.c
pci_slot.c
power.c
proc.c
processor_core.c
processor_driver.c
processor_idle.c
processor_pdc.c
processor_perflib.c
processor_thermal.c
processor_throttling.c
property.c
reboot.c
resource.c
sbs.c
sbshc.c
sbshc.h
scan.c
sleep.c
sleep.h
sysfs.c
tables.c
thermal.c
utils.c
video_detect.c
wakeup.c
amba
android
ata
atm
auxdisplay
base
bcma
block
bluetooth
bus
cdrom
char
clk
clocksource
connector
cpufreq
cpuidle
crypto
dca
devfreq
dio
dma-buf
dma
edac
eisa
extcon
firewire
firmware
fmc
fpga
gpio
gpu
hid
hsi
hv
hwmon
hwspinlock
hwtracing
i2c
ide
idle
iio
infiniband
input
iommu
ipack
irqchip
isdn
leds
lguest
lightnvm
macintosh
mailbox
mcb
md
media
memory
memstick
message
mfd
misc
mmc
mtd
net
nfc
ntb
nubus
nvdimm
nvme
nvmem
of
oprofile
parisc
parport
pci
pcmcia
perf
phy
pinctrl
platform
pnp
power
powercap
pps
ps3
ptp
pwm
rapidio
ras
regulator
remoteproc
reset
rpmsg
rtc
s390
sbus
scsi
sfi
sh
sn
soc
spi
spmi
ssb
staging
target
tc
thermal
thunderbolt
tty
uio
usb
uwb
vfio
vhost
video
virt
virtio
vlynq
vme
w1
watchdog
xen
zorro
Kconfig
Makefile
firmware
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.get_maintainer.ignore
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
drivers
/
acpi
/
osl.c
Copy path
Blame
Blame
Latest commit
History
History
1948 lines (1636 loc) · 44.7 KB
Breadcrumbs
linux
/
drivers
/
acpi
/
osl.c
Top
File metadata and controls
Code
Blame
1948 lines (1636 loc) · 44.7 KB
Raw
/* * acpi_osl.c - OS-dependent functions ($Revision: 83 $) * * Copyright (C) 2000 Andrew Henroid * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * Copyright (c) 2008 Intel Corporation * Author: Matthew Wilcox <willy@linux.intel.com> * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/kmod.h> #include <linux/delay.h> #include <linux/workqueue.h> #include <linux/nmi.h> #include <linux/acpi.h> #include <linux/efi.h> #include <linux/ioport.h> #include <linux/list.h> #include <linux/jiffies.h> #include <linux/semaphore.h> #include <asm/io.h> #include <asm/uaccess.h> #include <linux/io-64-nonatomic-lo-hi.h> #include "internal.h" #define _COMPONENT ACPI_OS_SERVICES ACPI_MODULE_NAME("osl"); struct acpi_os_dpc { acpi_osd_exec_callback function; void *context; struct work_struct work; }; #ifdef ENABLE_DEBUGGER #include <linux/kdb.h> /* stuff for debugger support */ int acpi_in_debugger; EXPORT_SYMBOL(acpi_in_debugger); #endif /*ENABLE_DEBUGGER */ static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl, u32 pm1b_ctrl); static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a, u32 val_b); static acpi_osd_handler acpi_irq_handler; static void *acpi_irq_context; static struct workqueue_struct *kacpid_wq; static struct workqueue_struct *kacpi_notify_wq; static struct workqueue_struct *kacpi_hotplug_wq; static bool acpi_os_initialized; unsigned int acpi_sci_irq = INVALID_ACPI_IRQ; /* * This list of permanent mappings is for memory that may be accessed from * interrupt context, where we can't do the ioremap(). */ struct acpi_ioremap { struct list_head list; void __iomem *virt; acpi_physical_address phys; acpi_size size; unsigned long refcount; }; static LIST_HEAD(acpi_ioremaps); static DEFINE_MUTEX(acpi_ioremap_lock); static void __init acpi_osi_setup_late(void); /* * The story of _OSI(Linux) * * From pre-history through Linux-2.6.22, * Linux responded TRUE upon a BIOS OSI(Linux) query. * * Unfortunately, reference BIOS writers got wind of this * and put OSI(Linux) in their example code, quickly exposing * this string as ill-conceived and opening the door to * an un-bounded number of BIOS incompatibilities. * * For example, OSI(Linux) was used on resume to re-POST a * video card on one system, because Linux at that time * could not do a speedy restore in its native driver. * But then upon gaining quick native restore capability, * Linux has no way to tell the BIOS to skip the time-consuming * POST -- putting Linux at a permanent performance disadvantage. * On another system, the BIOS writer used OSI(Linux) * to infer native OS support for IPMI! On other systems, * OSI(Linux) simply got in the way of Linux claiming to * be compatible with other operating systems, exposing * BIOS issues such as skipped device initialization. * * So "Linux" turned out to be a really poor chose of * OSI string, and from Linux-2.6.23 onward we respond FALSE. * * BIOS writers should NOT query _OSI(Linux) on future systems. * Linux will complain on the console when it sees it, and return FALSE. * To get Linux to return TRUE for your system will require * a kernel source update to add a DMI entry, * or boot with "acpi_osi=Linux" */ static struct osi_linux { unsigned int enable:1; unsigned int dmi:1; unsigned int cmdline:1; unsigned int default_disabling:1; } osi_linux = {0, 0, 0, 0}; static u32 acpi_osi_handler(acpi_string interface, u32 supported) { if (!strcmp("Linux", interface)) { printk_once(KERN_NOTICE FW_BUG PREFIX "BIOS _OSI(Linux) query %s%s\n", osi_linux.enable ? "honored" : "ignored", osi_linux.cmdline ? " via cmdline" : osi_linux.dmi ? " via DMI" : ""); } if (!strcmp("Darwin", interface)) { /* * Apple firmware will behave poorly if it receives positive * answers to "Darwin" and any other OS. Respond positively * to Darwin and then disable all other vendor strings. */ acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS); supported = ACPI_UINT32_MAX; } return supported; } static void __init acpi_request_region (struct acpi_generic_address *gas, unsigned int length, char *desc) { u64 addr; /* Handle possible alignment issues */ memcpy(&addr, &gas->address, sizeof(addr)); if (!addr || !length) return; /* Resources are never freed */ if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO) request_region(addr, length, desc); else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) request_mem_region(addr, length, desc); } static int __init acpi_reserve_resources(void) { acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length, "ACPI PM1a_EVT_BLK"); acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length, "ACPI PM1b_EVT_BLK"); acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length, "ACPI PM1a_CNT_BLK"); acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length, "ACPI PM1b_CNT_BLK"); if (acpi_gbl_FADT.pm_timer_length == 4) acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR"); acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length, "ACPI PM2_CNT_BLK"); /* Length of GPE blocks must be a non-negative multiple of 2 */ if (!(acpi_gbl_FADT.gpe0_block_length & 0x1)) acpi_request_region(&acpi_gbl_FADT.xgpe0_block, acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK"); if (!(acpi_gbl_FADT.gpe1_block_length & 0x1)) acpi_request_region(&acpi_gbl_FADT.xgpe1_block, acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK"); return 0; } fs_initcall_sync(acpi_reserve_resources); void acpi_os_printf(const char *fmt, ...) { va_list args; va_start(args, fmt); acpi_os_vprintf(fmt, args); va_end(args); } EXPORT_SYMBOL(acpi_os_printf); void acpi_os_vprintf(const char *fmt, va_list args) { static char buffer[512]; vsprintf(buffer, fmt, args); #ifdef ENABLE_DEBUGGER if (acpi_in_debugger) { kdb_printf("%s", buffer); } else { printk(KERN_CONT "%s", buffer); } #else if (acpi_debugger_write_log(buffer) < 0) printk(KERN_CONT "%s", buffer); #endif } #ifdef CONFIG_KEXEC static unsigned long acpi_rsdp; static int __init setup_acpi_rsdp(char *arg) { if (kstrtoul(arg, 16, &acpi_rsdp)) return -EINVAL; return 0; } early_param("acpi_rsdp", setup_acpi_rsdp); #endif acpi_physical_address __init acpi_os_get_root_pointer(void) { #ifdef CONFIG_KEXEC if (acpi_rsdp) return acpi_rsdp; #endif if (efi_enabled(EFI_CONFIG_TABLES)) { if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) return efi.acpi20; else if (efi.acpi != EFI_INVALID_TABLE_ADDR) return efi.acpi; else { printk(KERN_ERR PREFIX "System description tables not found\n"); return 0; } } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) { acpi_physical_address pa = 0; acpi_find_root_pointer(&pa); return pa; } return 0; } /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ static struct acpi_ioremap * acpi_map_lookup(acpi_physical_address phys, acpi_size size) { struct acpi_ioremap *map; list_for_each_entry_rcu(map, &acpi_ioremaps, list) if (map->phys <= phys && phys + size <= map->phys + map->size) return map; return NULL; } /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ static void __iomem * acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size) { struct acpi_ioremap *map; map = acpi_map_lookup(phys, size); if (map) return map->virt + (phys - map->phys); return NULL; } void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size) { struct acpi_ioremap *map; void __iomem *virt = NULL; mutex_lock(&acpi_ioremap_lock); map = acpi_map_lookup(phys, size); if (map) { virt = map->virt + (phys - map->phys); map->refcount++; } mutex_unlock(&acpi_ioremap_lock); return virt; } EXPORT_SYMBOL_GPL(acpi_os_get_iomem); /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */ static struct acpi_ioremap * acpi_map_lookup_virt(void __iomem *virt, acpi_size size) { struct acpi_ioremap *map; list_for_each_entry_rcu(map, &acpi_ioremaps, list) if (map->virt <= virt && virt + size <= map->virt + map->size) return map; return NULL; } #if defined(CONFIG_IA64) || defined(CONFIG_ARM64) /* ioremap will take care of cache attributes */ #define should_use_kmap(pfn) 0 #else #define should_use_kmap(pfn) page_is_ram(pfn) #endif static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz) { unsigned long pfn; pfn = pg_off >> PAGE_SHIFT; if (should_use_kmap(pfn)) { if (pg_sz > PAGE_SIZE) return NULL; return (void __iomem __force *)kmap(pfn_to_page(pfn)); } else return acpi_os_ioremap(pg_off, pg_sz); } static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr) { unsigned long pfn; pfn = pg_off >> PAGE_SHIFT; if (should_use_kmap(pfn)) kunmap(pfn_to_page(pfn)); else iounmap(vaddr); } /** * acpi_os_map_iomem - Get a virtual address for a given physical address range. * @phys: Start of the physical address range to map. * @size: Size of the physical address range to map. * * Look up the given physical address range in the list of existing ACPI memory * mappings. If found, get a reference to it and return a pointer to it (its * virtual address). If not found, map it, add it to that list and return a * pointer to it. * * During early init (when acpi_gbl_permanent_mmap has not been set yet) this * routine simply calls __acpi_map_table() to get the job done. */ void __iomem *__init_refok acpi_os_map_iomem(acpi_physical_address phys, acpi_size size) { struct acpi_ioremap *map; void __iomem *virt; acpi_physical_address pg_off; acpi_size pg_sz; if (phys > ULONG_MAX) { printk(KERN_ERR PREFIX "Cannot map memory that high\n"); return NULL; } if (!acpi_gbl_permanent_mmap) return __acpi_map_table((unsigned long)phys, size); mutex_lock(&acpi_ioremap_lock); /* Check if there's a suitable mapping already. */ map = acpi_map_lookup(phys, size); if (map) { map->refcount++; goto out; } map = kzalloc(sizeof(*map), GFP_KERNEL); if (!map) { mutex_unlock(&acpi_ioremap_lock); return NULL; } pg_off = round_down(phys, PAGE_SIZE); pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off; virt = acpi_map(pg_off, pg_sz); if (!virt) { mutex_unlock(&acpi_ioremap_lock); kfree(map); return NULL; } INIT_LIST_HEAD(&map->list); map->virt = virt; map->phys = pg_off; map->size = pg_sz; map->refcount = 1; list_add_tail_rcu(&map->list, &acpi_ioremaps); out: mutex_unlock(&acpi_ioremap_lock); return map->virt + (phys - map->phys); } EXPORT_SYMBOL_GPL(acpi_os_map_iomem); void *__init_refok acpi_os_map_memory(acpi_physical_address phys, acpi_size size) { return (void *)acpi_os_map_iomem(phys, size); } EXPORT_SYMBOL_GPL(acpi_os_map_memory); static void acpi_os_drop_map_ref(struct acpi_ioremap *map) { if (!--map->refcount) list_del_rcu(&map->list); } static void acpi_os_map_cleanup(struct acpi_ioremap *map) { if (!map->refcount) { synchronize_rcu_expedited(); acpi_unmap(map->phys, map->virt); kfree(map); } } /** * acpi_os_unmap_iomem - Drop a memory mapping reference. * @virt: Start of the address range to drop a reference to. * @size: Size of the address range to drop a reference to. * * Look up the given virtual address range in the list of existing ACPI memory * mappings, drop a reference to it and unmap it if there are no more active * references to it. * * During early init (when acpi_gbl_permanent_mmap has not been set yet) this * routine simply calls __acpi_unmap_table() to get the job done. Since * __acpi_unmap_table() is an __init function, the __ref annotation is needed * here. */ void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size) { struct acpi_ioremap *map; if (!acpi_gbl_permanent_mmap) { __acpi_unmap_table(virt, size); return; } mutex_lock(&acpi_ioremap_lock); map = acpi_map_lookup_virt(virt, size); if (!map) { mutex_unlock(&acpi_ioremap_lock); WARN(true, PREFIX "%s: bad address %p\n", __func__, virt); return; } acpi_os_drop_map_ref(map); mutex_unlock(&acpi_ioremap_lock); acpi_os_map_cleanup(map); } EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem); void __ref acpi_os_unmap_memory(void *virt, acpi_size size) { return acpi_os_unmap_iomem((void __iomem *)virt, size); } EXPORT_SYMBOL_GPL(acpi_os_unmap_memory); void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size) { if (!acpi_gbl_permanent_mmap) __acpi_unmap_table(virt, size); } int acpi_os_map_generic_address(struct acpi_generic_address *gas) { u64 addr; void __iomem *virt; if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) return 0; /* Handle possible alignment issues */ memcpy(&addr, &gas->address, sizeof(addr)); if (!addr || !gas->bit_width) return -EINVAL; virt = acpi_os_map_iomem(addr, gas->bit_width / 8); if (!virt) return -EIO; return 0; } EXPORT_SYMBOL(acpi_os_map_generic_address); void acpi_os_unmap_generic_address(struct acpi_generic_address *gas) { u64 addr; struct acpi_ioremap *map; if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) return; /* Handle possible alignment issues */ memcpy(&addr, &gas->address, sizeof(addr)); if (!addr || !gas->bit_width) return; mutex_lock(&acpi_ioremap_lock); map = acpi_map_lookup(addr, gas->bit_width / 8); if (!map) { mutex_unlock(&acpi_ioremap_lock); return; } acpi_os_drop_map_ref(map); mutex_unlock(&acpi_ioremap_lock); acpi_os_map_cleanup(map); } EXPORT_SYMBOL(acpi_os_unmap_generic_address); #ifdef ACPI_FUTURE_USAGE acpi_status acpi_os_get_physical_address(void *virt, acpi_physical_address * phys) { if (!phys || !virt) return AE_BAD_PARAMETER; *phys = virt_to_phys(virt); return AE_OK; } #endif #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE static bool acpi_rev_override; int __init acpi_rev_override_setup(char *str) { acpi_rev_override = true; return 1; } __setup("acpi_rev_override", acpi_rev_override_setup); #else #define acpi_rev_override false #endif #define ACPI_MAX_OVERRIDE_LEN 100 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN]; acpi_status acpi_os_predefined_override(const struct acpi_predefined_names *init_val, char **new_val) { if (!init_val || !new_val) return AE_BAD_PARAMETER; *new_val = NULL; if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) { printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n", acpi_os_name); *new_val = acpi_os_name; } if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) { printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n"); *new_val = (char *)5; } return AE_OK; } static irqreturn_t acpi_irq(int irq, void *dev_id) { u32 handled; handled = (*acpi_irq_handler) (acpi_irq_context); if (handled) { acpi_irq_handled++; return IRQ_HANDLED; } else { acpi_irq_not_handled++; return IRQ_NONE; } } acpi_status acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler, void *context) { unsigned int irq; acpi_irq_stats_init(); /* * ACPI interrupts different from the SCI in our copy of the FADT are * not supported. */ if (gsi != acpi_gbl_FADT.sci_interrupt) return AE_BAD_PARAMETER; if (acpi_irq_handler) return AE_ALREADY_ACQUIRED; if (acpi_gsi_to_irq(gsi, &irq) < 0) { printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n", gsi); return AE_OK; } acpi_irq_handler = handler; acpi_irq_context = context; if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) { printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq); acpi_irq_handler = NULL; return AE_NOT_ACQUIRED; } acpi_sci_irq = irq; return AE_OK; } acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler) { if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid()) return AE_BAD_PARAMETER; free_irq(acpi_sci_irq, acpi_irq); acpi_irq_handler = NULL; acpi_sci_irq = INVALID_ACPI_IRQ; return AE_OK; } /* * Running in interpreter thread context, safe to sleep */ void acpi_os_sleep(u64 ms) { msleep(ms); } void acpi_os_stall(u32 us) { while (us) { u32 delay = 1000; if (delay > us) delay = us; udelay(delay); touch_nmi_watchdog(); us -= delay; } } /* * Support ACPI 3.0 AML Timer operand * Returns 64-bit free-running, monotonically increasing timer * with 100ns granularity */ u64 acpi_os_get_timer(void) { u64 time_ns = ktime_to_ns(ktime_get()); do_div(time_ns, 100); return time_ns; } acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width) { u32 dummy; if (!value) value = &dummy; *value = 0; if (width <= 8) { *(u8 *) value = inb(port); } else if (width <= 16) { *(u16 *) value = inw(port); } else if (width <= 32) { *(u32 *) value = inl(port); } else { BUG(); } return AE_OK; } EXPORT_SYMBOL(acpi_os_read_port); acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width) { if (width <= 8) { outb(value, port); } else if (width <= 16) { outw(value, port); } else if (width <= 32) { outl(value, port); } else { BUG(); } return AE_OK; } EXPORT_SYMBOL(acpi_os_write_port); acpi_status acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width) { void __iomem *virt_addr; unsigned int size = width / 8; bool unmap = false; u64 dummy; rcu_read_lock(); virt_addr = acpi_map_vaddr_lookup(phys_addr, size); if (!virt_addr) { rcu_read_unlock(); virt_addr = acpi_os_ioremap(phys_addr, size); if (!virt_addr) return AE_BAD_ADDRESS; unmap = true; } if (!value) value = &dummy; switch (width) { case 8: *(u8 *) value = readb(virt_addr); break; case 16: *(u16 *) value = readw(virt_addr); break; case 32: *(u32 *) value = readl(virt_addr); break; case 64: *(u64 *) value = readq(virt_addr); break; default: BUG(); } if (unmap) iounmap(virt_addr); else rcu_read_unlock(); return AE_OK; } acpi_status acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width) { void __iomem *virt_addr; unsigned int size = width / 8; bool unmap = false; rcu_read_lock(); virt_addr = acpi_map_vaddr_lookup(phys_addr, size); if (!virt_addr) { rcu_read_unlock(); virt_addr = acpi_os_ioremap(phys_addr, size); if (!virt_addr) return AE_BAD_ADDRESS; unmap = true; } switch (width) { case 8: writeb(value, virt_addr); break; case 16: writew(value, virt_addr); break; case 32: writel(value, virt_addr); break; case 64: writeq(value, virt_addr); break; default: BUG(); } if (unmap) iounmap(virt_addr); else rcu_read_unlock(); return AE_OK; } acpi_status acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, u64 *value, u32 width) { int result, size; u32 value32; if (!value) return AE_BAD_PARAMETER; switch (width) { case 8: size = 1; break; case 16: size = 2; break; case 32: size = 4; break; default: return AE_ERROR; } result = raw_pci_read(pci_id->segment, pci_id->bus, PCI_DEVFN(pci_id->device, pci_id->function), reg, size, &value32); *value = value32; return (result ? AE_ERROR : AE_OK); } acpi_status acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg, u64 value, u32 width) { int result, size; switch (width) { case 8: size = 1; break; case 16: size = 2; break; case 32: size = 4; break; default: return AE_ERROR; } result = raw_pci_write(pci_id->segment, pci_id->bus, PCI_DEVFN(pci_id->device, pci_id->function), reg, size, value); return (result ? AE_ERROR : AE_OK); } static void acpi_os_execute_deferred(struct work_struct *work) { struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work); dpc->function(dpc->context); kfree(dpc); } #ifdef CONFIG_ACPI_DEBUGGER static struct acpi_debugger acpi_debugger; static bool acpi_debugger_initialized; int acpi_register_debugger(struct module *owner, const struct acpi_debugger_ops *ops) { int ret = 0; mutex_lock(&acpi_debugger.lock); if (acpi_debugger.ops) { ret = -EBUSY; goto err_lock; } acpi_debugger.owner = owner; acpi_debugger.ops = ops; err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } EXPORT_SYMBOL(acpi_register_debugger); void acpi_unregister_debugger(const struct acpi_debugger_ops *ops) { mutex_lock(&acpi_debugger.lock); if (ops == acpi_debugger.ops) { acpi_debugger.ops = NULL; acpi_debugger.owner = NULL; } mutex_unlock(&acpi_debugger.lock); } EXPORT_SYMBOL(acpi_unregister_debugger); int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context) { int ret; int (*func)(acpi_osd_exec_callback, void *); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->create_thread; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(function, context); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } ssize_t acpi_debugger_write_log(const char *msg) { ssize_t ret; ssize_t (*func)(const char *); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->write_log; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(msg); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length) { ssize_t ret; ssize_t (*func)(char *, size_t); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->read_cmd; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(buffer, buffer_length); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } int acpi_debugger_wait_command_ready(void) { int ret; int (*func)(bool, char *, size_t); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->wait_command_ready; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(acpi_gbl_method_executing, acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } int acpi_debugger_notify_command_complete(void) { int ret; int (*func)(void); struct module *owner; if (!acpi_debugger_initialized) return -ENODEV; mutex_lock(&acpi_debugger.lock); if (!acpi_debugger.ops) { ret = -ENODEV; goto err_lock; } if (!try_module_get(acpi_debugger.owner)) { ret = -ENODEV; goto err_lock; } func = acpi_debugger.ops->notify_command_complete; owner = acpi_debugger.owner; mutex_unlock(&acpi_debugger.lock); ret = func(); mutex_lock(&acpi_debugger.lock); module_put(owner); err_lock: mutex_unlock(&acpi_debugger.lock); return ret; } int __init acpi_debugger_init(void) { mutex_init(&acpi_debugger.lock); acpi_debugger_initialized = true; return 0; } #endif /******************************************************************************* * * FUNCTION: acpi_os_execute * * PARAMETERS: Type - Type of the callback * Function - Function to be executed * Context - Function parameters * * RETURN: Status * * DESCRIPTION: Depending on type, either queues function for deferred execution or * immediately executes function on a separate thread. * ******************************************************************************/ acpi_status acpi_os_execute(acpi_execute_type type, acpi_osd_exec_callback function, void *context) { acpi_status status = AE_OK; struct acpi_os_dpc *dpc; struct workqueue_struct *queue; int ret; ACPI_DEBUG_PRINT((ACPI_DB_EXEC, "Scheduling function [%p(%p)] for deferred execution.\n", function, context)); if (type == OSL_DEBUGGER_MAIN_THREAD) { ret = acpi_debugger_create_thread(function, context); if (ret) { pr_err("Call to kthread_create() failed.\n"); status = AE_ERROR; } goto out_thread; } /* * Allocate/initialize DPC structure. Note that this memory will be * freed by the callee. The kernel handles the work_struct list in a * way that allows us to also free its memory inside the callee. * Because we may want to schedule several tasks with different * parameters we can't use the approach some kernel code uses of * having a static work_struct. */ dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC); if (!dpc) return AE_NO_MEMORY; dpc->function = function; dpc->context = context; /* * To prevent lockdep from complaining unnecessarily, make sure that * there is a different static lockdep key for each workqueue by using * INIT_WORK() for each of them separately. */ if (type == OSL_NOTIFY_HANDLER) { queue = kacpi_notify_wq; INIT_WORK(&dpc->work, acpi_os_execute_deferred); } else if (type == OSL_GPE_HANDLER) { queue = kacpid_wq; INIT_WORK(&dpc->work, acpi_os_execute_deferred); } else { pr_err("Unsupported os_execute type %d.\n", type); status = AE_ERROR; } if (ACPI_FAILURE(status)) goto err_workqueue; /* * On some machines, a software-initiated SMI causes corruption unless * the SMI runs on CPU 0. An SMI can be initiated by any AML, but * typically it's done in GPE-related methods that are run via * workqueues, so we can avoid the known corruption cases by always * queueing on CPU 0. */ ret = queue_work_on(0, queue, &dpc->work); if (!ret) { printk(KERN_ERR PREFIX "Call to queue_work() failed.\n"); status = AE_ERROR; } err_workqueue: if (ACPI_FAILURE(status)) kfree(dpc); out_thread: return status; } EXPORT_SYMBOL(acpi_os_execute); void acpi_os_wait_events_complete(void) { /* * Make sure the GPE handler or the fixed event handler is not used * on another CPU after removal. */ if (acpi_sci_irq_valid()) synchronize_hardirq(acpi_sci_irq); flush_workqueue(kacpid_wq); flush_workqueue(kacpi_notify_wq); } struct acpi_hp_work { struct work_struct work; struct acpi_device *adev; u32 src; }; static void acpi_hotplug_work_fn(struct work_struct *work) { struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work); acpi_os_wait_events_complete(); acpi_device_hotplug(hpw->adev, hpw->src); kfree(hpw); } acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src) { struct acpi_hp_work *hpw; ACPI_DEBUG_PRINT((ACPI_DB_EXEC, "Scheduling hotplug event (%p, %u) for deferred execution.\n", adev, src)); hpw = kmalloc(sizeof(*hpw), GFP_KERNEL); if (!hpw) return AE_NO_MEMORY; INIT_WORK(&hpw->work, acpi_hotplug_work_fn); hpw->adev = adev; hpw->src = src; /* * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because * the hotplug code may call driver .remove() functions, which may * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush * these workqueues. */ if (!queue_work(kacpi_hotplug_wq, &hpw->work)) { kfree(hpw); return AE_ERROR; } return AE_OK; } bool acpi_queue_hotplug_work(struct work_struct *work) { return queue_work(kacpi_hotplug_wq, work); } acpi_status acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle) { struct semaphore *sem = NULL; sem = acpi_os_allocate_zeroed(sizeof(struct semaphore)); if (!sem) return AE_NO_MEMORY; sema_init(sem, initial_units); *handle = (acpi_handle *) sem; ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n", *handle, initial_units)); return AE_OK; } /* * TODO: A better way to delete semaphores? Linux doesn't have a * 'delete_semaphore()' function -- may result in an invalid * pointer dereference for non-synchronized consumers. Should * we at least check for blocked threads and signal/cancel them? */ acpi_status acpi_os_delete_semaphore(acpi_handle handle) { struct semaphore *sem = (struct semaphore *)handle; if (!sem) return AE_BAD_PARAMETER; ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle)); BUG_ON(!list_empty(&sem->wait_list)); kfree(sem); sem = NULL; return AE_OK; } /* * TODO: Support for units > 1? */ acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout) { acpi_status status = AE_OK; struct semaphore *sem = (struct semaphore *)handle; long jiffies; int ret = 0; if (!acpi_os_initialized) return AE_OK; if (!sem || (units < 1)) return AE_BAD_PARAMETER; if (units > 1) return AE_SUPPORT; ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n", handle, units, timeout)); if (timeout == ACPI_WAIT_FOREVER) jiffies = MAX_SCHEDULE_TIMEOUT; else jiffies = msecs_to_jiffies(timeout); ret = down_timeout(sem, jiffies); if (ret) status = AE_TIME; if (ACPI_FAILURE(status)) { ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Failed to acquire semaphore[%p|%d|%d], %s", handle, units, timeout, acpi_format_exception(status))); } else { ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Acquired semaphore[%p|%d|%d]", handle, units, timeout)); } return status; } /* * TODO: Support for units > 1? */ acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units) { struct semaphore *sem = (struct semaphore *)handle; if (!acpi_os_initialized) return AE_OK; if (!sem || (units < 1)) return AE_BAD_PARAMETER; if (units > 1) return AE_SUPPORT; ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle, units)); up(sem); return AE_OK; } acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read) { #ifdef ENABLE_DEBUGGER if (acpi_in_debugger) { u32 chars; kdb_read(buffer, buffer_length); /* remove the CR kdb includes */ chars = strlen(buffer) - 1; buffer[chars] = '\0'; } #else int ret; ret = acpi_debugger_read_cmd(buffer, buffer_length); if (ret < 0) return AE_ERROR; if (bytes_read) *bytes_read = ret; #endif return AE_OK; } EXPORT_SYMBOL(acpi_os_get_line); acpi_status acpi_os_wait_command_ready(void) { int ret; ret = acpi_debugger_wait_command_ready(); if (ret < 0) return AE_ERROR; return AE_OK; } acpi_status acpi_os_notify_command_complete(void) { int ret; ret = acpi_debugger_notify_command_complete(); if (ret < 0) return AE_ERROR; return AE_OK; } acpi_status acpi_os_signal(u32 function, void *info) { switch (function) { case ACPI_SIGNAL_FATAL: printk(KERN_ERR PREFIX "Fatal opcode executed\n"); break; case ACPI_SIGNAL_BREAKPOINT: /* * AML Breakpoint * ACPI spec. says to treat it as a NOP unless * you are debugging. So if/when we integrate * AML debugger into the kernel debugger its * hook will go here. But until then it is * not useful to print anything on breakpoints. */ break; default: break; } return AE_OK; } static int __init acpi_os_name_setup(char *str) { char *p = acpi_os_name; int count = ACPI_MAX_OVERRIDE_LEN - 1; if (!str || !*str) return 0; for (; count-- && *str; str++) { if (isalnum(*str) || *str == ' ' || *str == ':') *p++ = *str; else if (*str == '\'' || *str == '"') continue; else break; } *p = 0; return 1; } __setup("acpi_os_name=", acpi_os_name_setup); #define OSI_STRING_LENGTH_MAX 64 /* arbitrary */ #define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */ struct osi_setup_entry { char string[OSI_STRING_LENGTH_MAX]; bool enable; }; static struct osi_setup_entry osi_setup_entries[OSI_STRING_ENTRIES_MAX] __initdata = { {"Module Device", true}, {"Processor Device", true}, {"3.0 _SCP Extensions", true}, {"Processor Aggregator Device", true}, }; void __init acpi_osi_setup(char *str) { struct osi_setup_entry *osi; bool enable = true; int i; if (!acpi_gbl_create_osi_method) return; if (str == NULL || *str == '\0') { printk(KERN_INFO PREFIX "_OSI method disabled\n"); acpi_gbl_create_osi_method = FALSE; return; } if (*str == '!') { str++; if (*str == '\0') { osi_linux.default_disabling = 1; return; } else if (*str == '*') { acpi_update_interfaces(ACPI_DISABLE_ALL_STRINGS); for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { osi = &osi_setup_entries[i]; osi->enable = false; } return; } enable = false; } for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { osi = &osi_setup_entries[i]; if (!strcmp(osi->string, str)) { osi->enable = enable; break; } else if (osi->string[0] == '\0') { osi->enable = enable; strncpy(osi->string, str, OSI_STRING_LENGTH_MAX); break; } } } static void __init set_osi_linux(unsigned int enable) { if (osi_linux.enable != enable) osi_linux.enable = enable; if (osi_linux.enable) acpi_osi_setup("Linux"); else acpi_osi_setup("!Linux"); return; } static void __init acpi_cmdline_osi_linux(unsigned int enable) { osi_linux.cmdline = 1; /* cmdline set the default and override DMI */ osi_linux.dmi = 0; set_osi_linux(enable); return; } void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d) { printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident); if (enable == -1) return; osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */ set_osi_linux(enable); return; } /* * Modify the list of "OS Interfaces" reported to BIOS via _OSI * * empty string disables _OSI * string starting with '!' disables that string * otherwise string is added to list, augmenting built-in strings */ static void __init acpi_osi_setup_late(void) { struct osi_setup_entry *osi; char *str; int i; acpi_status status; if (osi_linux.default_disabling) { status = acpi_update_interfaces(ACPI_DISABLE_ALL_VENDOR_STRINGS); if (ACPI_SUCCESS(status)) printk(KERN_INFO PREFIX "Disabled all _OSI OS vendors\n"); } for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) { osi = &osi_setup_entries[i]; str = osi->string; if (*str == '\0') break; if (osi->enable) { status = acpi_install_interface(str); if (ACPI_SUCCESS(status)) printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str); } else { status = acpi_remove_interface(str); if (ACPI_SUCCESS(status)) printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str); } } } static int __init osi_setup(char *str) { if (str && !strcmp("Linux", str)) acpi_cmdline_osi_linux(1); else if (str && !strcmp("!Linux", str)) acpi_cmdline_osi_linux(0); else acpi_osi_setup(str); return 1; } __setup("acpi_osi=", osi_setup); /* * Disable the auto-serialization of named objects creation methods. * * This feature is enabled by default. It marks the AML control methods * that contain the opcodes to create named objects as "Serialized". */ static int __init acpi_no_auto_serialize_setup(char *str) { acpi_gbl_auto_serialize_methods = FALSE; pr_info("ACPI: auto-serialization disabled\n"); return 1; } __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup); /* Check of resource interference between native drivers and ACPI * OperationRegions (SystemIO and System Memory only). * IO ports and memory declared in ACPI might be used by the ACPI subsystem * in arbitrary AML code and can interfere with legacy drivers. * acpi_enforce_resources= can be set to: * * - strict (default) (2) * -> further driver trying to access the resources will not load * - lax (1) * -> further driver trying to access the resources will load, but you * get a system message that something might go wrong... * * - no (0) * -> ACPI Operation Region resources will not be registered * */ #define ENFORCE_RESOURCES_STRICT 2 #define ENFORCE_RESOURCES_LAX 1 #define ENFORCE_RESOURCES_NO 0 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; static int __init acpi_enforce_resources_setup(char *str) { if (str == NULL || *str == '\0') return 0; if (!strcmp("strict", str)) acpi_enforce_resources = ENFORCE_RESOURCES_STRICT; else if (!strcmp("lax", str)) acpi_enforce_resources = ENFORCE_RESOURCES_LAX; else if (!strcmp("no", str)) acpi_enforce_resources = ENFORCE_RESOURCES_NO; return 1; } __setup("acpi_enforce_resources=", acpi_enforce_resources_setup); /* Check for resource conflicts between ACPI OperationRegions and native * drivers */ int acpi_check_resource_conflict(const struct resource *res) { acpi_adr_space_type space_id; acpi_size length; u8 warn = 0; int clash = 0; if (acpi_enforce_resources == ENFORCE_RESOURCES_NO) return 0; if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM)) return 0; if (res->flags & IORESOURCE_IO) space_id = ACPI_ADR_SPACE_SYSTEM_IO; else space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY; length = resource_size(res); if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) warn = 1; clash = acpi_check_address_range(space_id, res->start, length, warn); if (clash) { if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) { if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX) printk(KERN_NOTICE "ACPI: This conflict may" " cause random problems and system" " instability\n"); printk(KERN_INFO "ACPI: If an ACPI driver is available" " for this device, you should use it instead of" " the native driver\n"); } if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT) return -EBUSY; } return 0; } EXPORT_SYMBOL(acpi_check_resource_conflict); int acpi_check_region(resource_size_t start, resource_size_t n, const char *name) { struct resource res = { .start = start, .end = start + n - 1, .name = name, .flags = IORESOURCE_IO, }; return acpi_check_resource_conflict(&res); } EXPORT_SYMBOL(acpi_check_region); /* * Let drivers know whether the resource checks are effective */ int acpi_resources_are_enforced(void) { return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT; } EXPORT_SYMBOL(acpi_resources_are_enforced); bool acpi_osi_is_win8(void) { return acpi_gbl_osi_data >= ACPI_OSI_WIN_8; } EXPORT_SYMBOL(acpi_osi_is_win8); /* * Deallocate the memory for a spinlock. */ void acpi_os_delete_lock(acpi_spinlock handle) { ACPI_FREE(handle); } /* * Acquire a spinlock. * * handle is a pointer to the spinlock_t. */ acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp) { acpi_cpu_flags flags; spin_lock_irqsave(lockp, flags); return flags; } /* * Release a spinlock. See above. */ void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags) { spin_unlock_irqrestore(lockp, flags); } #ifndef ACPI_USE_LOCAL_CACHE /******************************************************************************* * * FUNCTION: acpi_os_create_cache * * PARAMETERS: name - Ascii name for the cache * size - Size of each cached object * depth - Maximum depth of the cache (in objects) <ignored> * cache - Where the new cache object is returned * * RETURN: status * * DESCRIPTION: Create a cache object * ******************************************************************************/ acpi_status acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache) { *cache = kmem_cache_create(name, size, 0, 0, NULL); if (*cache == NULL) return AE_ERROR; else return AE_OK; } /******************************************************************************* * * FUNCTION: acpi_os_purge_cache * * PARAMETERS: Cache - Handle to cache object * * RETURN: Status * * DESCRIPTION: Free all objects within the requested cache. * ******************************************************************************/ acpi_status acpi_os_purge_cache(acpi_cache_t * cache) { kmem_cache_shrink(cache); return (AE_OK); } /******************************************************************************* * * FUNCTION: acpi_os_delete_cache * * PARAMETERS: Cache - Handle to cache object * * RETURN: Status * * DESCRIPTION: Free all objects within the requested cache and delete the * cache object. * ******************************************************************************/ acpi_status acpi_os_delete_cache(acpi_cache_t * cache) { kmem_cache_destroy(cache); return (AE_OK); } /******************************************************************************* * * FUNCTION: acpi_os_release_object * * PARAMETERS: Cache - Handle to cache object * Object - The object to be released * * RETURN: None * * DESCRIPTION: Release an object to the specified cache. If cache is full, * the object is deleted. * ******************************************************************************/ acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object) { kmem_cache_free(cache, object); return (AE_OK); } #endif static int __init acpi_no_static_ssdt_setup(char *s) { acpi_gbl_disable_ssdt_table_install = TRUE; pr_info("ACPI: static SSDT installation disabled\n"); return 0; } early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup); static int __init acpi_disable_return_repair(char *s) { printk(KERN_NOTICE PREFIX "ACPI: Predefined validation mechanism disabled\n"); acpi_gbl_disable_auto_repair = TRUE; return 1; } __setup("acpica_no_return_repair", acpi_disable_return_repair); acpi_status __init acpi_os_initialize(void) { acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block); acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block); acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block); acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block); if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) { /* * Use acpi_os_map_generic_address to pre-map the reset * register if it's in system memory. */ int rv; rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register); pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv); } acpi_os_initialized = true; return AE_OK; } acpi_status __init acpi_os_initialize1(void) { kacpid_wq = alloc_workqueue("kacpid", 0, 1); kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1); kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0); BUG_ON(!kacpid_wq); BUG_ON(!kacpi_notify_wq); BUG_ON(!kacpi_hotplug_wq); acpi_install_interface_handler(acpi_osi_handler); acpi_osi_setup_late(); return AE_OK; } acpi_status acpi_os_terminate(void) { if (acpi_irq_handler) { acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt, acpi_irq_handler); } acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block); acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block); acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block); acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block); if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register); destroy_workqueue(kacpid_wq); destroy_workqueue(kacpi_notify_wq); destroy_workqueue(kacpi_hotplug_wq); return AE_OK; } acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control, u32 pm1b_control) { int rc = 0; if (__acpi_os_prepare_sleep) rc = __acpi_os_prepare_sleep(sleep_state, pm1a_control, pm1b_control); if (rc < 0) return AE_ERROR; else if (rc > 0) return AE_CTRL_SKIP; return AE_OK; } void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state, u32 pm1a_ctrl, u32 pm1b_ctrl)) { __acpi_os_prepare_sleep = func; } acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a, u32 val_b) { int rc = 0; if (__acpi_os_prepare_extended_sleep) rc = __acpi_os_prepare_extended_sleep(sleep_state, val_a, val_b); if (rc < 0) return AE_ERROR; else if (rc > 0) return AE_CTRL_SKIP; return AE_OK; } void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state, u32 val_a, u32 val_b)) { __acpi_os_prepare_extended_sleep = func; }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
You can’t perform that action at this time.