Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
786185b
Documentation
arch
block
crypto
drivers
firmware
fs
include
init
ipc
kernel
lib
mm
net
802
8021q
9p
appletalk
atm
ax25
batman-adv
bluetooth
bridge
caif
can
ceph
core
dcb
dccp
decnet
dns_resolver
dsa
econet
ethernet
ieee802154
ipv4
ipv6
ipx
irda
iucv
key
l2tp
lapb
llc
mac80211
netfilter
netlabel
netlink
netrom
nfc
openvswitch
packet
phonet
rds
rfkill
rose
rxrpc
sched
sctp
sunrpc
auth_gss
xprtrdma
Kconfig
Makefile
addr.c
auth.c
auth_generic.c
auth_null.c
auth_unix.c
backchannel_rqst.c
bc_svc.c
cache.c
clnt.c
netns.h
rpc_pipe.c
rpcb_clnt.c
sched.c
socklib.c
stats.c
sunrpc.h
sunrpc_syms.c
svc.c
svc_xprt.c
svcauth.c
svcauth_unix.c
svcsock.c
sysctl.c
timer.c
xdr.c
xprt.c
xprtsock.c
tipc
unix
wanrouter
wimax
wireless
x25
xfrm
Kconfig
Makefile
compat.c
nonet.c
socket.c
sysctl_net.c
samples
scripts
security
sound
tools
usr
virt
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
net
/
sunrpc
/
svc.c
Copy path
Blame
Blame
Latest commit
History
History
1397 lines (1193 loc) · 32.9 KB
Breadcrumbs
linux
/
net
/
sunrpc
/
svc.c
Top
File metadata and controls
Code
Blame
1397 lines (1193 loc) · 32.9 KB
Raw
/* * linux/net/sunrpc/svc.c * * High-level RPC service routines * * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> * * Multiple threads pools and NUMAisation * Copyright (c) 2006 Silicon Graphics, Inc. * by Greg Banks <gnb@melbourne.sgi.com> */ #include <linux/linkage.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/net.h> #include <linux/in.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/kthread.h> #include <linux/slab.h> #include <linux/nsproxy.h> #include <linux/sunrpc/types.h> #include <linux/sunrpc/xdr.h> #include <linux/sunrpc/stats.h> #include <linux/sunrpc/svcsock.h> #include <linux/sunrpc/clnt.h> #include <linux/sunrpc/bc_xprt.h> #define RPCDBG_FACILITY RPCDBG_SVCDSP static void svc_unregister(const struct svc_serv *serv, struct net *net); #define svc_serv_is_pooled(serv) ((serv)->sv_function) /* * Mode for mapping cpus to pools. */ enum { SVC_POOL_AUTO = -1, /* choose one of the others */ SVC_POOL_GLOBAL, /* no mapping, just a single global pool * (legacy & UP mode) */ SVC_POOL_PERCPU, /* one pool per cpu */ SVC_POOL_PERNODE /* one pool per numa node */ }; #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL /* * Structure for mapping cpus to pools and vice versa. * Setup once during sunrpc initialisation. */ static struct svc_pool_map { int count; /* How many svc_servs use us */ int mode; /* Note: int not enum to avoid * warnings about "enumeration value * not handled in switch" */ unsigned int npools; unsigned int *pool_to; /* maps pool id to cpu or node */ unsigned int *to_pool; /* maps cpu or node to pool id */ } svc_pool_map = { .count = 0, .mode = SVC_POOL_DEFAULT }; static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */ static int param_set_pool_mode(const char *val, struct kernel_param *kp) { int *ip = (int *)kp->arg; struct svc_pool_map *m = &svc_pool_map; int err; mutex_lock(&svc_pool_map_mutex); err = -EBUSY; if (m->count) goto out; err = 0; if (!strncmp(val, "auto", 4)) *ip = SVC_POOL_AUTO; else if (!strncmp(val, "global", 6)) *ip = SVC_POOL_GLOBAL; else if (!strncmp(val, "percpu", 6)) *ip = SVC_POOL_PERCPU; else if (!strncmp(val, "pernode", 7)) *ip = SVC_POOL_PERNODE; else err = -EINVAL; out: mutex_unlock(&svc_pool_map_mutex); return err; } static int param_get_pool_mode(char *buf, struct kernel_param *kp) { int *ip = (int *)kp->arg; switch (*ip) { case SVC_POOL_AUTO: return strlcpy(buf, "auto", 20); case SVC_POOL_GLOBAL: return strlcpy(buf, "global", 20); case SVC_POOL_PERCPU: return strlcpy(buf, "percpu", 20); case SVC_POOL_PERNODE: return strlcpy(buf, "pernode", 20); default: return sprintf(buf, "%d", *ip); } } module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode, &svc_pool_map.mode, 0644); /* * Detect best pool mapping mode heuristically, * according to the machine's topology. */ static int svc_pool_map_choose_mode(void) { unsigned int node; if (nr_online_nodes > 1) { /* * Actually have multiple NUMA nodes, * so split pools on NUMA node boundaries */ return SVC_POOL_PERNODE; } node = first_online_node; if (nr_cpus_node(node) > 2) { /* * Non-trivial SMP, or CONFIG_NUMA on * non-NUMA hardware, e.g. with a generic * x86_64 kernel on Xeons. In this case we * want to divide the pools on cpu boundaries. */ return SVC_POOL_PERCPU; } /* default: one global pool */ return SVC_POOL_GLOBAL; } /* * Allocate the to_pool[] and pool_to[] arrays. * Returns 0 on success or an errno. */ static int svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools) { m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); if (!m->to_pool) goto fail; m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL); if (!m->pool_to) goto fail_free; return 0; fail_free: kfree(m->to_pool); m->to_pool = NULL; fail: return -ENOMEM; } /* * Initialise the pool map for SVC_POOL_PERCPU mode. * Returns number of pools or <0 on error. */ static int svc_pool_map_init_percpu(struct svc_pool_map *m) { unsigned int maxpools = nr_cpu_ids; unsigned int pidx = 0; unsigned int cpu; int err; err = svc_pool_map_alloc_arrays(m, maxpools); if (err) return err; for_each_online_cpu(cpu) { BUG_ON(pidx > maxpools); m->to_pool[cpu] = pidx; m->pool_to[pidx] = cpu; pidx++; } /* cpus brought online later all get mapped to pool0, sorry */ return pidx; }; /* * Initialise the pool map for SVC_POOL_PERNODE mode. * Returns number of pools or <0 on error. */ static int svc_pool_map_init_pernode(struct svc_pool_map *m) { unsigned int maxpools = nr_node_ids; unsigned int pidx = 0; unsigned int node; int err; err = svc_pool_map_alloc_arrays(m, maxpools); if (err) return err; for_each_node_with_cpus(node) { /* some architectures (e.g. SN2) have cpuless nodes */ BUG_ON(pidx > maxpools); m->to_pool[node] = pidx; m->pool_to[pidx] = node; pidx++; } /* nodes brought online later all get mapped to pool0, sorry */ return pidx; } /* * Add a reference to the global map of cpus to pools (and * vice versa). Initialise the map if we're the first user. * Returns the number of pools. */ static unsigned int svc_pool_map_get(void) { struct svc_pool_map *m = &svc_pool_map; int npools = -1; mutex_lock(&svc_pool_map_mutex); if (m->count++) { mutex_unlock(&svc_pool_map_mutex); return m->npools; } if (m->mode == SVC_POOL_AUTO) m->mode = svc_pool_map_choose_mode(); switch (m->mode) { case SVC_POOL_PERCPU: npools = svc_pool_map_init_percpu(m); break; case SVC_POOL_PERNODE: npools = svc_pool_map_init_pernode(m); break; } if (npools < 0) { /* default, or memory allocation failure */ npools = 1; m->mode = SVC_POOL_GLOBAL; } m->npools = npools; mutex_unlock(&svc_pool_map_mutex); return m->npools; } /* * Drop a reference to the global map of cpus to pools. * When the last reference is dropped, the map data is * freed; this allows the sysadmin to change the pool * mode using the pool_mode module option without * rebooting or re-loading sunrpc.ko. */ static void svc_pool_map_put(void) { struct svc_pool_map *m = &svc_pool_map; mutex_lock(&svc_pool_map_mutex); if (!--m->count) { kfree(m->to_pool); m->to_pool = NULL; kfree(m->pool_to); m->pool_to = NULL; m->npools = 0; } mutex_unlock(&svc_pool_map_mutex); } static int svc_pool_map_get_node(unsigned int pidx) { const struct svc_pool_map *m = &svc_pool_map; if (m->count) { if (m->mode == SVC_POOL_PERCPU) return cpu_to_node(m->pool_to[pidx]); if (m->mode == SVC_POOL_PERNODE) return m->pool_to[pidx]; } return NUMA_NO_NODE; } /* * Set the given thread's cpus_allowed mask so that it * will only run on cpus in the given pool. */ static inline void svc_pool_map_set_cpumask(struct task_struct *task, unsigned int pidx) { struct svc_pool_map *m = &svc_pool_map; unsigned int node = m->pool_to[pidx]; /* * The caller checks for sv_nrpools > 1, which * implies that we've been initialized. */ BUG_ON(m->count == 0); switch (m->mode) { case SVC_POOL_PERCPU: { set_cpus_allowed_ptr(task, cpumask_of(node)); break; } case SVC_POOL_PERNODE: { set_cpus_allowed_ptr(task, cpumask_of_node(node)); break; } } } /* * Use the mapping mode to choose a pool for a given CPU. * Used when enqueueing an incoming RPC. Always returns * a non-NULL pool pointer. */ struct svc_pool * svc_pool_for_cpu(struct svc_serv *serv, int cpu) { struct svc_pool_map *m = &svc_pool_map; unsigned int pidx = 0; /* * An uninitialised map happens in a pure client when * lockd is brought up, so silently treat it the * same as SVC_POOL_GLOBAL. */ if (svc_serv_is_pooled(serv)) { switch (m->mode) { case SVC_POOL_PERCPU: pidx = m->to_pool[cpu]; break; case SVC_POOL_PERNODE: pidx = m->to_pool[cpu_to_node(cpu)]; break; } } return &serv->sv_pools[pidx % serv->sv_nrpools]; } int svc_rpcb_setup(struct svc_serv *serv, struct net *net) { int err; err = rpcb_create_local(net); if (err) return err; /* Remove any stale portmap registrations */ svc_unregister(serv, net); return 0; } EXPORT_SYMBOL_GPL(svc_rpcb_setup); void svc_rpcb_cleanup(struct svc_serv *serv, struct net *net) { svc_unregister(serv, net); rpcb_put_local(net); } EXPORT_SYMBOL_GPL(svc_rpcb_cleanup); static int svc_uses_rpcbind(struct svc_serv *serv) { struct svc_program *progp; unsigned int i; for (progp = serv->sv_program; progp; progp = progp->pg_next) { for (i = 0; i < progp->pg_nvers; i++) { if (progp->pg_vers[i] == NULL) continue; if (progp->pg_vers[i]->vs_hidden == 0) return 1; } } return 0; } int svc_bind(struct svc_serv *serv, struct net *net) { if (!svc_uses_rpcbind(serv)) return 0; return svc_rpcb_setup(serv, net); } EXPORT_SYMBOL_GPL(svc_bind); /* * Create an RPC service */ static struct svc_serv * __svc_create(struct svc_program *prog, unsigned int bufsize, int npools, void (*shutdown)(struct svc_serv *serv, struct net *net)) { struct svc_serv *serv; unsigned int vers; unsigned int xdrsize; unsigned int i; if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL))) return NULL; serv->sv_name = prog->pg_name; serv->sv_program = prog; serv->sv_nrthreads = 1; serv->sv_stats = prog->pg_stats; if (bufsize > RPCSVC_MAXPAYLOAD) bufsize = RPCSVC_MAXPAYLOAD; serv->sv_max_payload = bufsize? bufsize : 4096; serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE); serv->sv_shutdown = shutdown; xdrsize = 0; while (prog) { prog->pg_lovers = prog->pg_nvers-1; for (vers=0; vers<prog->pg_nvers ; vers++) if (prog->pg_vers[vers]) { prog->pg_hivers = vers; if (prog->pg_lovers > vers) prog->pg_lovers = vers; if (prog->pg_vers[vers]->vs_xdrsize > xdrsize) xdrsize = prog->pg_vers[vers]->vs_xdrsize; } prog = prog->pg_next; } serv->sv_xdrsize = xdrsize; INIT_LIST_HEAD(&serv->sv_tempsocks); INIT_LIST_HEAD(&serv->sv_permsocks); init_timer(&serv->sv_temptimer); spin_lock_init(&serv->sv_lock); serv->sv_nrpools = npools; serv->sv_pools = kcalloc(serv->sv_nrpools, sizeof(struct svc_pool), GFP_KERNEL); if (!serv->sv_pools) { kfree(serv); return NULL; } for (i = 0; i < serv->sv_nrpools; i++) { struct svc_pool *pool = &serv->sv_pools[i]; dprintk("svc: initialising pool %u for %s\n", i, serv->sv_name); pool->sp_id = i; INIT_LIST_HEAD(&pool->sp_threads); INIT_LIST_HEAD(&pool->sp_sockets); INIT_LIST_HEAD(&pool->sp_all_threads); spin_lock_init(&pool->sp_lock); } if (svc_uses_rpcbind(serv) && (!serv->sv_shutdown)) serv->sv_shutdown = svc_rpcb_cleanup; return serv; } struct svc_serv * svc_create(struct svc_program *prog, unsigned int bufsize, void (*shutdown)(struct svc_serv *serv, struct net *net)) { return __svc_create(prog, bufsize, /*npools*/1, shutdown); } EXPORT_SYMBOL_GPL(svc_create); struct svc_serv * svc_create_pooled(struct svc_program *prog, unsigned int bufsize, void (*shutdown)(struct svc_serv *serv, struct net *net), svc_thread_fn func, struct module *mod) { struct svc_serv *serv; unsigned int npools = svc_pool_map_get(); serv = __svc_create(prog, bufsize, npools, shutdown); if (serv != NULL) { serv->sv_function = func; serv->sv_module = mod; } return serv; } EXPORT_SYMBOL_GPL(svc_create_pooled); void svc_shutdown_net(struct svc_serv *serv, struct net *net) { /* * The set of xprts (contained in the sv_tempsocks and * sv_permsocks lists) is now constant, since it is modified * only by accepting new sockets (done by service threads in * svc_recv) or aging old ones (done by sv_temptimer), or * configuration changes (excluded by whatever locking the * caller is using--nfsd_mutex in the case of nfsd). So it's * safe to traverse those lists and shut everything down: */ svc_close_net(serv, net); if (serv->sv_shutdown) serv->sv_shutdown(serv, net); } EXPORT_SYMBOL_GPL(svc_shutdown_net); /* * Destroy an RPC service. Should be called with appropriate locking to * protect the sv_nrthreads, sv_permsocks and sv_tempsocks. */ void svc_destroy(struct svc_serv *serv) { dprintk("svc: svc_destroy(%s, %d)\n", serv->sv_program->pg_name, serv->sv_nrthreads); if (serv->sv_nrthreads) { if (--(serv->sv_nrthreads) != 0) { svc_sock_update_bufs(serv); return; } } else printk("svc_destroy: no threads for serv=%p!\n", serv); del_timer_sync(&serv->sv_temptimer); /* * The last user is gone and thus all sockets have to be destroyed to * the point. Check this. */ BUG_ON(!list_empty(&serv->sv_permsocks)); BUG_ON(!list_empty(&serv->sv_tempsocks)); cache_clean_deferred(serv); if (svc_serv_is_pooled(serv)) svc_pool_map_put(); kfree(serv->sv_pools); kfree(serv); } EXPORT_SYMBOL_GPL(svc_destroy); /* * Allocate an RPC server's buffer space. * We allocate pages and place them in rq_argpages. */ static int svc_init_buffer(struct svc_rqst *rqstp, unsigned int size, int node) { unsigned int pages, arghi; /* bc_xprt uses fore channel allocated buffers */ if (svc_is_backchannel(rqstp)) return 1; pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply. * We assume one is at most one page */ arghi = 0; BUG_ON(pages > RPCSVC_MAXPAGES); while (pages) { struct page *p = alloc_pages_node(node, GFP_KERNEL, 0); if (!p) break; rqstp->rq_pages[arghi++] = p; pages--; } return pages == 0; } /* * Release an RPC server buffer */ static void svc_release_buffer(struct svc_rqst *rqstp) { unsigned int i; for (i = 0; i < ARRAY_SIZE(rqstp->rq_pages); i++) if (rqstp->rq_pages[i]) put_page(rqstp->rq_pages[i]); } struct svc_rqst * svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool, int node) { struct svc_rqst *rqstp; rqstp = kzalloc_node(sizeof(*rqstp), GFP_KERNEL, node); if (!rqstp) goto out_enomem; init_waitqueue_head(&rqstp->rq_wait); serv->sv_nrthreads++; spin_lock_bh(&pool->sp_lock); pool->sp_nrthreads++; list_add(&rqstp->rq_all, &pool->sp_all_threads); spin_unlock_bh(&pool->sp_lock); rqstp->rq_server = serv; rqstp->rq_pool = pool; rqstp->rq_argp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); if (!rqstp->rq_argp) goto out_thread; rqstp->rq_resp = kmalloc_node(serv->sv_xdrsize, GFP_KERNEL, node); if (!rqstp->rq_resp) goto out_thread; if (!svc_init_buffer(rqstp, serv->sv_max_mesg, node)) goto out_thread; return rqstp; out_thread: svc_exit_thread(rqstp); out_enomem: return ERR_PTR(-ENOMEM); } EXPORT_SYMBOL_GPL(svc_prepare_thread); /* * Choose a pool in which to create a new thread, for svc_set_num_threads */ static inline struct svc_pool * choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) { if (pool != NULL) return pool; return &serv->sv_pools[(*state)++ % serv->sv_nrpools]; } /* * Choose a thread to kill, for svc_set_num_threads */ static inline struct task_struct * choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state) { unsigned int i; struct task_struct *task = NULL; if (pool != NULL) { spin_lock_bh(&pool->sp_lock); } else { /* choose a pool in round-robin fashion */ for (i = 0; i < serv->sv_nrpools; i++) { pool = &serv->sv_pools[--(*state) % serv->sv_nrpools]; spin_lock_bh(&pool->sp_lock); if (!list_empty(&pool->sp_all_threads)) goto found_pool; spin_unlock_bh(&pool->sp_lock); } return NULL; } found_pool: if (!list_empty(&pool->sp_all_threads)) { struct svc_rqst *rqstp; /* * Remove from the pool->sp_all_threads list * so we don't try to kill it again. */ rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all); list_del_init(&rqstp->rq_all); task = rqstp->rq_task; } spin_unlock_bh(&pool->sp_lock); return task; } /* * Create or destroy enough new threads to make the number * of threads the given number. If `pool' is non-NULL, applies * only to threads in that pool, otherwise round-robins between * all pools. Caller must ensure that mutual exclusion between this and * server startup or shutdown. * * Destroying threads relies on the service threads filling in * rqstp->rq_task, which only the nfs ones do. Assumes the serv * has been created using svc_create_pooled(). * * Based on code that used to be in nfsd_svc() but tweaked * to be pool-aware. */ int svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs) { struct svc_rqst *rqstp; struct task_struct *task; struct svc_pool *chosen_pool; int error = 0; unsigned int state = serv->sv_nrthreads-1; int node; if (pool == NULL) { /* The -1 assumes caller has done a svc_get() */ nrservs -= (serv->sv_nrthreads-1); } else { spin_lock_bh(&pool->sp_lock); nrservs -= pool->sp_nrthreads; spin_unlock_bh(&pool->sp_lock); } /* create new threads */ while (nrservs > 0) { nrservs--; chosen_pool = choose_pool(serv, pool, &state); node = svc_pool_map_get_node(chosen_pool->sp_id); rqstp = svc_prepare_thread(serv, chosen_pool, node); if (IS_ERR(rqstp)) { error = PTR_ERR(rqstp); break; } __module_get(serv->sv_module); task = kthread_create_on_node(serv->sv_function, rqstp, node, serv->sv_name); if (IS_ERR(task)) { error = PTR_ERR(task); module_put(serv->sv_module); svc_exit_thread(rqstp); break; } rqstp->rq_task = task; if (serv->sv_nrpools > 1) svc_pool_map_set_cpumask(task, chosen_pool->sp_id); svc_sock_update_bufs(serv); wake_up_process(task); } /* destroy old threads */ while (nrservs < 0 && (task = choose_victim(serv, pool, &state)) != NULL) { send_sig(SIGINT, task, 1); nrservs++; } return error; } EXPORT_SYMBOL_GPL(svc_set_num_threads); /* * Called from a server thread as it's exiting. Caller must hold the BKL or * the "service mutex", whichever is appropriate for the service. */ void svc_exit_thread(struct svc_rqst *rqstp) { struct svc_serv *serv = rqstp->rq_server; struct svc_pool *pool = rqstp->rq_pool; svc_release_buffer(rqstp); kfree(rqstp->rq_resp); kfree(rqstp->rq_argp); kfree(rqstp->rq_auth_data); spin_lock_bh(&pool->sp_lock); pool->sp_nrthreads--; list_del(&rqstp->rq_all); spin_unlock_bh(&pool->sp_lock); kfree(rqstp); /* Release the server */ if (serv) svc_destroy(serv); } EXPORT_SYMBOL_GPL(svc_exit_thread); /* * Register an "inet" protocol family netid with the local * rpcbind daemon via an rpcbind v4 SET request. * * No netconfig infrastructure is available in the kernel, so * we map IP_ protocol numbers to netids by hand. * * Returns zero on success; a negative errno value is returned * if any error occurs. */ static int __svc_rpcb_register4(struct net *net, const u32 program, const u32 version, const unsigned short protocol, const unsigned short port) { const struct sockaddr_in sin = { .sin_family = AF_INET, .sin_addr.s_addr = htonl(INADDR_ANY), .sin_port = htons(port), }; const char *netid; int error; switch (protocol) { case IPPROTO_UDP: netid = RPCBIND_NETID_UDP; break; case IPPROTO_TCP: netid = RPCBIND_NETID_TCP; break; default: return -ENOPROTOOPT; } error = rpcb_v4_register(net, program, version, (const struct sockaddr *)&sin, netid); /* * User space didn't support rpcbind v4, so retry this * registration request with the legacy rpcbind v2 protocol. */ if (error == -EPROTONOSUPPORT) error = rpcb_register(net, program, version, protocol, port); return error; } #if IS_ENABLED(CONFIG_IPV6) /* * Register an "inet6" protocol family netid with the local * rpcbind daemon via an rpcbind v4 SET request. * * No netconfig infrastructure is available in the kernel, so * we map IP_ protocol numbers to netids by hand. * * Returns zero on success; a negative errno value is returned * if any error occurs. */ static int __svc_rpcb_register6(struct net *net, const u32 program, const u32 version, const unsigned short protocol, const unsigned short port) { const struct sockaddr_in6 sin6 = { .sin6_family = AF_INET6, .sin6_addr = IN6ADDR_ANY_INIT, .sin6_port = htons(port), }; const char *netid; int error; switch (protocol) { case IPPROTO_UDP: netid = RPCBIND_NETID_UDP6; break; case IPPROTO_TCP: netid = RPCBIND_NETID_TCP6; break; default: return -ENOPROTOOPT; } error = rpcb_v4_register(net, program, version, (const struct sockaddr *)&sin6, netid); /* * User space didn't support rpcbind version 4, so we won't * use a PF_INET6 listener. */ if (error == -EPROTONOSUPPORT) error = -EAFNOSUPPORT; return error; } #endif /* IS_ENABLED(CONFIG_IPV6) */ /* * Register a kernel RPC service via rpcbind version 4. * * Returns zero on success; a negative errno value is returned * if any error occurs. */ static int __svc_register(struct net *net, const char *progname, const u32 program, const u32 version, const int family, const unsigned short protocol, const unsigned short port) { int error = -EAFNOSUPPORT; switch (family) { case PF_INET: error = __svc_rpcb_register4(net, program, version, protocol, port); break; #if IS_ENABLED(CONFIG_IPV6) case PF_INET6: error = __svc_rpcb_register6(net, program, version, protocol, port); #endif } if (error < 0) printk(KERN_WARNING "svc: failed to register %sv%u RPC " "service (errno %d).\n", progname, version, -error); return error; } /** * svc_register - register an RPC service with the local portmapper * @serv: svc_serv struct for the service to register * @net: net namespace for the service to register * @family: protocol family of service's listener socket * @proto: transport protocol number to advertise * @port: port to advertise * * Service is registered for any address in the passed-in protocol family */ int svc_register(const struct svc_serv *serv, struct net *net, const int family, const unsigned short proto, const unsigned short port) { struct svc_program *progp; unsigned int i; int error = 0; BUG_ON(proto == 0 && port == 0); for (progp = serv->sv_program; progp; progp = progp->pg_next) { for (i = 0; i < progp->pg_nvers; i++) { if (progp->pg_vers[i] == NULL) continue; dprintk("svc: svc_register(%sv%d, %s, %u, %u)%s\n", progp->pg_name, i, proto == IPPROTO_UDP? "udp" : "tcp", port, family, progp->pg_vers[i]->vs_hidden? " (but not telling portmap)" : ""); if (progp->pg_vers[i]->vs_hidden) continue; error = __svc_register(net, progp->pg_name, progp->pg_prog, i, family, proto, port); if (error < 0) break; } } return error; } /* * If user space is running rpcbind, it should take the v4 UNSET * and clear everything for this [program, version]. If user space * is running portmap, it will reject the v4 UNSET, but won't have * any "inet6" entries anyway. So a PMAP_UNSET should be sufficient * in this case to clear all existing entries for [program, version]. */ static void __svc_unregister(struct net *net, const u32 program, const u32 version, const char *progname) { int error; error = rpcb_v4_register(net, program, version, NULL, ""); /* * User space didn't support rpcbind v4, so retry this * request with the legacy rpcbind v2 protocol. */ if (error == -EPROTONOSUPPORT) error = rpcb_register(net, program, version, 0, 0); dprintk("svc: %s(%sv%u), error %d\n", __func__, progname, version, error); } /* * All netids, bind addresses and ports registered for [program, version] * are removed from the local rpcbind database (if the service is not * hidden) to make way for a new instance of the service. * * The result of unregistration is reported via dprintk for those who want * verification of the result, but is otherwise not important. */ static void svc_unregister(const struct svc_serv *serv, struct net *net) { struct svc_program *progp; unsigned long flags; unsigned int i; clear_thread_flag(TIF_SIGPENDING); for (progp = serv->sv_program; progp; progp = progp->pg_next) { for (i = 0; i < progp->pg_nvers; i++) { if (progp->pg_vers[i] == NULL) continue; if (progp->pg_vers[i]->vs_hidden) continue; dprintk("svc: attempting to unregister %sv%u\n", progp->pg_name, i); __svc_unregister(net, progp->pg_prog, i, progp->pg_name); } } spin_lock_irqsave(¤t->sighand->siglock, flags); recalc_sigpending(); spin_unlock_irqrestore(¤t->sighand->siglock, flags); } /* * Printk the given error with the address of the client that caused it. */ static __printf(2, 3) int svc_printk(struct svc_rqst *rqstp, const char *fmt, ...) { va_list args; int r; char buf[RPC_MAX_ADDRBUFLEN]; if (!net_ratelimit()) return 0; printk(KERN_WARNING "svc: %s: ", svc_print_addr(rqstp, buf, sizeof(buf))); va_start(args, fmt); r = vprintk(fmt, args); va_end(args); return r; } /* * Common routine for processing the RPC request. */ static int svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) { struct svc_program *progp; struct svc_version *versp = NULL; /* compiler food */ struct svc_procedure *procp = NULL; struct svc_serv *serv = rqstp->rq_server; kxdrproc_t xdr; __be32 *statp; u32 prog, vers, proc; __be32 auth_stat, rpc_stat; int auth_res; __be32 *reply_statp; rpc_stat = rpc_success; if (argv->iov_len < 6*4) goto err_short_len; /* Will be turned off only in gss privacy case: */ rqstp->rq_splice_ok = 1; /* Will be turned off only when NFSv4 Sessions are used */ rqstp->rq_usedeferral = 1; rqstp->rq_dropme = false; /* Setup reply header */ rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp); svc_putu32(resv, rqstp->rq_xid); vers = svc_getnl(argv); /* First words of reply: */ svc_putnl(resv, 1); /* REPLY */ if (vers != 2) /* RPC version number */ goto err_bad_rpc; /* Save position in case we later decide to reject: */ reply_statp = resv->iov_base + resv->iov_len; svc_putnl(resv, 0); /* ACCEPT */ rqstp->rq_prog = prog = svc_getnl(argv); /* program number */ rqstp->rq_vers = vers = svc_getnl(argv); /* version number */ rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */ progp = serv->sv_program; for (progp = serv->sv_program; progp; progp = progp->pg_next) if (prog == progp->pg_prog) break; /* * Decode auth data, and add verifier to reply buffer. * We do this before anything else in order to get a decent * auth verifier. */ auth_res = svc_authenticate(rqstp, &auth_stat); /* Also give the program a chance to reject this call: */ if (auth_res == SVC_OK && progp) { auth_stat = rpc_autherr_badcred; auth_res = progp->pg_authenticate(rqstp); } switch (auth_res) { case SVC_OK: break; case SVC_GARBAGE: goto err_garbage; case SVC_SYSERR: rpc_stat = rpc_system_err; goto err_bad; case SVC_DENIED: goto err_bad_auth; case SVC_CLOSE: if (test_bit(XPT_TEMP, &rqstp->rq_xprt->xpt_flags)) svc_close_xprt(rqstp->rq_xprt); case SVC_DROP: goto dropit; case SVC_COMPLETE: goto sendit; } if (progp == NULL) goto err_bad_prog; if (vers >= progp->pg_nvers || !(versp = progp->pg_vers[vers])) goto err_bad_vers; procp = versp->vs_proc + proc; if (proc >= versp->vs_nproc || !procp->pc_func) goto err_bad_proc; rqstp->rq_procinfo = procp; /* Syntactic check complete */ serv->sv_stats->rpccnt++; /* Build the reply header. */ statp = resv->iov_base +resv->iov_len; svc_putnl(resv, RPC_SUCCESS); /* Bump per-procedure stats counter */ procp->pc_count++; /* Initialize storage for argp and resp */ memset(rqstp->rq_argp, 0, procp->pc_argsize); memset(rqstp->rq_resp, 0, procp->pc_ressize); /* un-reserve some of the out-queue now that we have a * better idea of reply size */ if (procp->pc_xdrressize) svc_reserve_auth(rqstp, procp->pc_xdrressize<<2); /* Call the function that processes the request. */ if (!versp->vs_dispatch) { /* Decode arguments */ xdr = procp->pc_decode; if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp)) goto err_garbage; *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); /* Encode reply */ if (rqstp->rq_dropme) { if (procp->pc_release) procp->pc_release(rqstp, NULL, rqstp->rq_resp); goto dropit; } if (*statp == rpc_success && (xdr = procp->pc_encode) && !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { dprintk("svc: failed to encode reply\n"); /* serv->sv_stats->rpcsystemerr++; */ *statp = rpc_system_err; } } else { dprintk("svc: calling dispatcher\n"); if (!versp->vs_dispatch(rqstp, statp)) { /* Release reply info */ if (procp->pc_release) procp->pc_release(rqstp, NULL, rqstp->rq_resp); goto dropit; } } /* Check RPC status result */ if (*statp != rpc_success) resv->iov_len = ((void*)statp) - resv->iov_base + 4; /* Release reply info */ if (procp->pc_release) procp->pc_release(rqstp, NULL, rqstp->rq_resp); if (procp->pc_encode == NULL) goto dropit; sendit: if (svc_authorise(rqstp)) goto dropit; return 1; /* Caller can now send it */ dropit: svc_authorise(rqstp); /* doesn't hurt to call this twice */ dprintk("svc: svc_process dropit\n"); return 0; err_short_len: svc_printk(rqstp, "short len %Zd, dropping request\n", argv->iov_len); goto dropit; /* drop request */ err_bad_rpc: serv->sv_stats->rpcbadfmt++; svc_putnl(resv, 1); /* REJECT */ svc_putnl(resv, 0); /* RPC_MISMATCH */ svc_putnl(resv, 2); /* Only RPCv2 supported */ svc_putnl(resv, 2); goto sendit; err_bad_auth: dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat)); serv->sv_stats->rpcbadauth++; /* Restore write pointer to location of accept status: */ xdr_ressize_check(rqstp, reply_statp); svc_putnl(resv, 1); /* REJECT */ svc_putnl(resv, 1); /* AUTH_ERROR */ svc_putnl(resv, ntohl(auth_stat)); /* status */ goto sendit; err_bad_prog: dprintk("svc: unknown program %d\n", prog); serv->sv_stats->rpcbadfmt++; svc_putnl(resv, RPC_PROG_UNAVAIL); goto sendit; err_bad_vers: svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n", vers, prog, progp->pg_name); serv->sv_stats->rpcbadfmt++; svc_putnl(resv, RPC_PROG_MISMATCH); svc_putnl(resv, progp->pg_lovers); svc_putnl(resv, progp->pg_hivers); goto sendit; err_bad_proc: svc_printk(rqstp, "unknown procedure (%d)\n", proc); serv->sv_stats->rpcbadfmt++; svc_putnl(resv, RPC_PROC_UNAVAIL); goto sendit; err_garbage: svc_printk(rqstp, "failed to decode args\n"); rpc_stat = rpc_garbage_args; err_bad: serv->sv_stats->rpcbadfmt++; svc_putnl(resv, ntohl(rpc_stat)); goto sendit; } EXPORT_SYMBOL_GPL(svc_process); /* * Process the RPC request. */ int svc_process(struct svc_rqst *rqstp) { struct kvec *argv = &rqstp->rq_arg.head[0]; struct kvec *resv = &rqstp->rq_res.head[0]; struct svc_serv *serv = rqstp->rq_server; u32 dir; /* * Setup response xdr_buf. * Initially it has just one page */ rqstp->rq_resused = 1; resv->iov_base = page_address(rqstp->rq_respages[0]); resv->iov_len = 0; rqstp->rq_res.pages = rqstp->rq_respages + 1; rqstp->rq_res.len = 0; rqstp->rq_res.page_base = 0; rqstp->rq_res.page_len = 0; rqstp->rq_res.buflen = PAGE_SIZE; rqstp->rq_res.tail[0].iov_base = NULL; rqstp->rq_res.tail[0].iov_len = 0; rqstp->rq_xid = svc_getu32(argv); dir = svc_getnl(argv); if (dir != 0) { /* direction != CALL */ svc_printk(rqstp, "bad direction %d, dropping request\n", dir); serv->sv_stats->rpcbadfmt++; svc_drop(rqstp); return 0; } /* Returns 1 for send, 0 for drop */ if (svc_process_common(rqstp, argv, resv)) return svc_send(rqstp); else { svc_drop(rqstp); return 0; } } #if defined(CONFIG_SUNRPC_BACKCHANNEL) /* * Process a backchannel RPC request that arrived over an existing * outbound connection */ int bc_svc_process(struct svc_serv *serv, struct rpc_rqst *req, struct svc_rqst *rqstp) { struct kvec *argv = &rqstp->rq_arg.head[0]; struct kvec *resv = &rqstp->rq_res.head[0]; /* Build the svc_rqst used by the common processing routine */ rqstp->rq_xprt = serv->sv_bc_xprt; rqstp->rq_xid = req->rq_xid; rqstp->rq_prot = req->rq_xprt->prot; rqstp->rq_server = serv; rqstp->rq_addrlen = sizeof(req->rq_xprt->addr); memcpy(&rqstp->rq_addr, &req->rq_xprt->addr, rqstp->rq_addrlen); memcpy(&rqstp->rq_arg, &req->rq_rcv_buf, sizeof(rqstp->rq_arg)); memcpy(&rqstp->rq_res, &req->rq_snd_buf, sizeof(rqstp->rq_res)); /* reset result send buffer "put" position */ resv->iov_len = 0; if (rqstp->rq_prot != IPPROTO_TCP) { printk(KERN_ERR "No support for Non-TCP transports!\n"); BUG(); } /* * Skip the next two words because they've already been * processed in the trasport */ svc_getu32(argv); /* XID */ svc_getnl(argv); /* CALLDIR */ /* Returns 1 for send, 0 for drop */ if (svc_process_common(rqstp, argv, resv)) { memcpy(&req->rq_snd_buf, &rqstp->rq_res, sizeof(req->rq_snd_buf)); return bc_send(req); } else { /* Nothing to do to drop request */ return 0; } } EXPORT_SYMBOL_GPL(bc_svc_process); #endif /* CONFIG_SUNRPC_BACKCHANNEL */ /* * Return (transport-specific) limit on the rpc payload. */ u32 svc_max_payload(const struct svc_rqst *rqstp) { u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload; if (rqstp->rq_server->sv_max_payload < max) max = rqstp->rq_server->sv_max_payload; return max; } EXPORT_SYMBOL_GPL(svc_max_payload);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
You can’t perform that action at this time.