Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
92a8cbe
Documentation
arch
alpha
arm
boot
common
configs
kernel
lib
mach-aaec2000
mach-clps711x
mach-clps7500
mach-ebsa110
mach-epxa10db
mach-footbridge
mach-h720x
mach-imx
mach-integrator
mach-iop3xx
mach-ixp2000
mach-ixp4xx
mach-l7200
mach-lh7a40x
mach-omap
mach-pxa
mach-rpc
mach-s3c2410
mach-sa1100
mach-shark
mach-versatile
mm
Kconfig
Makefile
abort-ev4.S
abort-ev4t.S
abort-ev5t.S
abort-ev5tj.S
abort-ev6.S
abort-lv4t.S
abort-macro.S
alignment.c
blockops.c
cache-v3.S
cache-v4.S
cache-v4wb.S
cache-v4wt.S
cache-v6.S
consistent.c
copypage-v3.S
copypage-v4mc.c
copypage-v4wb.S
copypage-v4wt.S
copypage-v6.c
copypage-xscale.c
discontig.c
extable.c
fault-armv.c
fault.c
fault.h
flush.c
init.c
ioremap.c
mm-armv.c
mmap.c
mmu.c
proc-arm1020.S
proc-arm1020e.S
proc-arm1022.S
proc-arm1026.S
proc-arm6_7.S
proc-arm720.S
proc-arm920.S
proc-arm922.S
proc-arm925.S
proc-arm926.S
proc-macros.S
proc-sa110.S
proc-sa1100.S
proc-syms.c
proc-v6.S
proc-xscale.S
tlb-v3.S
tlb-v4.S
tlb-v4wb.S
tlb-v4wbi.S
tlb-v6.S
nwfpe
oprofile
tools
vfp
Kconfig
Kconfig.debug
Makefile
arm26
cris
frv
h8300
i386
ia64
m32r
m68k
m68knommu
mips
parisc
ppc
ppc64
s390
sh
sh64
sparc
sparc64
um
v850
x86_64
crypto
drivers
fs
include
init
ipc
kernel
lib
mm
net
scripts
security
sound
usr
COPYING
CREDITS
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
arch
/
arm
/
mm
/
init.c
Blame
Blame
Latest commit
History
History
617 lines (515 loc) · 14.5 KB
Breadcrumbs
linux
/
arch
/
arm
/
mm
/
init.c
Top
File metadata and controls
Code
Blame
617 lines (515 loc) · 14.5 KB
Raw
/* * linux/arch/arm/mm/init.c * * Copyright (C) 1995-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/ptrace.h> #include <linux/swap.h> #include <linux/init.h> #include <linux/bootmem.h> #include <linux/mman.h> #include <linux/nodemask.h> #include <linux/initrd.h> #include <asm/mach-types.h> #include <asm/hardware.h> #include <asm/setup.h> #include <asm/tlb.h> #include <asm/mach/arch.h> #include <asm/mach/map.h> #define TABLE_SIZE (2 * PTRS_PER_PTE * sizeof(pte_t)) DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end; extern unsigned long phys_initrd_start; extern unsigned long phys_initrd_size; /* * The sole use of this is to pass memory configuration * data from paging_init to mem_init. */ static struct meminfo meminfo __initdata = { 0, }; /* * empty_zero_page is a special page that is used for * zero-initialized data and COW. */ struct page *empty_zero_page; void show_mem(void) { int free = 0, total = 0, reserved = 0; int shared = 0, cached = 0, slab = 0, node; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); for_each_online_node(node) { struct page *page, *end; page = NODE_MEM_MAP(node); end = page + NODE_DATA(node)->node_spanned_pages; do { total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (PageSlab(page)) slab++; else if (!page_count(page)) free++; else shared += page_count(page) - 1; page++; } while (page < end); } printk("%d pages of RAM\n", total); printk("%d free pages\n", free); printk("%d reserved pages\n", reserved); printk("%d slab pages\n", slab); printk("%d pages shared\n", shared); printk("%d pages swap cached\n", cached); } struct node_info { unsigned int start; unsigned int end; int bootmap_pages; }; #define O_PFN_DOWN(x) ((x) >> PAGE_SHIFT) #define O_PFN_UP(x) (PAGE_ALIGN(x) >> PAGE_SHIFT) /* * FIXME: We really want to avoid allocating the bootmap bitmap * over the top of the initrd. Hopefully, this is located towards * the start of a bank, so if we allocate the bootmap bitmap at * the end, we won't clash. */ static unsigned int __init find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) { unsigned int start_pfn, bank, bootmap_pfn; start_pfn = O_PFN_UP(__pa(&_end)); bootmap_pfn = 0; for (bank = 0; bank < mi->nr_banks; bank ++) { unsigned int start, end; if (mi->bank[bank].node != node) continue; start = mi->bank[bank].start >> PAGE_SHIFT; end = (mi->bank[bank].size + mi->bank[bank].start) >> PAGE_SHIFT; if (end < start_pfn) continue; if (start < start_pfn) start = start_pfn; if (end <= start) continue; if (end - start >= bootmap_pages) { bootmap_pfn = start; break; } } if (bootmap_pfn == 0) BUG(); return bootmap_pfn; } /* * Scan the memory info structure and pull out: * - the end of memory * - the number of nodes * - the pfn range of each node * - the number of bootmem bitmap pages */ static unsigned int __init find_memend_and_nodes(struct meminfo *mi, struct node_info *np) { unsigned int i, bootmem_pages = 0, memend_pfn = 0; for (i = 0; i < MAX_NUMNODES; i++) { np[i].start = -1U; np[i].end = 0; np[i].bootmap_pages = 0; } for (i = 0; i < mi->nr_banks; i++) { unsigned long start, end; int node; if (mi->bank[i].size == 0) { /* * Mark this bank with an invalid node number */ mi->bank[i].node = -1; continue; } node = mi->bank[i].node; /* * Make sure we haven't exceeded the maximum number of nodes * that we have in this configuration. If we have, we're in * trouble. (maybe we ought to limit, instead of bugging?) */ if (node >= MAX_NUMNODES) BUG(); node_set_online(node); /* * Get the start and end pfns for this bank */ start = mi->bank[i].start >> PAGE_SHIFT; end = (mi->bank[i].start + mi->bank[i].size) >> PAGE_SHIFT; if (np[node].start > start) np[node].start = start; if (np[node].end < end) np[node].end = end; if (memend_pfn < end) memend_pfn = end; } /* * Calculate the number of pages we require to * store the bootmem bitmaps. */ for_each_online_node(i) { if (np[i].end == 0) continue; np[i].bootmap_pages = bootmem_bootmap_pages(np[i].end - np[i].start); bootmem_pages += np[i].bootmap_pages; } high_memory = __va(memend_pfn << PAGE_SHIFT); /* * This doesn't seem to be used by the Linux memory * manager any more. If we can get rid of it, we * also get rid of some of the stuff above as well. * * Note: max_low_pfn and max_pfn reflect the number * of _pages_ in the system, not the maximum PFN. */ max_low_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET); max_pfn = memend_pfn - O_PFN_DOWN(PHYS_OFFSET); return bootmem_pages; } static int __init check_initrd(struct meminfo *mi) { int initrd_node = -2; #ifdef CONFIG_BLK_DEV_INITRD unsigned long end = phys_initrd_start + phys_initrd_size; /* * Make sure that the initrd is within a valid area of * memory. */ if (phys_initrd_size) { unsigned int i; initrd_node = -1; for (i = 0; i < mi->nr_banks; i++) { unsigned long bank_end; bank_end = mi->bank[i].start + mi->bank[i].size; if (mi->bank[i].start <= phys_initrd_start && end <= bank_end) initrd_node = mi->bank[i].node; } } if (initrd_node == -1) { printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond " "physical memory - disabling initrd\n", phys_initrd_start, end); phys_initrd_start = phys_initrd_size = 0; } #endif return initrd_node; } /* * Reserve the various regions of node 0 */ static __init void reserve_node_zero(unsigned int bootmap_pfn, unsigned int bootmap_pages) { pg_data_t *pgdat = NODE_DATA(0); unsigned long res_size = 0; /* * Register the kernel text and data with bootmem. * Note that this can only be in node 0. */ #ifdef CONFIG_XIP_KERNEL reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start); #else reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext); #endif /* * Reserve the page tables. These are already in use, * and can only be in node 0. */ reserve_bootmem_node(pgdat, __pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t)); /* * And don't forget to reserve the allocator bitmap, * which will be freed later. */ reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT, bootmap_pages << PAGE_SHIFT); /* * Hmm... This should go elsewhere, but we really really need to * stop things allocating the low memory; ideally we need a better * implementation of GFP_DMA which does not assume that DMA-able * memory starts at zero. */ if (machine_is_integrator() || machine_is_cintegrator()) res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; /* * These should likewise go elsewhere. They pre-reserve the * screen memory region at the start of main system memory. */ if (machine_is_edb7211()) res_size = 0x00020000; if (machine_is_p720t()) res_size = 0x00014000; #ifdef CONFIG_SA1111 /* * Because of the SA1111 DMA bug, we want to preserve our * precious DMA-able memory... */ res_size = __pa(swapper_pg_dir) - PHYS_OFFSET; #endif if (res_size) reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size); } /* * Register all available RAM in this node with the bootmem allocator. */ static inline void free_bootmem_node_bank(int node, struct meminfo *mi) { pg_data_t *pgdat = NODE_DATA(node); int bank; for (bank = 0; bank < mi->nr_banks; bank++) if (mi->bank[bank].node == node) free_bootmem_node(pgdat, mi->bank[bank].start, mi->bank[bank].size); } /* * Initialise the bootmem allocator for all nodes. This is called * early during the architecture specific initialisation. */ static void __init bootmem_init(struct meminfo *mi) { struct node_info node_info[MAX_NUMNODES], *np = node_info; unsigned int bootmap_pages, bootmap_pfn, map_pg; int node, initrd_node; bootmap_pages = find_memend_and_nodes(mi, np); bootmap_pfn = find_bootmap_pfn(0, mi, bootmap_pages); initrd_node = check_initrd(mi); map_pg = bootmap_pfn; /* * Initialise the bootmem nodes. * * What we really want to do is: * * unmap_all_regions_except_kernel(); * for_each_node_in_reverse_order(node) { * map_node(node); * allocate_bootmem_map(node); * init_bootmem_node(node); * free_bootmem_node(node); * } * * but this is a 2.5-type change. For now, we just set * the nodes up in reverse order. * * (we could also do with rolling bootmem_init and paging_init * into one generic "memory_init" type function). */ np += num_online_nodes() - 1; for (node = num_online_nodes() - 1; node >= 0; node--, np--) { /* * If there are no pages in this node, ignore it. * Note that node 0 must always have some pages. */ if (np->end == 0 || !node_online(node)) { if (node == 0) BUG(); continue; } /* * Initialise the bootmem allocator. */ init_bootmem_node(NODE_DATA(node), map_pg, np->start, np->end); free_bootmem_node_bank(node, mi); map_pg += np->bootmap_pages; /* * If this is node 0, we need to reserve some areas ASAP - * we may use bootmem on node 0 to setup the other nodes. */ if (node == 0) reserve_node_zero(bootmap_pfn, bootmap_pages); } #ifdef CONFIG_BLK_DEV_INITRD if (phys_initrd_size && initrd_node >= 0) { reserve_bootmem_node(NODE_DATA(initrd_node), phys_initrd_start, phys_initrd_size); initrd_start = __phys_to_virt(phys_initrd_start); initrd_end = initrd_start + phys_initrd_size; } #endif BUG_ON(map_pg != bootmap_pfn + bootmap_pages); } /* * paging_init() sets up the page tables, initialises the zone memory * maps, and sets up the zero page, bad page and bad page tables. */ void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc) { void *zero_page; int node; bootmem_init(mi); memcpy(&meminfo, mi, sizeof(meminfo)); /* * allocate the zero page. Note that we count on this going ok. */ zero_page = alloc_bootmem_low_pages(PAGE_SIZE); /* * initialise the page tables. */ memtable_init(mi); if (mdesc->map_io) mdesc->map_io(); flush_tlb_all(); /* * initialise the zones within each node */ for_each_online_node(node) { unsigned long zone_size[MAX_NR_ZONES]; unsigned long zhole_size[MAX_NR_ZONES]; struct bootmem_data *bdata; pg_data_t *pgdat; int i; /* * Initialise the zone size information. */ for (i = 0; i < MAX_NR_ZONES; i++) { zone_size[i] = 0; zhole_size[i] = 0; } pgdat = NODE_DATA(node); bdata = pgdat->bdata; /* * The size of this node has already been determined. * If we need to do anything fancy with the allocation * of this memory to the zones, now is the time to do * it. */ zone_size[0] = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); /* * If this zone has zero size, skip it. */ if (!zone_size[0]) continue; /* * For each bank in this node, calculate the size of the * holes. holes = node_size - sum(bank_sizes_in_node) */ zhole_size[0] = zone_size[0]; for (i = 0; i < mi->nr_banks; i++) { if (mi->bank[i].node != node) continue; zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT; } /* * Adjust the sizes according to any special * requirements for this machine type. */ arch_adjust_zones(node, zone_size, zhole_size); free_area_init_node(node, pgdat, zone_size, bdata->node_boot_start >> PAGE_SHIFT, zhole_size); } /* * finish off the bad pages once * the mem_map is initialised */ memzero(zero_page, PAGE_SIZE); empty_zero_page = virt_to_page(zero_page); flush_dcache_page(empty_zero_page); } static inline void free_area(unsigned long addr, unsigned long end, char *s) { unsigned int size = (end - addr) >> 10; for (; addr < end; addr += PAGE_SIZE) { struct page *page = virt_to_page(addr); ClearPageReserved(page); set_page_count(page, 1); free_page(addr); totalram_pages++; } if (size && s) printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); } /* * mem_init() marks the free areas in the mem_map and tells us how much * memory is free. This is done after various parts of the system have * claimed their memory after the kernel image. */ void __init mem_init(void) { unsigned int codepages, datapages, initpages; int i, node; codepages = &_etext - &_text; datapages = &_end - &__data_start; initpages = &__init_end - &__init_begin; #ifndef CONFIG_DISCONTIGMEM max_mapnr = virt_to_page(high_memory) - mem_map; #endif /* * We may have non-contiguous memory. */ if (meminfo.nr_banks != 1) create_memmap_holes(&meminfo); /* this will put all unused low memory onto the freelists */ for_each_online_node(node) { pg_data_t *pgdat = NODE_DATA(node); if (pgdat->node_spanned_pages != 0) totalram_pages += free_all_bootmem_node(pgdat); } #ifdef CONFIG_SA1111 /* now that our DMA memory is actually so designated, we can free it */ free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL); #endif /* * Since our memory may not be contiguous, calculate the * real number of pages we have in this system */ printk(KERN_INFO "Memory:"); num_physpages = 0; for (i = 0; i < meminfo.nr_banks; i++) { num_physpages += meminfo.bank[i].size >> PAGE_SHIFT; printk(" %ldMB", meminfo.bank[i].size >> 20); } printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); printk(KERN_NOTICE "Memory: %luKB available (%dK code, " "%dK data, %dK init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), codepages >> 10, datapages >> 10, initpages >> 10); if (PAGE_SIZE >= 16384 && num_physpages <= 128) { extern int sysctl_overcommit_memory; /* * On a machine this small we won't get * anywhere without overcommit, so turn * it on by default. */ sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; } } void free_initmem(void) { if (!machine_is_integrator() && !machine_is_cintegrator()) { free_area((unsigned long)(&__init_begin), (unsigned long)(&__init_end), "init"); } } #ifdef CONFIG_BLK_DEV_INITRD static int keep_initrd; void free_initrd_mem(unsigned long start, unsigned long end) { if (!keep_initrd) free_area(start, end, "initrd"); } static int __init keepinitrd_setup(char *__unused) { keep_initrd = 1; return 1; } __setup("keepinitrd", keepinitrd_setup); #endif
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
You can’t perform that action at this time.