Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
1
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
907cc90
Documentation
arch
block
crypto
drivers
accessibility
acpi
amba
ata
atm
auxdisplay
base
bcma
block
bluetooth
bus
cdrom
char
clk
clocksource
connector
cpufreq
Kconfig
Kconfig.arm
Kconfig.powerpc
Kconfig.x86
Makefile
acpi-cpufreq.c
cpufreq-cpu0.c
cpufreq-nforce2.c
cpufreq.c
cpufreq_conservative.c
cpufreq_governor.c
cpufreq_governor.h
cpufreq_ondemand.c
cpufreq_performance.c
cpufreq_powersave.c
cpufreq_stats.c
cpufreq_userspace.c
dbx500-cpufreq.c
e_powersaver.c
elanfreq.c
exynos-cpufreq.c
exynos-cpufreq.h
exynos4210-cpufreq.c
exynos4x12-cpufreq.c
exynos5250-cpufreq.c
freq_table.c
gx-suspmod.c
highbank-cpufreq.c
imx6q-cpufreq.c
intel_pstate.c
kirkwood-cpufreq.c
longhaul.c
longhaul.h
longrun.c
maple-cpufreq.c
mperf.c
mperf.h
omap-cpufreq.c
p4-clockmod.c
pcc-cpufreq.c
powernow-k6.c
powernow-k7.c
powernow-k7.h
powernow-k8.c
powernow-k8.h
s3c2416-cpufreq.c
s3c64xx-cpufreq.c
s5pv210-cpufreq.c
sc520_freq.c
spear-cpufreq.c
speedstep-centrino.c
speedstep-ich.c
speedstep-lib.c
speedstep-lib.h
speedstep-smi.c
cpuidle
crypto
dca
devfreq
dio
dma
edac
eisa
extcon
firewire
firmware
gpio
gpu
hid
hsi
hv
hwmon
hwspinlock
i2c
ide
idle
iio
infiniband
input
iommu
ipack
irqchip
isdn
leds
lguest
macintosh
mailbox
md
media
memory
memstick
message
mfd
misc
mmc
mtd
net
nfc
ntb
nubus
of
oprofile
parisc
parport
pci
pcmcia
pinctrl
platform
pnp
power
pps
ps3
ptp
pwm
rapidio
regulator
remoteproc
rpmsg
rtc
s390
sbus
scsi
sfi
sh
sn
spi
ssb
staging
target
tc
thermal
tty
uio
usb
uwb
vfio
vhost
video
virt
virtio
vlynq
vme
w1
watchdog
xen
zorro
Kconfig
Makefile
firmware
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
drivers
/
cpufreq
/
intel_pstate.c
Copy path
Blame
Blame
Latest commit
History
History
806 lines (655 loc) · 18.7 KB
Breadcrumbs
linux
/
drivers
/
cpufreq
/
intel_pstate.c
Top
File metadata and controls
Code
Blame
806 lines (655 loc) · 18.7 KB
Raw
/* * cpufreq_snb.c: Native P state management for Intel processors * * (C) Copyright 2012 Intel Corporation * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/module.h> #include <linux/ktime.h> #include <linux/hrtimer.h> #include <linux/tick.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/list.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/debugfs.h> #include <trace/events/power.h> #include <asm/div64.h> #include <asm/msr.h> #include <asm/cpu_device_id.h> #define SAMPLE_COUNT 3 #define FRAC_BITS 8 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) #define fp_toint(X) ((X) >> FRAC_BITS) static inline int32_t mul_fp(int32_t x, int32_t y) { return ((int64_t)x * (int64_t)y) >> FRAC_BITS; } static inline int32_t div_fp(int32_t x, int32_t y) { return div_s64((int64_t)x << FRAC_BITS, (int64_t)y); } struct sample { ktime_t start_time; ktime_t end_time; int core_pct_busy; int pstate_pct_busy; u64 duration_us; u64 idletime_us; u64 aperf; u64 mperf; int freq; }; struct pstate_data { int current_pstate; int min_pstate; int max_pstate; int turbo_pstate; }; struct _pid { int setpoint; int32_t integral; int32_t p_gain; int32_t i_gain; int32_t d_gain; int deadband; int last_err; }; struct cpudata { int cpu; char name[64]; struct timer_list timer; struct pstate_adjust_policy *pstate_policy; struct pstate_data pstate; struct _pid pid; struct _pid idle_pid; int min_pstate_count; int idle_mode; ktime_t prev_sample; u64 prev_idle_time_us; u64 prev_aperf; u64 prev_mperf; int sample_ptr; struct sample samples[SAMPLE_COUNT]; }; static struct cpudata **all_cpu_data; struct pstate_adjust_policy { int sample_rate_ms; int deadband; int setpoint; int p_gain_pct; int d_gain_pct; int i_gain_pct; }; static struct pstate_adjust_policy default_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 109, .p_gain_pct = 17, .d_gain_pct = 0, .i_gain_pct = 4, }; struct perf_limits { int no_turbo; int max_perf_pct; int min_perf_pct; int32_t max_perf; int32_t min_perf; }; static struct perf_limits limits = { .no_turbo = 0, .max_perf_pct = 100, .max_perf = int_tofp(1), .min_perf_pct = 0, .min_perf = 0, }; static inline void pid_reset(struct _pid *pid, int setpoint, int busy, int deadband, int integral) { pid->setpoint = setpoint; pid->deadband = deadband; pid->integral = int_tofp(integral); pid->last_err = setpoint - busy; } static inline void pid_p_gain_set(struct _pid *pid, int percent) { pid->p_gain = div_fp(int_tofp(percent), int_tofp(100)); } static inline void pid_i_gain_set(struct _pid *pid, int percent) { pid->i_gain = div_fp(int_tofp(percent), int_tofp(100)); } static inline void pid_d_gain_set(struct _pid *pid, int percent) { pid->d_gain = div_fp(int_tofp(percent), int_tofp(100)); } static signed int pid_calc(struct _pid *pid, int busy) { signed int err, result; int32_t pterm, dterm, fp_error; int32_t integral_limit; err = pid->setpoint - busy; fp_error = int_tofp(err); if (abs(err) <= pid->deadband) return 0; pterm = mul_fp(pid->p_gain, fp_error); pid->integral += fp_error; /* limit the integral term */ integral_limit = int_tofp(30); if (pid->integral > integral_limit) pid->integral = integral_limit; if (pid->integral < -integral_limit) pid->integral = -integral_limit; dterm = mul_fp(pid->d_gain, (err - pid->last_err)); pid->last_err = err; result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; return (signed int)fp_toint(result); } static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) { pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct); pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct); pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct); pid_reset(&cpu->pid, cpu->pstate_policy->setpoint, 100, cpu->pstate_policy->deadband, 0); } static inline void intel_pstate_idle_pid_reset(struct cpudata *cpu) { pid_p_gain_set(&cpu->idle_pid, cpu->pstate_policy->p_gain_pct); pid_d_gain_set(&cpu->idle_pid, cpu->pstate_policy->d_gain_pct); pid_i_gain_set(&cpu->idle_pid, cpu->pstate_policy->i_gain_pct); pid_reset(&cpu->idle_pid, 75, 50, cpu->pstate_policy->deadband, 0); } static inline void intel_pstate_reset_all_pid(void) { unsigned int cpu; for_each_online_cpu(cpu) { if (all_cpu_data[cpu]) intel_pstate_busy_pid_reset(all_cpu_data[cpu]); } } /************************** debugfs begin ************************/ static int pid_param_set(void *data, u64 val) { *(u32 *)data = val; intel_pstate_reset_all_pid(); return 0; } static int pid_param_get(void *data, u64 *val) { *val = *(u32 *)data; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); struct pid_param { char *name; void *value; }; static struct pid_param pid_files[] = { {"sample_rate_ms", &default_policy.sample_rate_ms}, {"d_gain_pct", &default_policy.d_gain_pct}, {"i_gain_pct", &default_policy.i_gain_pct}, {"deadband", &default_policy.deadband}, {"setpoint", &default_policy.setpoint}, {"p_gain_pct", &default_policy.p_gain_pct}, {NULL, NULL} }; static struct dentry *debugfs_parent; static void intel_pstate_debug_expose_params(void) { int i = 0; debugfs_parent = debugfs_create_dir("pstate_snb", NULL); if (IS_ERR_OR_NULL(debugfs_parent)) return; while (pid_files[i].name) { debugfs_create_file(pid_files[i].name, 0660, debugfs_parent, pid_files[i].value, &fops_pid_param); i++; } } /************************** debugfs end ************************/ /************************** sysfs begin ************************/ #define show_one(file_name, object) \ static ssize_t show_##file_name \ (struct kobject *kobj, struct attribute *attr, char *buf) \ { \ return sprintf(buf, "%u\n", limits.object); \ } static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits.no_turbo = clamp_t(int, input, 0 , 1); return count; } static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits.max_perf_pct = clamp_t(int, input, 0 , 100); limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); return count; } static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits.min_perf_pct = clamp_t(int, input, 0 , 100); limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); return count; } show_one(no_turbo, no_turbo); show_one(max_perf_pct, max_perf_pct); show_one(min_perf_pct, min_perf_pct); define_one_global_rw(no_turbo); define_one_global_rw(max_perf_pct); define_one_global_rw(min_perf_pct); static struct attribute *intel_pstate_attributes[] = { &no_turbo.attr, &max_perf_pct.attr, &min_perf_pct.attr, NULL }; static struct attribute_group intel_pstate_attr_group = { .attrs = intel_pstate_attributes, }; static struct kobject *intel_pstate_kobject; static void intel_pstate_sysfs_expose_params(void) { int rc; intel_pstate_kobject = kobject_create_and_add("intel_pstate", &cpu_subsys.dev_root->kobj); BUG_ON(!intel_pstate_kobject); rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); BUG_ON(rc); } /************************** sysfs end ************************/ static int intel_pstate_min_pstate(void) { u64 value; rdmsrl(0xCE, value); return (value >> 40) & 0xFF; } static int intel_pstate_max_pstate(void) { u64 value; rdmsrl(0xCE, value); return (value >> 8) & 0xFF; } static int intel_pstate_turbo_pstate(void) { u64 value; int nont, ret; rdmsrl(0x1AD, value); nont = intel_pstate_max_pstate(); ret = ((value) & 255); if (ret <= nont) ret = nont; return ret; } static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) { int max_perf = cpu->pstate.turbo_pstate; int min_perf; if (limits.no_turbo) max_perf = cpu->pstate.max_pstate; max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf)); *max = clamp_t(int, max_perf, cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf)); *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); } static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) { int max_perf, min_perf; intel_pstate_get_min_max(cpu, &min_perf, &max_perf); pstate = clamp_t(int, pstate, min_perf, max_perf); if (pstate == cpu->pstate.current_pstate) return; #ifndef MODULE trace_cpu_frequency(pstate * 100000, cpu->cpu); #endif cpu->pstate.current_pstate = pstate; wrmsrl(MSR_IA32_PERF_CTL, pstate << 8); } static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps) { int target; target = cpu->pstate.current_pstate + steps; intel_pstate_set_pstate(cpu, target); } static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps) { int target; target = cpu->pstate.current_pstate - steps; intel_pstate_set_pstate(cpu, target); } static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) { sprintf(cpu->name, "Intel 2nd generation core"); cpu->pstate.min_pstate = intel_pstate_min_pstate(); cpu->pstate.max_pstate = intel_pstate_max_pstate(); cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate(); /* * goto max pstate so we don't slow up boot if we are built-in if we are * a module we will take care of it during normal operation */ intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate); } static inline void intel_pstate_calc_busy(struct cpudata *cpu, struct sample *sample) { u64 core_pct; sample->pstate_pct_busy = 100 - div64_u64( sample->idletime_us * 100, sample->duration_us); core_pct = div64_u64(sample->aperf * 100, sample->mperf); sample->freq = cpu->pstate.turbo_pstate * core_pct * 1000; sample->core_pct_busy = div_s64((sample->pstate_pct_busy * core_pct), 100); } static inline void intel_pstate_sample(struct cpudata *cpu) { ktime_t now; u64 idle_time_us; u64 aperf, mperf; now = ktime_get(); idle_time_us = get_cpu_idle_time_us(cpu->cpu, NULL); rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); /* for the first sample, don't actually record a sample, just * set the baseline */ if (cpu->prev_idle_time_us > 0) { cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT; cpu->samples[cpu->sample_ptr].start_time = cpu->prev_sample; cpu->samples[cpu->sample_ptr].end_time = now; cpu->samples[cpu->sample_ptr].duration_us = ktime_us_delta(now, cpu->prev_sample); cpu->samples[cpu->sample_ptr].idletime_us = idle_time_us - cpu->prev_idle_time_us; cpu->samples[cpu->sample_ptr].aperf = aperf; cpu->samples[cpu->sample_ptr].mperf = mperf; cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf; cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf; intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]); } cpu->prev_sample = now; cpu->prev_idle_time_us = idle_time_us; cpu->prev_aperf = aperf; cpu->prev_mperf = mperf; } static inline void intel_pstate_set_sample_time(struct cpudata *cpu) { int sample_time, delay; sample_time = cpu->pstate_policy->sample_rate_ms; delay = msecs_to_jiffies(sample_time); delay -= jiffies % delay; mod_timer_pinned(&cpu->timer, jiffies + delay); } static inline void intel_pstate_idle_mode(struct cpudata *cpu) { cpu->idle_mode = 1; } static inline void intel_pstate_normal_mode(struct cpudata *cpu) { cpu->idle_mode = 0; } static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu) { int32_t busy_scaled; int32_t core_busy, turbo_pstate, current_pstate; core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy); turbo_pstate = int_tofp(cpu->pstate.turbo_pstate); current_pstate = int_tofp(cpu->pstate.current_pstate); busy_scaled = mul_fp(core_busy, div_fp(turbo_pstate, current_pstate)); return fp_toint(busy_scaled); } static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) { int busy_scaled; struct _pid *pid; signed int ctl = 0; int steps; pid = &cpu->pid; busy_scaled = intel_pstate_get_scaled_busy(cpu); ctl = pid_calc(pid, busy_scaled); steps = abs(ctl); if (ctl < 0) intel_pstate_pstate_increase(cpu, steps); else intel_pstate_pstate_decrease(cpu, steps); } static inline void intel_pstate_adjust_idle_pstate(struct cpudata *cpu) { int busy_scaled; struct _pid *pid; int ctl = 0; int steps; pid = &cpu->idle_pid; busy_scaled = intel_pstate_get_scaled_busy(cpu); ctl = pid_calc(pid, 100 - busy_scaled); steps = abs(ctl); if (ctl < 0) intel_pstate_pstate_decrease(cpu, steps); else intel_pstate_pstate_increase(cpu, steps); if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) intel_pstate_normal_mode(cpu); } static void intel_pstate_timer_func(unsigned long __data) { struct cpudata *cpu = (struct cpudata *) __data; intel_pstate_sample(cpu); if (!cpu->idle_mode) intel_pstate_adjust_busy_pstate(cpu); else intel_pstate_adjust_idle_pstate(cpu); #if defined(XPERF_FIX) if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) { cpu->min_pstate_count++; if (!(cpu->min_pstate_count % 5)) { intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate); intel_pstate_idle_mode(cpu); } } else cpu->min_pstate_count = 0; #endif intel_pstate_set_sample_time(cpu); } #define ICPU(model, policy) \ { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy } static const struct x86_cpu_id intel_pstate_cpu_ids[] = { ICPU(0x2a, default_policy), ICPU(0x2d, default_policy), {} }; MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); static int intel_pstate_init_cpu(unsigned int cpunum) { const struct x86_cpu_id *id; struct cpudata *cpu; id = x86_match_cpu(intel_pstate_cpu_ids); if (!id) return -ENODEV; all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL); if (!all_cpu_data[cpunum]) return -ENOMEM; cpu = all_cpu_data[cpunum]; intel_pstate_get_cpu_pstates(cpu); cpu->cpu = cpunum; cpu->pstate_policy = (struct pstate_adjust_policy *)id->driver_data; init_timer_deferrable(&cpu->timer); cpu->timer.function = intel_pstate_timer_func; cpu->timer.data = (unsigned long)cpu; cpu->timer.expires = jiffies + HZ/100; intel_pstate_busy_pid_reset(cpu); intel_pstate_idle_pid_reset(cpu); intel_pstate_sample(cpu); intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate); add_timer_on(&cpu->timer, cpunum); pr_info("Intel pstate controlling: cpu %d\n", cpunum); return 0; } static unsigned int intel_pstate_get(unsigned int cpu_num) { struct sample *sample; struct cpudata *cpu; cpu = all_cpu_data[cpu_num]; if (!cpu) return 0; sample = &cpu->samples[cpu->sample_ptr]; return sample->freq; } static int intel_pstate_set_policy(struct cpufreq_policy *policy) { struct cpudata *cpu; int min, max; cpu = all_cpu_data[policy->cpu]; intel_pstate_get_min_max(cpu, &min, &max); limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq; limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100); limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); limits.max_perf_pct = policy->max * 100 / policy->cpuinfo.max_freq; limits.max_perf_pct = clamp_t(int, limits.max_perf_pct, 0 , 100); limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) { limits.min_perf_pct = 100; limits.min_perf = int_tofp(1); limits.max_perf_pct = 100; limits.max_perf = int_tofp(1); limits.no_turbo = 0; } return 0; } static int intel_pstate_verify_policy(struct cpufreq_policy *policy) { cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, policy->cpuinfo.max_freq); if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) && (policy->policy != CPUFREQ_POLICY_PERFORMANCE)) return -EINVAL; return 0; } static int __cpuinit intel_pstate_cpu_exit(struct cpufreq_policy *policy) { int cpu = policy->cpu; del_timer(&all_cpu_data[cpu]->timer); kfree(all_cpu_data[cpu]); all_cpu_data[cpu] = NULL; return 0; } static int __cpuinit intel_pstate_cpu_init(struct cpufreq_policy *policy) { int rc, min_pstate, max_pstate; struct cpudata *cpu; rc = intel_pstate_init_cpu(policy->cpu); if (rc) return rc; cpu = all_cpu_data[policy->cpu]; if (!limits.no_turbo && limits.min_perf_pct == 100 && limits.max_perf_pct == 100) policy->policy = CPUFREQ_POLICY_PERFORMANCE; else policy->policy = CPUFREQ_POLICY_POWERSAVE; intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate); policy->min = min_pstate * 100000; policy->max = max_pstate * 100000; /* cpuinfo and default policy values */ policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000; policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000; policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; cpumask_set_cpu(policy->cpu, policy->cpus); return 0; } static struct cpufreq_driver intel_pstate_driver = { .flags = CPUFREQ_CONST_LOOPS, .verify = intel_pstate_verify_policy, .setpolicy = intel_pstate_set_policy, .get = intel_pstate_get, .init = intel_pstate_cpu_init, .exit = intel_pstate_cpu_exit, .name = "intel_pstate", .owner = THIS_MODULE, }; static int __initdata no_load; static int __init intel_pstate_init(void) { int cpu, rc = 0; const struct x86_cpu_id *id; if (no_load) return -ENODEV; id = x86_match_cpu(intel_pstate_cpu_ids); if (!id) return -ENODEV; pr_info("Intel P-state driver initializing.\n"); all_cpu_data = vmalloc(sizeof(void *) * num_possible_cpus()); if (!all_cpu_data) return -ENOMEM; memset(all_cpu_data, 0, sizeof(void *) * num_possible_cpus()); rc = cpufreq_register_driver(&intel_pstate_driver); if (rc) goto out; intel_pstate_debug_expose_params(); intel_pstate_sysfs_expose_params(); return rc; out: get_online_cpus(); for_each_online_cpu(cpu) { if (all_cpu_data[cpu]) { del_timer_sync(&all_cpu_data[cpu]->timer); kfree(all_cpu_data[cpu]); } } put_online_cpus(); vfree(all_cpu_data); return -ENODEV; } device_initcall(intel_pstate_init); static int __init intel_pstate_setup(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "disable")) no_load = 1; return 0; } early_param("intel_pstate", intel_pstate_setup); MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); MODULE_LICENSE("GPL");
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
You can’t perform that action at this time.