Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
8e5b477
Documentation
LICENSES
arch
block
certs
crypto
drivers
accessibility
acpi
amba
android
ata
atm
auxdisplay
base
bcma
block
bluetooth
bus
cdrom
char
clk
clocksource
comedi
connector
counter
cpufreq
Kconfig
Kconfig.arm
Kconfig.powerpc
Kconfig.x86
Makefile
acpi-cpufreq.c
amd_freq_sensitivity.c
armada-37xx-cpufreq.c
armada-8k-cpufreq.c
bmips-cpufreq.c
brcmstb-avs-cpufreq.c
cppc_cpufreq.c
cpufreq-dt-platdev.c
cpufreq-dt.c
cpufreq-dt.h
cpufreq-nforce2.c
cpufreq.c
cpufreq_conservative.c
cpufreq_governor.c
cpufreq_governor.h
cpufreq_governor_attr_set.c
cpufreq_ondemand.c
cpufreq_ondemand.h
cpufreq_performance.c
cpufreq_powersave.c
cpufreq_stats.c
cpufreq_userspace.c
davinci-cpufreq.c
e_powersaver.c
elanfreq.c
freq_table.c
gx-suspmod.c
highbank-cpufreq.c
ia64-acpi-cpufreq.c
imx-cpufreq-dt.c
imx6q-cpufreq.c
intel_pstate.c
kirkwood-cpufreq.c
longhaul.c
longhaul.h
longrun.c
loongson1-cpufreq.c
loongson2_cpufreq.c
maple-cpufreq.c
mediatek-cpufreq-hw.c
mediatek-cpufreq.c
mvebu-cpufreq.c
omap-cpufreq.c
p4-clockmod.c
pasemi-cpufreq.c
pcc-cpufreq.c
pmac32-cpufreq.c
pmac64-cpufreq.c
powernow-k6.c
powernow-k7.c
powernow-k7.h
powernow-k8.c
powernow-k8.h
powernv-cpufreq.c
ppc_cbe_cpufreq.c
ppc_cbe_cpufreq.h
ppc_cbe_cpufreq_pervasive.c
ppc_cbe_cpufreq_pmi.c
pxa2xx-cpufreq.c
pxa3xx-cpufreq.c
qcom-cpufreq-hw.c
qcom-cpufreq-nvmem.c
qoriq-cpufreq.c
raspberrypi-cpufreq.c
s3c2410-cpufreq.c
s3c2412-cpufreq.c
s3c2416-cpufreq.c
s3c2440-cpufreq.c
s3c24xx-cpufreq-debugfs.c
s3c24xx-cpufreq.c
s3c64xx-cpufreq.c
s5pv210-cpufreq.c
sa1100-cpufreq.c
sa1110-cpufreq.c
sc520_freq.c
scmi-cpufreq.c
scpi-cpufreq.c
sh-cpufreq.c
sparc-us2e-cpufreq.c
sparc-us3-cpufreq.c
spear-cpufreq.c
speedstep-centrino.c
speedstep-ich.c
speedstep-lib.c
speedstep-lib.h
speedstep-smi.c
sti-cpufreq.c
sun50i-cpufreq-nvmem.c
tegra124-cpufreq.c
tegra186-cpufreq.c
tegra194-cpufreq.c
tegra20-cpufreq.c
ti-cpufreq.c
vexpress-spc-cpufreq.c
cpuidle
crypto
cxl
dax
dca
devfreq
dio
dma-buf
dma
edac
eisa
extcon
firewire
firmware
fpga
fsi
gnss
gpio
gpu
greybus
hid
hsi
hv
hwmon
hwspinlock
hwtracing
i2c
i3c
idle
iio
infiniband
input
interconnect
iommu
ipack
irqchip
isdn
leds
macintosh
mailbox
mcb
md
media
memory
memstick
message
mfd
misc
mmc
most
mtd
mux
net
nfc
ntb
nubus
nvdimm
nvme
nvmem
of
opp
parisc
parport
pci
pcmcia
perf
phy
pinctrl
platform
pnp
power
powercap
pps
ps3
ptp
pwm
rapidio
ras
regulator
remoteproc
reset
rpmsg
rtc
s390
sbus
scsi
sh
siox
slimbus
soc
soundwire
spi
spmi
ssb
staging
target
tc
tee
thermal
thunderbolt
tty
uio
usb
vdpa
vfio
vhost
video
virt
virtio
visorbus
vlynq
vme
w1
watchdog
xen
zorro
Kconfig
Makefile
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.clang-format
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
drivers
/
cpufreq
/
cppc_cpufreq.c
Blame
Blame
Latest commit
History
History
786 lines (643 loc) · 20.1 KB
Breadcrumbs
linux
/
drivers
/
cpufreq
/
cppc_cpufreq.c
Top
File metadata and controls
Code
Blame
786 lines (643 loc) · 20.1 KB
Raw
// SPDX-License-Identifier: GPL-2.0-only /* * CPPC (Collaborative Processor Performance Control) driver for * interfacing with the CPUfreq layer and governors. See * cppc_acpi.c for CPPC specific methods. * * (C) Copyright 2014, 2015 Linaro Ltd. * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> */ #define pr_fmt(fmt) "CPPC Cpufreq:" fmt #include <linux/arch_topology.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/dmi.h> #include <linux/irq_work.h> #include <linux/kthread.h> #include <linux/time.h> #include <linux/vmalloc.h> #include <uapi/linux/sched/types.h> #include <asm/unaligned.h> #include <acpi/cppc_acpi.h> /* Minimum struct length needed for the DMI processor entry we want */ #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48 /* Offset in the DMI processor structure for the max frequency */ #define DMI_PROCESSOR_MAX_SPEED 0x14 /* * This list contains information parsed from per CPU ACPI _CPC and _PSD * structures: e.g. the highest and lowest supported performance, capabilities, * desired performance, level requested etc. Depending on the share_type, not * all CPUs will have an entry in the list. */ static LIST_HEAD(cpu_data_list); static bool boost_supported; struct cppc_workaround_oem_info { char oem_id[ACPI_OEM_ID_SIZE + 1]; char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; u32 oem_revision; }; static struct cppc_workaround_oem_info wa_info[] = { { .oem_id = "HISI ", .oem_table_id = "HIP07 ", .oem_revision = 0, }, { .oem_id = "HISI ", .oem_table_id = "HIP08 ", .oem_revision = 0, } }; #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE /* Frequency invariance support */ struct cppc_freq_invariance { int cpu; struct irq_work irq_work; struct kthread_work work; struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; struct cppc_cpudata *cpu_data; }; static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); static struct kthread_worker *kworker_fie; static struct cpufreq_driver cppc_cpufreq_driver; static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu); static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, struct cppc_perf_fb_ctrs *fb_ctrs_t0, struct cppc_perf_fb_ctrs *fb_ctrs_t1); /** * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance * @work: The work item. * * The CPPC driver register itself with the topology core to provide its own * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which * gets called by the scheduler on every tick. * * Note that the arch specific counters have higher priority than CPPC counters, * if available, though the CPPC driver doesn't need to have any special * handling for that. * * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we * reach here from hard-irq context), which then schedules a normal work item * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable * based on the counter updates since the last tick. */ static void cppc_scale_freq_workfn(struct kthread_work *work) { struct cppc_freq_invariance *cppc_fi; struct cppc_perf_fb_ctrs fb_ctrs = {0}; struct cppc_cpudata *cpu_data; unsigned long local_freq_scale; u64 perf; cppc_fi = container_of(work, struct cppc_freq_invariance, work); cpu_data = cppc_fi->cpu_data; if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { pr_warn("%s: failed to read perf counters\n", __func__); return; } perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, &fb_ctrs); cppc_fi->prev_perf_fb_ctrs = fb_ctrs; perf <<= SCHED_CAPACITY_SHIFT; local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); /* This can happen due to counter's overflow */ if (unlikely(local_freq_scale > 1024)) local_freq_scale = 1024; per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; } static void cppc_irq_work(struct irq_work *irq_work) { struct cppc_freq_invariance *cppc_fi; cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); kthread_queue_work(kworker_fie, &cppc_fi->work); } static void cppc_scale_freq_tick(void) { struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); /* * cppc_get_perf_ctrs() can potentially sleep, call that from the right * context. */ irq_work_queue(&cppc_fi->irq_work); } static struct scale_freq_data cppc_sftd = { .source = SCALE_FREQ_SOURCE_CPPC, .set_freq_scale = cppc_scale_freq_tick, }; static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) { struct cppc_freq_invariance *cppc_fi; int cpu, ret; if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate) return; for_each_cpu(cpu, policy->cpus) { cppc_fi = &per_cpu(cppc_freq_inv, cpu); cppc_fi->cpu = cpu; cppc_fi->cpu_data = policy->driver_data; kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); init_irq_work(&cppc_fi->irq_work, cppc_irq_work); ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); if (ret) { pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", __func__, cpu, ret); /* * Don't abort if the CPU was offline while the driver * was getting registered. */ if (cpu_online(cpu)) return; } } /* Register for freq-invariance */ topology_set_scale_freq_source(&cppc_sftd, policy->cpus); } /* * We free all the resources on policy's removal and not on CPU removal as the * irq-work are per-cpu and the hotplug core takes care of flushing the pending * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work * fires on another CPU after the concerned CPU is removed, it won't harm. * * We just need to make sure to remove them all on policy->exit(). */ static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) { struct cppc_freq_invariance *cppc_fi; int cpu; if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate) return; /* policy->cpus will be empty here, use related_cpus instead */ topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); for_each_cpu(cpu, policy->related_cpus) { cppc_fi = &per_cpu(cppc_freq_inv, cpu); irq_work_sync(&cppc_fi->irq_work); kthread_cancel_work_sync(&cppc_fi->work); } } static void __init cppc_freq_invariance_init(void) { struct sched_attr attr = { .size = sizeof(struct sched_attr), .sched_policy = SCHED_DEADLINE, .sched_nice = 0, .sched_priority = 0, /* * Fake (unused) bandwidth; workaround to "fix" * priority inheritance. */ .sched_runtime = 1000000, .sched_deadline = 10000000, .sched_period = 10000000, }; int ret; if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate) return; kworker_fie = kthread_create_worker(0, "cppc_fie"); if (IS_ERR(kworker_fie)) return; ret = sched_setattr_nocheck(kworker_fie->task, &attr); if (ret) { pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, ret); kthread_destroy_worker(kworker_fie); return; } } static void cppc_freq_invariance_exit(void) { if (cppc_cpufreq_driver.get == hisi_cppc_cpufreq_get_rate) return; kthread_destroy_worker(kworker_fie); kworker_fie = NULL; } #else static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) { } static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) { } static inline void cppc_freq_invariance_init(void) { } static inline void cppc_freq_invariance_exit(void) { } #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ /* Callback function used to retrieve the max frequency from DMI */ static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) { const u8 *dmi_data = (const u8 *)dm; u16 *mhz = (u16 *)private; if (dm->type == DMI_ENTRY_PROCESSOR && dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) { u16 val = (u16)get_unaligned((const u16 *) (dmi_data + DMI_PROCESSOR_MAX_SPEED)); *mhz = val > *mhz ? val : *mhz; } } /* Look up the max frequency in DMI */ static u64 cppc_get_dmi_max_khz(void) { u16 mhz = 0; dmi_walk(cppc_find_dmi_mhz, &mhz); /* * Real stupid fallback value, just in case there is no * actual value set. */ mhz = mhz ? mhz : 1; return (1000 * mhz); } /* * If CPPC lowest_freq and nominal_freq registers are exposed then we can * use them to convert perf to freq and vice versa * * If the perf/freq point lies between Nominal and Lowest, we can treat * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line * and extrapolate the rest * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion */ static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data, unsigned int perf) { struct cppc_perf_caps *caps = &cpu_data->perf_caps; static u64 max_khz; u64 mul, div; if (caps->lowest_freq && caps->nominal_freq) { if (perf >= caps->nominal_perf) { mul = caps->nominal_freq; div = caps->nominal_perf; } else { mul = caps->nominal_freq - caps->lowest_freq; div = caps->nominal_perf - caps->lowest_perf; } } else { if (!max_khz) max_khz = cppc_get_dmi_max_khz(); mul = max_khz; div = caps->highest_perf; } return (u64)perf * mul / div; } static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data, unsigned int freq) { struct cppc_perf_caps *caps = &cpu_data->perf_caps; static u64 max_khz; u64 mul, div; if (caps->lowest_freq && caps->nominal_freq) { if (freq >= caps->nominal_freq) { mul = caps->nominal_perf; div = caps->nominal_freq; } else { mul = caps->lowest_perf; div = caps->lowest_freq; } } else { if (!max_khz) max_khz = cppc_get_dmi_max_khz(); mul = caps->highest_perf; div = max_khz; } return (u64)freq * mul / div; } static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cppc_cpudata *cpu_data = policy->driver_data; unsigned int cpu = policy->cpu; struct cpufreq_freqs freqs; u32 desired_perf; int ret = 0; desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); /* Return if it is exactly the same perf */ if (desired_perf == cpu_data->perf_ctrls.desired_perf) return ret; cpu_data->perf_ctrls.desired_perf = desired_perf; freqs.old = policy->cur; freqs.new = target_freq; cpufreq_freq_transition_begin(policy, &freqs); ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); cpufreq_freq_transition_end(policy, &freqs, ret != 0); if (ret) pr_debug("Failed to set target on CPU:%d. ret:%d\n", cpu, ret); return ret; } static int cppc_verify_policy(struct cpufreq_policy_data *policy) { cpufreq_verify_within_cpu_limits(policy); return 0; } /* * The PCC subspace describes the rate at which platform can accept commands * on the shared PCC channel (including READs which do not count towards freq * transition requests), so ideally we need to use the PCC values as a fallback * if we don't have a platform specific transition_delay_us */ #ifdef CONFIG_ARM64 #include <asm/cputype.h> static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) { unsigned long implementor = read_cpuid_implementor(); unsigned long part_num = read_cpuid_part_number(); switch (implementor) { case ARM_CPU_IMP_QCOM: switch (part_num) { case QCOM_CPU_PART_FALKOR_V1: case QCOM_CPU_PART_FALKOR: return 10000; } } return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; } #else static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) { return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; } #endif static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) { struct cppc_cpudata *cpu_data; int ret; cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); if (!cpu_data) goto out; if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) goto free_cpu; ret = acpi_get_psd_map(cpu, cpu_data); if (ret) { pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); goto free_mask; } ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); if (ret) { pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); goto free_mask; } /* Convert the lowest and nominal freq from MHz to KHz */ cpu_data->perf_caps.lowest_freq *= 1000; cpu_data->perf_caps.nominal_freq *= 1000; list_add(&cpu_data->node, &cpu_data_list); return cpu_data; free_mask: free_cpumask_var(cpu_data->shared_cpu_map); free_cpu: kfree(cpu_data); out: return NULL; } static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) { struct cppc_cpudata *cpu_data = policy->driver_data; list_del(&cpu_data->node); free_cpumask_var(cpu_data->shared_cpu_map); kfree(cpu_data); policy->driver_data = NULL; } static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) { unsigned int cpu = policy->cpu; struct cppc_cpudata *cpu_data; struct cppc_perf_caps *caps; int ret; cpu_data = cppc_cpufreq_get_cpu_data(cpu); if (!cpu_data) { pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); return -ENODEV; } caps = &cpu_data->perf_caps; policy->driver_data = cpu_data; /* * Set min to lowest nonlinear perf to avoid any efficiency penalty (see * Section 8.4.7.1.1.5 of ACPI 6.1 spec) */ policy->min = cppc_cpufreq_perf_to_khz(cpu_data, caps->lowest_nonlinear_perf); policy->max = cppc_cpufreq_perf_to_khz(cpu_data, caps->nominal_perf); /* * Set cpuinfo.min_freq to Lowest to make the full range of performance * available if userspace wants to use any perf between lowest & lowest * nonlinear perf */ policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data, caps->lowest_perf); policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data, caps->nominal_perf); policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); policy->shared_type = cpu_data->shared_type; switch (policy->shared_type) { case CPUFREQ_SHARED_TYPE_HW: case CPUFREQ_SHARED_TYPE_NONE: /* Nothing to be done - we'll have a policy for each CPU */ break; case CPUFREQ_SHARED_TYPE_ANY: /* * All CPUs in the domain will share a policy and all cpufreq * operations will use a single cppc_cpudata structure stored * in policy->driver_data. */ cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); break; default: pr_debug("Unsupported CPU co-ord type: %d\n", policy->shared_type); ret = -EFAULT; goto out; } /* * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost * is supported. */ if (caps->highest_perf > caps->nominal_perf) boost_supported = true; /* Set policy->cur to max now. The governors will adjust later. */ policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf); cpu_data->perf_ctrls.desired_perf = caps->highest_perf; ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); if (ret) { pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", caps->highest_perf, cpu, ret); goto out; } cppc_cpufreq_cpu_fie_init(policy); return 0; out: cppc_cpufreq_put_cpu_data(policy); return ret; } static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) { struct cppc_cpudata *cpu_data = policy->driver_data; struct cppc_perf_caps *caps = &cpu_data->perf_caps; unsigned int cpu = policy->cpu; int ret; cppc_cpufreq_cpu_fie_exit(policy); cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); if (ret) pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", caps->lowest_perf, cpu, ret); cppc_cpufreq_put_cpu_data(policy); return 0; } static inline u64 get_delta(u64 t1, u64 t0) { if (t1 > t0 || t0 > ~(u32)0) return t1 - t0; return (u32)t1 - (u32)t0; } static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, struct cppc_perf_fb_ctrs *fb_ctrs_t0, struct cppc_perf_fb_ctrs *fb_ctrs_t1) { u64 delta_reference, delta_delivered; u64 reference_perf; reference_perf = fb_ctrs_t0->reference_perf; delta_reference = get_delta(fb_ctrs_t1->reference, fb_ctrs_t0->reference); delta_delivered = get_delta(fb_ctrs_t1->delivered, fb_ctrs_t0->delivered); /* Check to avoid divide-by zero and invalid delivered_perf */ if (!delta_reference || !delta_delivered) return cpu_data->perf_ctrls.desired_perf; return (reference_perf * delta_delivered) / delta_reference; } static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) { struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); struct cppc_cpudata *cpu_data = policy->driver_data; u64 delivered_perf; int ret; cpufreq_cpu_put(policy); ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0); if (ret) return ret; udelay(2); /* 2usec delay between sampling */ ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1); if (ret) return ret; delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, &fb_ctrs_t1); return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf); } static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) { struct cppc_cpudata *cpu_data = policy->driver_data; struct cppc_perf_caps *caps = &cpu_data->perf_caps; int ret; if (!boost_supported) { pr_err("BOOST not supported by CPU or firmware\n"); return -EINVAL; } if (state) policy->max = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf); else policy->max = cppc_cpufreq_perf_to_khz(cpu_data, caps->nominal_perf); policy->cpuinfo.max_freq = policy->max; ret = freq_qos_update_request(policy->max_freq_req, policy->max); if (ret < 0) return ret; return 0; } static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) { struct cppc_cpudata *cpu_data = policy->driver_data; return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); } cpufreq_freq_attr_ro(freqdomain_cpus); static struct freq_attr *cppc_cpufreq_attr[] = { &freqdomain_cpus, NULL, }; static struct cpufreq_driver cppc_cpufreq_driver = { .flags = CPUFREQ_CONST_LOOPS, .verify = cppc_verify_policy, .target = cppc_cpufreq_set_target, .get = cppc_cpufreq_get_rate, .init = cppc_cpufreq_cpu_init, .exit = cppc_cpufreq_cpu_exit, .set_boost = cppc_cpufreq_set_boost, .attr = cppc_cpufreq_attr, .name = "cppc_cpufreq", }; /* * HISI platform does not support delivered performance counter and * reference performance counter. It can calculate the performance using the * platform specific mechanism. We reuse the desired performance register to * store the real performance calculated by the platform. */ static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu) { struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); struct cppc_cpudata *cpu_data = policy->driver_data; u64 desired_perf; int ret; cpufreq_cpu_put(policy); ret = cppc_get_desired_perf(cpu, &desired_perf); if (ret < 0) return -EIO; return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf); } static void cppc_check_hisi_workaround(void) { struct acpi_table_header *tbl; acpi_status status = AE_OK; int i; status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); if (ACPI_FAILURE(status) || !tbl) return; for (i = 0; i < ARRAY_SIZE(wa_info); i++) { if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && wa_info[i].oem_revision == tbl->oem_revision) { /* Overwrite the get() callback */ cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate; break; } } acpi_put_table(tbl); } static int __init cppc_cpufreq_init(void) { int ret; if ((acpi_disabled) || !acpi_cpc_valid()) return -ENODEV; cppc_check_hisi_workaround(); cppc_freq_invariance_init(); ret = cpufreq_register_driver(&cppc_cpufreq_driver); if (ret) cppc_freq_invariance_exit(); return ret; } static inline void free_cpu_data(void) { struct cppc_cpudata *iter, *tmp; list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { free_cpumask_var(iter->shared_cpu_map); list_del(&iter->node); kfree(iter); } } static void __exit cppc_cpufreq_exit(void) { cpufreq_unregister_driver(&cppc_cpufreq_driver); cppc_freq_invariance_exit(); free_cpu_data(); } module_exit(cppc_cpufreq_exit); MODULE_AUTHOR("Ashwin Chaugule"); MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); MODULE_LICENSE("GPL"); late_initcall(cppc_cpufreq_init); static const struct acpi_device_id cppc_acpi_ids[] __used = { {ACPI_PROCESSOR_DEVICE_HID, }, {} }; MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
You can’t perform that action at this time.