Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
94c2606
Documentation
arch
block
crypto
drivers
firmware
fs
9p
adfs
affs
afs
autofs4
befs
bfs
btrfs
tests
Kconfig
Makefile
acl.c
async-thread.c
async-thread.h
backref.c
backref.h
btrfs_inode.h
check-integrity.c
check-integrity.h
compression.c
compression.h
ctree.c
ctree.h
delayed-inode.c
delayed-inode.h
delayed-ref.c
delayed-ref.h
dev-replace.c
dev-replace.h
dir-item.c
disk-io.c
disk-io.h
export.c
export.h
extent-tree.c
extent_io.c
extent_io.h
extent_map.c
extent_map.h
file-item.c
file.c
free-space-cache.c
free-space-cache.h
hash.c
hash.h
inode-item.c
inode-map.c
inode-map.h
inode.c
ioctl.c
locking.c
locking.h
lzo.c
math.h
ordered-data.c
ordered-data.h
orphan.c
print-tree.c
print-tree.h
props.c
props.h
qgroup.c
qgroup.h
raid56.c
raid56.h
rcu-string.h
reada.c
relocation.c
root-tree.c
scrub.c
send.c
send.h
struct-funcs.c
super.c
sysfs.c
sysfs.h
transaction.c
transaction.h
tree-defrag.c
tree-log.c
tree-log.h
ulist.c
ulist.h
uuid-tree.c
volumes.c
volumes.h
xattr.c
xattr.h
zlib.c
cachefiles
ceph
cifs
coda
configfs
cramfs
debugfs
devpts
dlm
ecryptfs
efivarfs
efs
exofs
exportfs
ext2
ext3
ext4
f2fs
fat
freevxfs
fscache
fuse
gfs2
hfs
hfsplus
hostfs
hpfs
hppfs
hugetlbfs
isofs
jbd
jbd2
jffs2
jfs
kernfs
lockd
logfs
minix
ncpfs
nfs
nfs_common
nfsd
nilfs2
nls
notify
ntfs
ocfs2
omfs
openpromfs
proc
pstore
qnx4
qnx6
quota
ramfs
reiserfs
romfs
squashfs
sysfs
sysv
ubifs
udf
ufs
xfs
Kconfig
Kconfig.binfmt
Makefile
aio.c
anon_inodes.c
attr.c
bad_inode.c
binfmt_aout.c
binfmt_elf.c
binfmt_elf_fdpic.c
binfmt_em86.c
binfmt_flat.c
binfmt_misc.c
binfmt_script.c
binfmt_som.c
block_dev.c
buffer.c
char_dev.c
compat.c
compat_binfmt_elf.c
compat_ioctl.c
coredump.c
dcache.c
dcookies.c
direct-io.c
drop_caches.c
eventfd.c
eventpoll.c
exec.c
fcntl.c
fhandle.c
file.c
file_table.c
filesystems.c
fs-writeback.c
fs_pin.c
fs_struct.c
inode.c
internal.h
ioctl.c
libfs.c
locks.c
mbcache.c
mount.h
mpage.c
namei.c
namespace.c
no-block.c
open.c
pipe.c
pnode.c
pnode.h
posix_acl.c
proc_namespace.c
read_write.c
readdir.c
select.c
seq_file.c
signalfd.c
splice.c
stack.c
stat.c
statfs.c
super.c
sync.c
timerfd.c
utimes.c
xattr.c
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
fs
/
btrfs
/
ordered-data.c
Blame
Blame
Latest commit
History
History
1058 lines (949 loc) · 29.1 KB
Breadcrumbs
linux
/
fs
/
btrfs
/
ordered-data.c
Top
File metadata and controls
Code
Blame
1058 lines (949 loc) · 29.1 KB
Raw
/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/writeback.h> #include <linux/pagevec.h> #include "ctree.h" #include "transaction.h" #include "btrfs_inode.h" #include "extent_io.h" #include "disk-io.h" static struct kmem_cache *btrfs_ordered_extent_cache; static u64 entry_end(struct btrfs_ordered_extent *entry) { if (entry->file_offset + entry->len < entry->file_offset) return (u64)-1; return entry->file_offset + entry->len; } /* returns NULL if the insertion worked, or it returns the node it did find * in the tree */ static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_ordered_extent *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); if (file_offset < entry->file_offset) p = &(*p)->rb_left; else if (file_offset >= entry_end(entry)) p = &(*p)->rb_right; else return parent; } rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } static void ordered_data_tree_panic(struct inode *inode, int errno, u64 offset) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " "%llu", offset); } /* * look for a given offset in the tree, and if it can't be found return the * first lesser offset */ static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, struct rb_node **prev_ret) { struct rb_node *n = root->rb_node; struct rb_node *prev = NULL; struct rb_node *test; struct btrfs_ordered_extent *entry; struct btrfs_ordered_extent *prev_entry = NULL; while (n) { entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); prev = n; prev_entry = entry; if (file_offset < entry->file_offset) n = n->rb_left; else if (file_offset >= entry_end(entry)) n = n->rb_right; else return n; } if (!prev_ret) return NULL; while (prev && file_offset >= entry_end(prev_entry)) { test = rb_next(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); if (file_offset < entry_end(prev_entry)) break; prev = test; } if (prev) prev_entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); while (prev && file_offset < entry_end(prev_entry)) { test = rb_prev(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); prev = test; } *prev_ret = prev; return NULL; } /* * helper to check if a given offset is inside a given entry */ static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) { if (file_offset < entry->file_offset || entry->file_offset + entry->len <= file_offset) return 0; return 1; } static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, u64 len) { if (file_offset + len <= entry->file_offset || entry->file_offset + entry->len <= file_offset) return 0; return 1; } /* * look find the first ordered struct that has this offset, otherwise * the first one less than this offset */ static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, u64 file_offset) { struct rb_root *root = &tree->tree; struct rb_node *prev = NULL; struct rb_node *ret; struct btrfs_ordered_extent *entry; if (tree->last) { entry = rb_entry(tree->last, struct btrfs_ordered_extent, rb_node); if (offset_in_entry(entry, file_offset)) return tree->last; } ret = __tree_search(root, file_offset, &prev); if (!ret) ret = prev; if (ret) tree->last = ret; return ret; } /* allocate and add a new ordered_extent into the per-inode tree. * file_offset is the logical offset in the file * * start is the disk block number of an extent already reserved in the * extent allocation tree * * len is the length of the extent * * The tree is given a single reference on the ordered extent that was * inserted. */ static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, u64 start, u64 len, u64 disk_len, int type, int dio, int compress_type) { struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry; tree = &BTRFS_I(inode)->ordered_tree; entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); if (!entry) return -ENOMEM; entry->file_offset = file_offset; entry->start = start; entry->len = len; if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) && !(type == BTRFS_ORDERED_NOCOW)) entry->csum_bytes_left = disk_len; entry->disk_len = disk_len; entry->bytes_left = len; entry->inode = igrab(inode); entry->compress_type = compress_type; entry->truncated_len = (u64)-1; if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) set_bit(type, &entry->flags); if (dio) set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); /* one ref for the tree */ atomic_set(&entry->refs, 1); init_waitqueue_head(&entry->wait); INIT_LIST_HEAD(&entry->list); INIT_LIST_HEAD(&entry->root_extent_list); INIT_LIST_HEAD(&entry->work_list); init_completion(&entry->completion); INIT_LIST_HEAD(&entry->log_list); INIT_LIST_HEAD(&entry->trans_list); trace_btrfs_ordered_extent_add(inode, entry); spin_lock_irq(&tree->lock); node = tree_insert(&tree->tree, file_offset, &entry->rb_node); if (node) ordered_data_tree_panic(inode, -EEXIST, file_offset); spin_unlock_irq(&tree->lock); spin_lock(&root->ordered_extent_lock); list_add_tail(&entry->root_extent_list, &root->ordered_extents); root->nr_ordered_extents++; if (root->nr_ordered_extents == 1) { spin_lock(&root->fs_info->ordered_root_lock); BUG_ON(!list_empty(&root->ordered_root)); list_add_tail(&root->ordered_root, &root->fs_info->ordered_roots); spin_unlock(&root->fs_info->ordered_root_lock); } spin_unlock(&root->ordered_extent_lock); return 0; } int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, u64 start, u64 len, u64 disk_len, int type) { return __btrfs_add_ordered_extent(inode, file_offset, start, len, disk_len, type, 0, BTRFS_COMPRESS_NONE); } int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, u64 start, u64 len, u64 disk_len, int type) { return __btrfs_add_ordered_extent(inode, file_offset, start, len, disk_len, type, 1, BTRFS_COMPRESS_NONE); } int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, u64 start, u64 len, u64 disk_len, int type, int compress_type) { return __btrfs_add_ordered_extent(inode, file_offset, start, len, disk_len, type, 0, compress_type); } /* * Add a struct btrfs_ordered_sum into the list of checksums to be inserted * when an ordered extent is finished. If the list covers more than one * ordered extent, it is split across multiples. */ void btrfs_add_ordered_sum(struct inode *inode, struct btrfs_ordered_extent *entry, struct btrfs_ordered_sum *sum) { struct btrfs_ordered_inode_tree *tree; tree = &BTRFS_I(inode)->ordered_tree; spin_lock_irq(&tree->lock); list_add_tail(&sum->list, &entry->list); WARN_ON(entry->csum_bytes_left < sum->len); entry->csum_bytes_left -= sum->len; if (entry->csum_bytes_left == 0) wake_up(&entry->wait); spin_unlock_irq(&tree->lock); } /* * this is used to account for finished IO across a given range * of the file. The IO may span ordered extents. If * a given ordered_extent is completely done, 1 is returned, otherwise * 0. * * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used * to make sure this function only returns 1 once for a given ordered extent. * * file_offset is updated to one byte past the range that is recorded as * complete. This allows you to walk forward in the file. */ int btrfs_dec_test_first_ordered_pending(struct inode *inode, struct btrfs_ordered_extent **cached, u64 *file_offset, u64 io_size, int uptodate) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; int ret; unsigned long flags; u64 dec_end; u64 dec_start; u64 to_dec; tree = &BTRFS_I(inode)->ordered_tree; spin_lock_irqsave(&tree->lock, flags); node = tree_search(tree, *file_offset); if (!node) { ret = 1; goto out; } entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, *file_offset)) { ret = 1; goto out; } dec_start = max(*file_offset, entry->file_offset); dec_end = min(*file_offset + io_size, entry->file_offset + entry->len); *file_offset = dec_end; if (dec_start > dec_end) { btrfs_crit(BTRFS_I(inode)->root->fs_info, "bad ordering dec_start %llu end %llu", dec_start, dec_end); } to_dec = dec_end - dec_start; if (to_dec > entry->bytes_left) { btrfs_crit(BTRFS_I(inode)->root->fs_info, "bad ordered accounting left %llu size %llu", entry->bytes_left, to_dec); } entry->bytes_left -= to_dec; if (!uptodate) set_bit(BTRFS_ORDERED_IOERR, &entry->flags); if (entry->bytes_left == 0) { ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); if (waitqueue_active(&entry->wait)) wake_up(&entry->wait); } else { ret = 1; } out: if (!ret && cached && entry) { *cached = entry; atomic_inc(&entry->refs); } spin_unlock_irqrestore(&tree->lock, flags); return ret == 0; } /* * this is used to account for finished IO across a given range * of the file. The IO should not span ordered extents. If * a given ordered_extent is completely done, 1 is returned, otherwise * 0. * * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used * to make sure this function only returns 1 once for a given ordered extent. */ int btrfs_dec_test_ordered_pending(struct inode *inode, struct btrfs_ordered_extent **cached, u64 file_offset, u64 io_size, int uptodate) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; unsigned long flags; int ret; tree = &BTRFS_I(inode)->ordered_tree; spin_lock_irqsave(&tree->lock, flags); if (cached && *cached) { entry = *cached; goto have_entry; } node = tree_search(tree, file_offset); if (!node) { ret = 1; goto out; } entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); have_entry: if (!offset_in_entry(entry, file_offset)) { ret = 1; goto out; } if (io_size > entry->bytes_left) { btrfs_crit(BTRFS_I(inode)->root->fs_info, "bad ordered accounting left %llu size %llu", entry->bytes_left, io_size); } entry->bytes_left -= io_size; if (!uptodate) set_bit(BTRFS_ORDERED_IOERR, &entry->flags); if (entry->bytes_left == 0) { ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); if (waitqueue_active(&entry->wait)) wake_up(&entry->wait); } else { ret = 1; } out: if (!ret && cached && entry) { *cached = entry; atomic_inc(&entry->refs); } spin_unlock_irqrestore(&tree->lock, flags); return ret == 0; } /* Needs to either be called under a log transaction or the log_mutex */ void btrfs_get_logged_extents(struct inode *inode, struct list_head *logged_list) { struct btrfs_ordered_inode_tree *tree; struct btrfs_ordered_extent *ordered; struct rb_node *n; tree = &BTRFS_I(inode)->ordered_tree; spin_lock_irq(&tree->lock); for (n = rb_first(&tree->tree); n; n = rb_next(n)) { ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); if (!list_empty(&ordered->log_list)) continue; if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) continue; list_add_tail(&ordered->log_list, logged_list); atomic_inc(&ordered->refs); } spin_unlock_irq(&tree->lock); } void btrfs_put_logged_extents(struct list_head *logged_list) { struct btrfs_ordered_extent *ordered; while (!list_empty(logged_list)) { ordered = list_first_entry(logged_list, struct btrfs_ordered_extent, log_list); list_del_init(&ordered->log_list); btrfs_put_ordered_extent(ordered); } } void btrfs_submit_logged_extents(struct list_head *logged_list, struct btrfs_root *log) { int index = log->log_transid % 2; spin_lock_irq(&log->log_extents_lock[index]); list_splice_tail(logged_list, &log->logged_list[index]); spin_unlock_irq(&log->log_extents_lock[index]); } void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans, struct btrfs_root *log, u64 transid) { struct btrfs_ordered_extent *ordered; int index = transid % 2; spin_lock_irq(&log->log_extents_lock[index]); while (!list_empty(&log->logged_list[index])) { ordered = list_first_entry(&log->logged_list[index], struct btrfs_ordered_extent, log_list); list_del_init(&ordered->log_list); spin_unlock_irq(&log->log_extents_lock[index]); if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { struct inode *inode = ordered->inode; u64 start = ordered->file_offset; u64 end = ordered->file_offset + ordered->len - 1; WARN_ON(!inode); filemap_fdatawrite_range(inode->i_mapping, start, end); } wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)); if (!test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) list_add_tail(&ordered->trans_list, &trans->ordered); spin_lock_irq(&log->log_extents_lock[index]); } spin_unlock_irq(&log->log_extents_lock[index]); } void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) { struct btrfs_ordered_extent *ordered; int index = transid % 2; spin_lock_irq(&log->log_extents_lock[index]); while (!list_empty(&log->logged_list[index])) { ordered = list_first_entry(&log->logged_list[index], struct btrfs_ordered_extent, log_list); list_del_init(&ordered->log_list); spin_unlock_irq(&log->log_extents_lock[index]); btrfs_put_ordered_extent(ordered); spin_lock_irq(&log->log_extents_lock[index]); } spin_unlock_irq(&log->log_extents_lock[index]); } /* * used to drop a reference on an ordered extent. This will free * the extent if the last reference is dropped */ void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) { struct list_head *cur; struct btrfs_ordered_sum *sum; trace_btrfs_ordered_extent_put(entry->inode, entry); if (atomic_dec_and_test(&entry->refs)) { if (entry->inode) btrfs_add_delayed_iput(entry->inode); while (!list_empty(&entry->list)) { cur = entry->list.next; sum = list_entry(cur, struct btrfs_ordered_sum, list); list_del(&sum->list); kfree(sum); } kmem_cache_free(btrfs_ordered_extent_cache, entry); } } /* * remove an ordered extent from the tree. No references are dropped * and waiters are woken up. */ void btrfs_remove_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry) { struct btrfs_ordered_inode_tree *tree; struct btrfs_root *root = BTRFS_I(inode)->root; struct rb_node *node; tree = &BTRFS_I(inode)->ordered_tree; spin_lock_irq(&tree->lock); node = &entry->rb_node; rb_erase(node, &tree->tree); if (tree->last == node) tree->last = NULL; set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); spin_unlock_irq(&tree->lock); spin_lock(&root->ordered_extent_lock); list_del_init(&entry->root_extent_list); root->nr_ordered_extents--; trace_btrfs_ordered_extent_remove(inode, entry); if (!root->nr_ordered_extents) { spin_lock(&root->fs_info->ordered_root_lock); BUG_ON(list_empty(&root->ordered_root)); list_del_init(&root->ordered_root); spin_unlock(&root->fs_info->ordered_root_lock); } spin_unlock(&root->ordered_extent_lock); wake_up(&entry->wait); } static void btrfs_run_ordered_extent_work(struct btrfs_work *work) { struct btrfs_ordered_extent *ordered; ordered = container_of(work, struct btrfs_ordered_extent, flush_work); btrfs_start_ordered_extent(ordered->inode, ordered, 1); complete(&ordered->completion); } /* * wait for all the ordered extents in a root. This is done when balancing * space between drives. */ int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr) { struct list_head splice, works; struct btrfs_ordered_extent *ordered, *next; int count = 0; INIT_LIST_HEAD(&splice); INIT_LIST_HEAD(&works); mutex_lock(&root->ordered_extent_mutex); spin_lock(&root->ordered_extent_lock); list_splice_init(&root->ordered_extents, &splice); while (!list_empty(&splice) && nr) { ordered = list_first_entry(&splice, struct btrfs_ordered_extent, root_extent_list); list_move_tail(&ordered->root_extent_list, &root->ordered_extents); atomic_inc(&ordered->refs); spin_unlock(&root->ordered_extent_lock); btrfs_init_work(&ordered->flush_work, btrfs_flush_delalloc_helper, btrfs_run_ordered_extent_work, NULL, NULL); list_add_tail(&ordered->work_list, &works); btrfs_queue_work(root->fs_info->flush_workers, &ordered->flush_work); cond_resched(); spin_lock(&root->ordered_extent_lock); if (nr != -1) nr--; count++; } list_splice_tail(&splice, &root->ordered_extents); spin_unlock(&root->ordered_extent_lock); list_for_each_entry_safe(ordered, next, &works, work_list) { list_del_init(&ordered->work_list); wait_for_completion(&ordered->completion); btrfs_put_ordered_extent(ordered); cond_resched(); } mutex_unlock(&root->ordered_extent_mutex); return count; } void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr) { struct btrfs_root *root; struct list_head splice; int done; INIT_LIST_HEAD(&splice); mutex_lock(&fs_info->ordered_operations_mutex); spin_lock(&fs_info->ordered_root_lock); list_splice_init(&fs_info->ordered_roots, &splice); while (!list_empty(&splice) && nr) { root = list_first_entry(&splice, struct btrfs_root, ordered_root); root = btrfs_grab_fs_root(root); BUG_ON(!root); list_move_tail(&root->ordered_root, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); done = btrfs_wait_ordered_extents(root, nr); btrfs_put_fs_root(root); spin_lock(&fs_info->ordered_root_lock); if (nr != -1) { nr -= done; WARN_ON(nr < 0); } } list_splice_tail(&splice, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); mutex_unlock(&fs_info->ordered_operations_mutex); } /* * Used to start IO or wait for a given ordered extent to finish. * * If wait is one, this effectively waits on page writeback for all the pages * in the extent, and it waits on the io completion code to insert * metadata into the btree corresponding to the extent */ void btrfs_start_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry, int wait) { u64 start = entry->file_offset; u64 end = start + entry->len - 1; trace_btrfs_ordered_extent_start(inode, entry); /* * pages in the range can be dirty, clean or writeback. We * start IO on any dirty ones so the wait doesn't stall waiting * for the flusher thread to find them */ if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) filemap_fdatawrite_range(inode->i_mapping, start, end); if (wait) { wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); } } /* * Used to wait on ordered extents across a large range of bytes. */ int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) { int ret = 0; u64 end; u64 orig_end; struct btrfs_ordered_extent *ordered; if (start + len < start) { orig_end = INT_LIMIT(loff_t); } else { orig_end = start + len - 1; if (orig_end > INT_LIMIT(loff_t)) orig_end = INT_LIMIT(loff_t); } /* start IO across the range first to instantiate any delalloc * extents */ ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end); if (ret) return ret; /* * So with compression we will find and lock a dirty page and clear the * first one as dirty, setup an async extent, and immediately return * with the entire range locked but with nobody actually marked with * writeback. So we can't just filemap_write_and_wait_range() and * expect it to work since it will just kick off a thread to do the * actual work. So we need to call filemap_fdatawrite_range _again_ * since it will wait on the page lock, which won't be unlocked until * after the pages have been marked as writeback and so we're good to go * from there. We have to do this otherwise we'll miss the ordered * extents and that results in badness. Please Josef, do not think you * know better and pull this out at some point in the future, it is * right and you are wrong. */ if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &BTRFS_I(inode)->runtime_flags)) { ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end); if (ret) return ret; } ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end); if (ret) return ret; end = orig_end; while (1) { ordered = btrfs_lookup_first_ordered_extent(inode, end); if (!ordered) break; if (ordered->file_offset > orig_end) { btrfs_put_ordered_extent(ordered); break; } if (ordered->file_offset + ordered->len <= start) { btrfs_put_ordered_extent(ordered); break; } btrfs_start_ordered_extent(inode, ordered, 1); end = ordered->file_offset; if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) ret = -EIO; btrfs_put_ordered_extent(ordered); if (ret || end == 0 || end == start) break; end--; } return ret; } /* * find an ordered extent corresponding to file_offset. return NULL if * nothing is found, otherwise take a reference on the extent and return it */ struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &BTRFS_I(inode)->ordered_tree; spin_lock_irq(&tree->lock); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, file_offset)) entry = NULL; if (entry) atomic_inc(&entry->refs); out: spin_unlock_irq(&tree->lock); return entry; } /* Since the DIO code tries to lock a wide area we need to look for any ordered * extents that exist in the range, rather than just the start of the range. */ struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, u64 file_offset, u64 len) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &BTRFS_I(inode)->ordered_tree; spin_lock_irq(&tree->lock); node = tree_search(tree, file_offset); if (!node) { node = tree_search(tree, file_offset + len); if (!node) goto out; } while (1) { entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (range_overlaps(entry, file_offset, len)) break; if (entry->file_offset >= file_offset + len) { entry = NULL; break; } entry = NULL; node = rb_next(node); if (!node) break; } out: if (entry) atomic_inc(&entry->refs); spin_unlock_irq(&tree->lock); return entry; } /* * lookup and return any extent before 'file_offset'. NULL is returned * if none is found */ struct btrfs_ordered_extent * btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &BTRFS_I(inode)->ordered_tree; spin_lock_irq(&tree->lock); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); atomic_inc(&entry->refs); out: spin_unlock_irq(&tree->lock); return entry; } /* * After an extent is done, call this to conditionally update the on disk * i_size. i_size is updated to cover any fully written part of the file. */ int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, struct btrfs_ordered_extent *ordered) { struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; u64 disk_i_size; u64 new_i_size; u64 i_size = i_size_read(inode); struct rb_node *node; struct rb_node *prev = NULL; struct btrfs_ordered_extent *test; int ret = 1; spin_lock_irq(&tree->lock); if (ordered) { offset = entry_end(ordered); if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) offset = min(offset, ordered->file_offset + ordered->truncated_len); } else { offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); } disk_i_size = BTRFS_I(inode)->disk_i_size; /* truncate file */ if (disk_i_size > i_size) { BTRFS_I(inode)->disk_i_size = i_size; ret = 0; goto out; } /* * if the disk i_size is already at the inode->i_size, or * this ordered extent is inside the disk i_size, we're done */ if (disk_i_size == i_size) goto out; /* * We still need to update disk_i_size if outstanding_isize is greater * than disk_i_size. */ if (offset <= disk_i_size && (!ordered || ordered->outstanding_isize <= disk_i_size)) goto out; /* * walk backward from this ordered extent to disk_i_size. * if we find an ordered extent then we can't update disk i_size * yet */ if (ordered) { node = rb_prev(&ordered->rb_node); } else { prev = tree_search(tree, offset); /* * we insert file extents without involving ordered struct, * so there should be no ordered struct cover this offset */ if (prev) { test = rb_entry(prev, struct btrfs_ordered_extent, rb_node); BUG_ON(offset_in_entry(test, offset)); } node = prev; } for (; node; node = rb_prev(node)) { test = rb_entry(node, struct btrfs_ordered_extent, rb_node); /* We treat this entry as if it doesnt exist */ if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) continue; if (test->file_offset + test->len <= disk_i_size) break; if (test->file_offset >= i_size) break; if (entry_end(test) > disk_i_size) { /* * we don't update disk_i_size now, so record this * undealt i_size. Or we will not know the real * i_size. */ if (test->outstanding_isize < offset) test->outstanding_isize = offset; if (ordered && ordered->outstanding_isize > test->outstanding_isize) test->outstanding_isize = ordered->outstanding_isize; goto out; } } new_i_size = min_t(u64, offset, i_size); /* * Some ordered extents may completed before the current one, and * we hold the real i_size in ->outstanding_isize. */ if (ordered && ordered->outstanding_isize > new_i_size) new_i_size = min_t(u64, ordered->outstanding_isize, i_size); BTRFS_I(inode)->disk_i_size = new_i_size; ret = 0; out: /* * We need to do this because we can't remove ordered extents until * after the i_disk_size has been updated and then the inode has been * updated to reflect the change, so we need to tell anybody who finds * this ordered extent that we've already done all the real work, we * just haven't completed all the other work. */ if (ordered) set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); spin_unlock_irq(&tree->lock); return ret; } /* * search the ordered extents for one corresponding to 'offset' and * try to find a checksum. This is used because we allow pages to * be reclaimed before their checksum is actually put into the btree */ int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, u32 *sum, int len) { struct btrfs_ordered_sum *ordered_sum; struct btrfs_ordered_extent *ordered; struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; unsigned long num_sectors; unsigned long i; u32 sectorsize = BTRFS_I(inode)->root->sectorsize; int index = 0; ordered = btrfs_lookup_ordered_extent(inode, offset); if (!ordered) return 0; spin_lock_irq(&tree->lock); list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { if (disk_bytenr >= ordered_sum->bytenr && disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { i = (disk_bytenr - ordered_sum->bytenr) >> inode->i_sb->s_blocksize_bits; num_sectors = ordered_sum->len >> inode->i_sb->s_blocksize_bits; num_sectors = min_t(int, len - index, num_sectors - i); memcpy(sum + index, ordered_sum->sums + i, num_sectors); index += (int)num_sectors; if (index == len) goto out; disk_bytenr += num_sectors * sectorsize; } } out: spin_unlock_irq(&tree->lock); btrfs_put_ordered_extent(ordered); return index; } int __init ordered_data_init(void) { btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", sizeof(struct btrfs_ordered_extent), 0, SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); if (!btrfs_ordered_extent_cache) return -ENOMEM; return 0; } void ordered_data_exit(void) { if (btrfs_ordered_extent_cache) kmem_cache_destroy(btrfs_ordered_extent_cache); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
You can’t perform that action at this time.