Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
a1e55f5
Documentation
LICENSES
arch
block
certs
crypto
drivers
accel
accessibility
acpi
amba
android
ata
atm
auxdisplay
base
bcma
block
bluetooth
bus
cache
cdrom
cdx
char
clk
clocksource
comedi
connector
counter
cpufreq
cpuidle
crypto
cxl
dax
dca
devfreq
dio
dma-buf
dma
dpll
edac
eisa
extcon
firewire
firmware
fpga
fsi
gnss
gpio
gpu
greybus
hid
hsi
hte
hv
hwmon
hwspinlock
hwtracing
i2c
i3c
idle
iio
infiniband
input
interconnect
iommu
ipack
irqchip
isdn
leds
macintosh
mailbox
mcb
md
media
memory
memstick
message
mfd
misc
mmc
most
mtd
mux
net
arcnet
bonding
caif
can
dsa
b53
hirschmann
microchip
mv88e6xxx
ocelot
qca
realtek
sja1105
xrs700x
Kconfig
Makefile
bcm_sf2.c
bcm_sf2.h
bcm_sf2_cfp.c
bcm_sf2_regs.h
dsa_loop.c
dsa_loop.h
dsa_loop_bdinfo.c
lan9303-core.c
lan9303.h
lan9303_i2c.c
lan9303_mdio.c
lantiq_gswip.c
lantiq_pce.h
mt7530-mdio.c
mt7530-mmio.c
mt7530.c
mt7530.h
mv88e6060.c
mv88e6060.h
rzn1_a5psw.c
rzn1_a5psw.h
vitesse-vsc73xx-core.c
vitesse-vsc73xx-platform.c
vitesse-vsc73xx-spi.c
vitesse-vsc73xx.h
ethernet
fddi
fjes
hamradio
hippi
hyperv
ieee802154
ipa
ipvlan
mctp
mdio
netdevsim
pcs
phy
plip
ppp
pse-pd
slip
team
thunderbolt
usb
vmxnet3
vxlan
wan
wireguard
wireless
wwan
xen-netback
Kconfig
LICENSE.SRC
Makefile
Space.c
amt.c
bareudp.c
dummy.c
eql.c
geneve.c
gtp.c
ifb.c
loopback.c
macsec.c
macvlan.c
macvtap.c
mdio.c
mhi_net.c
mii.c
net_failover.c
netconsole.c
netkit.c
nlmon.c
ntb_netdev.c
rionet.c
sb1000.c
sungem_phy.c
tap.c
tun.c
veth.c
virtio_net.c
vrf.c
vsockmon.c
xen-netfront.c
nfc
ntb
nubus
nvdimm
nvme
nvmem
of
opp
parisc
parport
pci
pcmcia
peci
perf
phy
pinctrl
platform
pmdomain
pnp
power
powercap
pps
ps3
ptp
pwm
rapidio
ras
regulator
remoteproc
reset
rpmsg
rtc
s390
sbus
scsi
sh
siox
slimbus
soc
soundwire
spi
spmi
ssb
staging
target
tc
tee
thermal
thunderbolt
tty
ufs
uio
usb
vdpa
vfio
vhost
video
virt
virtio
w1
watchdog
xen
zorro
Kconfig
Makefile
fs
include
init
io_uring
ipc
kernel
lib
mm
net
rust
samples
scripts
security
sound
tools
usr
virt
.clang-format
.cocciconfig
.editorconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
.rustfmt.toml
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
drivers
/
net
/
dsa
/
mt7530.c
Blame
Blame
Latest commit
History
History
3229 lines (2661 loc) · 79.9 KB
Breadcrumbs
linux
/
drivers
/
net
/
dsa
/
mt7530.c
Top
File metadata and controls
Code
Blame
3229 lines (2661 loc) · 79.9 KB
Raw
// SPDX-License-Identifier: GPL-2.0-only /* * Mediatek MT7530 DSA Switch driver * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> */ #include <linux/etherdevice.h> #include <linux/if_bridge.h> #include <linux/iopoll.h> #include <linux/mdio.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/of_irq.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/of_platform.h> #include <linux/phylink.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/gpio/consumer.h> #include <linux/gpio/driver.h> #include <net/dsa.h> #include "mt7530.h" static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs) { return container_of(pcs, struct mt753x_pcs, pcs); } /* String, offset, and register size in bytes if different from 4 bytes */ static const struct mt7530_mib_desc mt7530_mib[] = { MIB_DESC(1, 0x00, "TxDrop"), MIB_DESC(1, 0x04, "TxCrcErr"), MIB_DESC(1, 0x08, "TxUnicast"), MIB_DESC(1, 0x0c, "TxMulticast"), MIB_DESC(1, 0x10, "TxBroadcast"), MIB_DESC(1, 0x14, "TxCollision"), MIB_DESC(1, 0x18, "TxSingleCollision"), MIB_DESC(1, 0x1c, "TxMultipleCollision"), MIB_DESC(1, 0x20, "TxDeferred"), MIB_DESC(1, 0x24, "TxLateCollision"), MIB_DESC(1, 0x28, "TxExcessiveCollistion"), MIB_DESC(1, 0x2c, "TxPause"), MIB_DESC(1, 0x30, "TxPktSz64"), MIB_DESC(1, 0x34, "TxPktSz65To127"), MIB_DESC(1, 0x38, "TxPktSz128To255"), MIB_DESC(1, 0x3c, "TxPktSz256To511"), MIB_DESC(1, 0x40, "TxPktSz512To1023"), MIB_DESC(1, 0x44, "Tx1024ToMax"), MIB_DESC(2, 0x48, "TxBytes"), MIB_DESC(1, 0x60, "RxDrop"), MIB_DESC(1, 0x64, "RxFiltering"), MIB_DESC(1, 0x68, "RxUnicast"), MIB_DESC(1, 0x6c, "RxMulticast"), MIB_DESC(1, 0x70, "RxBroadcast"), MIB_DESC(1, 0x74, "RxAlignErr"), MIB_DESC(1, 0x78, "RxCrcErr"), MIB_DESC(1, 0x7c, "RxUnderSizeErr"), MIB_DESC(1, 0x80, "RxFragErr"), MIB_DESC(1, 0x84, "RxOverSzErr"), MIB_DESC(1, 0x88, "RxJabberErr"), MIB_DESC(1, 0x8c, "RxPause"), MIB_DESC(1, 0x90, "RxPktSz64"), MIB_DESC(1, 0x94, "RxPktSz65To127"), MIB_DESC(1, 0x98, "RxPktSz128To255"), MIB_DESC(1, 0x9c, "RxPktSz256To511"), MIB_DESC(1, 0xa0, "RxPktSz512To1023"), MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), MIB_DESC(2, 0xa8, "RxBytes"), MIB_DESC(1, 0xb0, "RxCtrlDrop"), MIB_DESC(1, 0xb4, "RxIngressDrop"), MIB_DESC(1, 0xb8, "RxArlDrop"), }; /* Since phy_device has not yet been created and * phy_{read,write}_mmd_indirect is not available, we provide our own * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers * to complete this function. */ static int core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) { struct mii_bus *bus = priv->bus; int value, ret; /* Write the desired MMD Devad */ ret = bus->write(bus, 0, MII_MMD_CTRL, devad); if (ret < 0) goto err; /* Write the desired MMD register address */ ret = bus->write(bus, 0, MII_MMD_DATA, prtad); if (ret < 0) goto err; /* Select the Function : DATA with no post increment */ ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); if (ret < 0) goto err; /* Read the content of the MMD's selected register */ value = bus->read(bus, 0, MII_MMD_DATA); return value; err: dev_err(&bus->dev, "failed to read mmd register\n"); return ret; } static int core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad, u32 data) { struct mii_bus *bus = priv->bus; int ret; /* Write the desired MMD Devad */ ret = bus->write(bus, 0, MII_MMD_CTRL, devad); if (ret < 0) goto err; /* Write the desired MMD register address */ ret = bus->write(bus, 0, MII_MMD_DATA, prtad); if (ret < 0) goto err; /* Select the Function : DATA with no post increment */ ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); if (ret < 0) goto err; /* Write the data into MMD's selected register */ ret = bus->write(bus, 0, MII_MMD_DATA, data); err: if (ret < 0) dev_err(&bus->dev, "failed to write mmd register\n"); return ret; } static void mt7530_mutex_lock(struct mt7530_priv *priv) { if (priv->bus) mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED); } static void mt7530_mutex_unlock(struct mt7530_priv *priv) { if (priv->bus) mutex_unlock(&priv->bus->mdio_lock); } static void core_write(struct mt7530_priv *priv, u32 reg, u32 val) { mt7530_mutex_lock(priv); core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); mt7530_mutex_unlock(priv); } static void core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) { u32 val; mt7530_mutex_lock(priv); val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); val &= ~mask; val |= set; core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); mt7530_mutex_unlock(priv); } static void core_set(struct mt7530_priv *priv, u32 reg, u32 val) { core_rmw(priv, reg, 0, val); } static void core_clear(struct mt7530_priv *priv, u32 reg, u32 val) { core_rmw(priv, reg, val, 0); } static int mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) { int ret; ret = regmap_write(priv->regmap, reg, val); if (ret < 0) dev_err(priv->dev, "failed to write mt7530 register\n"); return ret; } static u32 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) { int ret; u32 val; ret = regmap_read(priv->regmap, reg, &val); if (ret) { WARN_ON_ONCE(1); dev_err(priv->dev, "failed to read mt7530 register\n"); return 0; } return val; } static void mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) { mt7530_mutex_lock(priv); mt7530_mii_write(priv, reg, val); mt7530_mutex_unlock(priv); } static u32 _mt7530_unlocked_read(struct mt7530_dummy_poll *p) { return mt7530_mii_read(p->priv, p->reg); } static u32 _mt7530_read(struct mt7530_dummy_poll *p) { u32 val; mt7530_mutex_lock(p->priv); val = mt7530_mii_read(p->priv, p->reg); mt7530_mutex_unlock(p->priv); return val; } static u32 mt7530_read(struct mt7530_priv *priv, u32 reg) { struct mt7530_dummy_poll p; INIT_MT7530_DUMMY_POLL(&p, priv, reg); return _mt7530_read(&p); } static void mt7530_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) { mt7530_mutex_lock(priv); regmap_update_bits(priv->regmap, reg, mask, set); mt7530_mutex_unlock(priv); } static void mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) { mt7530_rmw(priv, reg, val, val); } static void mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) { mt7530_rmw(priv, reg, val, 0); } static int mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) { u32 val; int ret; struct mt7530_dummy_poll p; /* Set the command operating upon the MAC address entries */ val = ATC_BUSY | ATC_MAT(0) | cmd; mt7530_write(priv, MT7530_ATC, val); INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); ret = readx_poll_timeout(_mt7530_read, &p, val, !(val & ATC_BUSY), 20, 20000); if (ret < 0) { dev_err(priv->dev, "reset timeout\n"); return ret; } /* Additional sanity for read command if the specified * entry is invalid */ val = mt7530_read(priv, MT7530_ATC); if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) return -EINVAL; if (rsp) *rsp = val; return 0; } static void mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) { u32 reg[3]; int i; /* Read from ARL table into an array */ for (i = 0; i < 3; i++) { reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", __func__, __LINE__, i, reg[i]); } fdb->vid = (reg[1] >> CVID) & CVID_MASK; fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; } static void mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, u8 port_mask, const u8 *mac, u8 aging, u8 type) { u32 reg[3] = { 0 }; int i; reg[1] |= vid & CVID_MASK; reg[1] |= ATA2_IVL; reg[1] |= ATA2_FID(FID_BRIDGED); reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; /* STATIC_ENT indicate that entry is static wouldn't * be aged out and STATIC_EMP specified as erasing an * entry */ reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; reg[1] |= mac[5] << MAC_BYTE_5; reg[1] |= mac[4] << MAC_BYTE_4; reg[0] |= mac[3] << MAC_BYTE_3; reg[0] |= mac[2] << MAC_BYTE_2; reg[0] |= mac[1] << MAC_BYTE_1; reg[0] |= mac[0] << MAC_BYTE_0; /* Write array into the ARL table */ for (i = 0; i < 3; i++) mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); } /* Set up switch core clock for MT7530 */ static void mt7530_pll_setup(struct mt7530_priv *priv) { /* Disable core clock */ core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); /* Disable PLL */ core_write(priv, CORE_GSWPLL_GRP1, 0); /* Set core clock into 500Mhz */ core_write(priv, CORE_GSWPLL_GRP2, RG_GSWPLL_POSDIV_500M(1) | RG_GSWPLL_FBKDIV_500M(25)); /* Enable PLL */ core_write(priv, CORE_GSWPLL_GRP1, RG_GSWPLL_EN_PRE | RG_GSWPLL_POSDIV_200M(2) | RG_GSWPLL_FBKDIV_200M(32)); udelay(20); /* Enable core clock */ core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); } /* If port 6 is available as a CPU port, always prefer that as the default, * otherwise don't care. */ static struct dsa_port * mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds) { struct dsa_port *cpu_dp = dsa_to_port(ds, 6); if (dsa_port_is_cpu(cpu_dp)) return cpu_dp; return NULL; } /* Setup port 6 interface mode and TRGMII TX circuit */ static void mt7530_setup_port6(struct dsa_switch *ds, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; u32 ncpo1, ssc_delta, xtal; /* Disable the MT7530 TRGMII clocks */ core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN); if (interface == PHY_INTERFACE_MODE_RGMII) { mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(0)); return; } mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, P6_INTF_MODE(1)); xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK; if (xtal == HWTRAP_XTAL_25MHZ) ssc_delta = 0x57; else ssc_delta = 0x87; if (priv->id == ID_MT7621) { /* PLL frequency: 125MHz: 1.0GBit */ if (xtal == HWTRAP_XTAL_40MHZ) ncpo1 = 0x0640; if (xtal == HWTRAP_XTAL_25MHZ) ncpo1 = 0x0a00; } else { /* PLL frequency: 250MHz: 2.0Gbit */ if (xtal == HWTRAP_XTAL_40MHZ) ncpo1 = 0x0c80; if (xtal == HWTRAP_XTAL_25MHZ) ncpo1 = 0x1400; } /* Setup the MT7530 TRGMII Tx Clock */ core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); core_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN); core_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | RG_SYSPLL_POSDIV(1)); core_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); /* Enable the MT7530 TRGMII clocks */ core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN); } static void mt7531_pll_setup(struct mt7530_priv *priv) { u32 top_sig; u32 hwstrap; u32 xtal; u32 val; val = mt7530_read(priv, MT7531_CREV); top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); hwstrap = mt7530_read(priv, MT7531_HWTRAP); if ((val & CHIP_REV_M) > 0) xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ : HWTRAP_XTAL_FSEL_25MHZ; else xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK; /* Step 1 : Disable MT7531 COREPLL */ val = mt7530_read(priv, MT7531_PLLGP_EN); val &= ~EN_COREPLL; mt7530_write(priv, MT7531_PLLGP_EN, val); /* Step 2: switch to XTAL output */ val = mt7530_read(priv, MT7531_PLLGP_EN); val |= SW_CLKSW; mt7530_write(priv, MT7531_PLLGP_EN, val); val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_EN; mt7530_write(priv, MT7531_PLLGP_CR0, val); /* Step 3: disable PLLGP and enable program PLLGP */ val = mt7530_read(priv, MT7531_PLLGP_EN); val |= SW_PLLGP; mt7530_write(priv, MT7531_PLLGP_EN, val); /* Step 4: program COREPLL output frequency to 500MHz */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_POSDIV_M; val |= 2 << RG_COREPLL_POSDIV_S; mt7530_write(priv, MT7531_PLLGP_CR0, val); usleep_range(25, 35); switch (xtal) { case HWTRAP_XTAL_FSEL_25MHZ: val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_SDM_PCW_M; val |= 0x140000 << RG_COREPLL_SDM_PCW_S; mt7530_write(priv, MT7531_PLLGP_CR0, val); break; case HWTRAP_XTAL_FSEL_40MHZ: val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_SDM_PCW_M; val |= 0x190000 << RG_COREPLL_SDM_PCW_S; mt7530_write(priv, MT7531_PLLGP_CR0, val); break; } /* Set feedback divide ratio update signal to high */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val |= RG_COREPLL_SDM_PCW_CHG; mt7530_write(priv, MT7531_PLLGP_CR0, val); /* Wait for at least 16 XTAL clocks */ usleep_range(10, 20); /* Step 5: set feedback divide ratio update signal to low */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val &= ~RG_COREPLL_SDM_PCW_CHG; mt7530_write(priv, MT7531_PLLGP_CR0, val); /* Enable 325M clock for SGMII */ mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); /* Enable 250SSC clock for RGMII */ mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); /* Step 6: Enable MT7531 PLL */ val = mt7530_read(priv, MT7531_PLLGP_CR0); val |= RG_COREPLL_EN; mt7530_write(priv, MT7531_PLLGP_CR0, val); val = mt7530_read(priv, MT7531_PLLGP_EN); val |= EN_COREPLL; mt7530_write(priv, MT7531_PLLGP_EN, val); usleep_range(25, 35); } static void mt7530_mib_reset(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); } static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum) { return mdiobus_read_nested(priv->bus, port, regnum); } static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum, u16 val) { return mdiobus_write_nested(priv->bus, port, regnum, val); } static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port, int devad, int regnum) { return mdiobus_c45_read_nested(priv->bus, port, devad, regnum); } static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad, int regnum, u16 val) { return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val); } static int mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, int regnum) { struct mt7530_dummy_poll p; u32 reg, val; int ret; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mt7530_mutex_lock(priv); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad) | regnum; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad); mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } ret = val & MT7531_MDIO_RW_DATA_MASK; out: mt7530_mutex_unlock(priv); return ret; } static int mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, int regnum, u16 data) { struct mt7530_dummy_poll p; u32 val, reg; int ret; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mt7530_mutex_lock(priv); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad) | regnum; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_DEV_ADDR(devad) | data; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } out: mt7530_mutex_unlock(priv); return ret; } static int mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) { struct mt7530_dummy_poll p; int ret; u32 val; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mt7530_mutex_lock(priv); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_REG_ADDR(regnum); mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, !(val & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } ret = val & MT7531_MDIO_RW_DATA_MASK; out: mt7530_mutex_unlock(priv); return ret; } static int mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, u16 data) { struct mt7530_dummy_poll p; int ret; u32 reg; INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); mt7530_mutex_lock(priv); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, !(reg & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | MT7531_MDIO_REG_ADDR(regnum) | data; mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, !(reg & MT7531_PHY_ACS_ST), 20, 100000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); goto out; } out: mt7530_mutex_unlock(priv); return ret; } static int mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum) { struct mt7530_priv *priv = bus->priv; return priv->info->phy_read_c22(priv, port, regnum); } static int mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum) { struct mt7530_priv *priv = bus->priv; return priv->info->phy_read_c45(priv, port, devad, regnum); } static int mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val) { struct mt7530_priv *priv = bus->priv; return priv->info->phy_write_c22(priv, port, regnum, val); } static int mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum, u16 val) { struct mt7530_priv *priv = bus->priv; return priv->info->phy_write_c45(priv, port, devad, regnum, val); } static void mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) ethtool_puts(&data, mt7530_mib[i].name); } static void mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct mt7530_priv *priv = ds->priv; const struct mt7530_mib_desc *mib; u32 reg, i; u64 hi; for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { mib = &mt7530_mib[i]; reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; data[i] = mt7530_read(priv, reg); if (mib->size == 2) { hi = mt7530_read(priv, reg + 4); data[i] |= hi << 32; } } } static int mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) { if (sset != ETH_SS_STATS) return 0; return ARRAY_SIZE(mt7530_mib); } static int mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) { struct mt7530_priv *priv = ds->priv; unsigned int secs = msecs / 1000; unsigned int tmp_age_count; unsigned int error = -1; unsigned int age_count; unsigned int age_unit; /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */ if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1)) return -ERANGE; /* iterate through all possible age_count to find the closest pair */ for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) { unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1; if (tmp_age_unit <= AGE_UNIT_MAX) { unsigned int tmp_error = secs - (tmp_age_count + 1) * (tmp_age_unit + 1); /* found a closer pair */ if (error > tmp_error) { error = tmp_error; age_count = tmp_age_count; age_unit = tmp_age_unit; } /* found the exact match, so break the loop */ if (!error) break; } } mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit)); return 0; } static const char *p5_intf_modes(unsigned int p5_interface) { switch (p5_interface) { case P5_DISABLED: return "DISABLED"; case P5_INTF_SEL_PHY_P0: return "PHY P0"; case P5_INTF_SEL_PHY_P4: return "PHY P4"; case P5_INTF_SEL_GMAC5: return "GMAC5"; default: return "unknown"; } } static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; u8 tx_delay = 0; int val; mutex_lock(&priv->reg_mutex); val = mt7530_read(priv, MT7530_MHWTRAP); val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS; val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL; switch (priv->p5_intf_sel) { case P5_INTF_SEL_PHY_P0: /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */ val |= MHWTRAP_PHY0_SEL; fallthrough; case P5_INTF_SEL_PHY_P4: /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */ val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS; /* Setup the MAC by default for the cpu port */ mt7530_write(priv, MT7530_PMCR_P(5), 0x56300); break; case P5_INTF_SEL_GMAC5: /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */ val &= ~MHWTRAP_P5_DIS; break; default: break; } /* Setup RGMII settings */ if (phy_interface_mode_is_rgmii(interface)) { val |= MHWTRAP_P5_RGMII_MODE; /* P5 RGMII RX Clock Control: delay setting for 1000M */ mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); /* Don't set delay in DSA mode */ if (!dsa_is_dsa_port(priv->ds, 5) && (interface == PHY_INTERFACE_MODE_RGMII_TXID || interface == PHY_INTERFACE_MODE_RGMII_ID)) tx_delay = 4; /* n * 0.5 ns */ /* P5 RGMII TX Clock Control: delay x */ mt7530_write(priv, MT7530_P5RGMIITXCR, CSR_RGMII_TXC_CFG(0x10 + tx_delay)); /* reduce P5 RGMII Tx driving, 8mA */ mt7530_write(priv, MT7530_IO_DRV_CR, P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); } mt7530_write(priv, MT7530_MHWTRAP, val); dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n", val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface)); mutex_unlock(&priv->reg_mutex); } static void mt753x_trap_frames(struct mt7530_priv *priv) { /* Trap BPDUs to the CPU port(s) */ mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK, MT753X_BPDU_CPU_ONLY); /* Trap 802.1X PAE frames to the CPU port(s) */ mt7530_rmw(priv, MT753X_BPC, MT753X_PAE_PORT_FW_MASK, MT753X_PAE_PORT_FW(MT753X_BPDU_CPU_ONLY)); /* Trap LLDP frames with :0E MAC DA to the CPU port(s) */ mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_PORT_FW_MASK, MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY)); } static int mt753x_cpu_port_enable(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; int ret; /* Setup max capability of CPU port at first */ if (priv->info->cpu_port_config) { ret = priv->info->cpu_port_config(ds, port); if (ret) return ret; } /* Enable Mediatek header mode on the cpu port */ mt7530_write(priv, MT7530_PVC_P(port), PORT_SPEC_TAG); /* Enable flooding on the CPU port */ mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port))); /* Add the CPU port to the CPU port bitmap for MT7531 and the switch on * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that * is affine to the inbound user port. */ if (priv->id == ID_MT7531 || priv->id == ID_MT7988) mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port))); /* CPU port gets connected to all user ports of * the switch. */ mt7530_write(priv, MT7530_PCR_P(port), PCR_MATRIX(dsa_user_ports(priv->ds))); /* Set to fallback mode for independent VLAN learning */ mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_FALLBACK_MODE); return 0; } static int mt7530_port_enable(struct dsa_switch *ds, int port, struct phy_device *phy) { struct dsa_port *dp = dsa_to_port(ds, port); struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); /* Allow the user port gets connected to the cpu port and also * restore the port matrix if the port is the member of a certain * bridge. */ if (dsa_port_is_user(dp)) { struct dsa_port *cpu_dp = dp->cpu_dp; priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index)); } priv->ports[port].enable = true; mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, priv->ports[port].pm); mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); mutex_unlock(&priv->reg_mutex); return 0; } static void mt7530_port_disable(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); /* Clear up all port matrix which could be restored in the next * enablement for the port. */ priv->ports[port].enable = false; mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, PCR_MATRIX_CLR); mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); mutex_unlock(&priv->reg_mutex); } static int mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) { struct mt7530_priv *priv = ds->priv; int length; u32 val; /* When a new MTU is set, DSA always set the CPU port's MTU to the * largest MTU of the user ports. Because the switch only has a global * RX length register, only allowing CPU port here is enough. */ if (!dsa_is_cpu_port(ds, port)) return 0; mt7530_mutex_lock(priv); val = mt7530_mii_read(priv, MT7530_GMACCR); val &= ~MAX_RX_PKT_LEN_MASK; /* RX length also includes Ethernet header, MTK tag, and FCS length */ length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN; if (length <= 1522) { val |= MAX_RX_PKT_LEN_1522; } else if (length <= 1536) { val |= MAX_RX_PKT_LEN_1536; } else if (length <= 1552) { val |= MAX_RX_PKT_LEN_1552; } else { val &= ~MAX_RX_JUMBO_MASK; val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024)); val |= MAX_RX_PKT_LEN_JUMBO; } mt7530_mii_write(priv, MT7530_GMACCR, val); mt7530_mutex_unlock(priv); return 0; } static int mt7530_port_max_mtu(struct dsa_switch *ds, int port) { return MT7530_MAX_MTU; } static void mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct mt7530_priv *priv = ds->priv; u32 stp_state; switch (state) { case BR_STATE_DISABLED: stp_state = MT7530_STP_DISABLED; break; case BR_STATE_BLOCKING: stp_state = MT7530_STP_BLOCKING; break; case BR_STATE_LISTENING: stp_state = MT7530_STP_LISTENING; break; case BR_STATE_LEARNING: stp_state = MT7530_STP_LEARNING; break; case BR_STATE_FORWARDING: default: stp_state = MT7530_STP_FORWARDING; break; } mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED), FID_PST(FID_BRIDGED, stp_state)); } static int mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD)) return -EINVAL; return 0; } static int mt7530_port_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct mt7530_priv *priv = ds->priv; if (flags.mask & BR_LEARNING) mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS, flags.val & BR_LEARNING ? 0 : SA_DIS); if (flags.mask & BR_FLOOD) mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)), flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0); if (flags.mask & BR_MCAST_FLOOD) mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)), flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0); if (flags.mask & BR_BCAST_FLOOD) mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)), flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0); return 0; } static int mt7530_port_bridge_join(struct dsa_switch *ds, int port, struct dsa_bridge bridge, bool *tx_fwd_offload, struct netlink_ext_ack *extack) { struct dsa_port *dp = dsa_to_port(ds, port), *other_dp; struct dsa_port *cpu_dp = dp->cpu_dp; u32 port_bitmap = BIT(cpu_dp->index); struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); dsa_switch_for_each_user_port(other_dp, ds) { int other_port = other_dp->index; if (dp == other_dp) continue; /* Add this port to the port matrix of the other ports in the * same bridge. If the port is disabled, port matrix is kept * and not being setup until the port becomes enabled. */ if (!dsa_port_offloads_bridge(other_dp, &bridge)) continue; if (priv->ports[other_port].enable) mt7530_set(priv, MT7530_PCR_P(other_port), PCR_MATRIX(BIT(port))); priv->ports[other_port].pm |= PCR_MATRIX(BIT(port)); port_bitmap |= BIT(other_port); } /* Add the all other ports to this port matrix. */ if (priv->ports[port].enable) mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); priv->ports[port].pm |= PCR_MATRIX(port_bitmap); /* Set to fallback mode for independent VLAN learning */ mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_FALLBACK_MODE); mutex_unlock(&priv->reg_mutex); return 0; } static void mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; bool all_user_ports_removed = true; int i; /* This is called after .port_bridge_leave when leaving a VLAN-aware * bridge. Don't set standalone ports to fallback mode. */ if (dsa_port_bridge_dev_get(dsa_to_port(ds, port))) mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_FALLBACK_MODE); mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK, VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) | MT7530_VLAN_ACC_ALL); /* Set PVID to 0 */ mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID_DEF); for (i = 0; i < MT7530_NUM_PORTS; i++) { if (dsa_is_user_port(ds, i) && dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { all_user_ports_removed = false; break; } } /* CPU port also does the same thing until all user ports belonging to * the CPU port get out of VLAN filtering mode. */ if (all_user_ports_removed) { struct dsa_port *dp = dsa_to_port(ds, port); struct dsa_port *cpu_dp = dp->cpu_dp; mt7530_write(priv, MT7530_PCR_P(cpu_dp->index), PCR_MATRIX(dsa_user_ports(priv->ds))); mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); } } static void mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; /* Trapped into security mode allows packet forwarding through VLAN * table lookup. */ if (dsa_is_user_port(ds, port)) { mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_SECURITY_MODE); mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID(priv->ports[port].pvid)); /* Only accept tagged frames if PVID is not set */ if (!priv->ports[port].pvid) mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, MT7530_VLAN_ACC_TAGGED); /* Set the port as a user port which is to be able to recognize * VID from incoming packets before fetching entry within the * VLAN table. */ mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, VLAN_ATTR(MT7530_VLAN_USER) | PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); } else { /* Also set CPU ports to the "user" VLAN port attribute, to * allow VLAN classification, but keep the EG_TAG attribute as * "consistent" (i.o.w. don't change its value) for packets * received by the switch from the CPU, so that tagged packets * are forwarded to user ports as tagged, and untagged as * untagged. */ mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK, VLAN_ATTR(MT7530_VLAN_USER)); } } static void mt7530_port_bridge_leave(struct dsa_switch *ds, int port, struct dsa_bridge bridge) { struct dsa_port *dp = dsa_to_port(ds, port), *other_dp; struct dsa_port *cpu_dp = dp->cpu_dp; struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); dsa_switch_for_each_user_port(other_dp, ds) { int other_port = other_dp->index; if (dp == other_dp) continue; /* Remove this port from the port matrix of the other ports * in the same bridge. If the port is disabled, port matrix * is kept and not being setup until the port becomes enabled. */ if (!dsa_port_offloads_bridge(other_dp, &bridge)) continue; if (priv->ports[other_port].enable) mt7530_clear(priv, MT7530_PCR_P(other_port), PCR_MATRIX(BIT(port))); priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port)); } /* Set the cpu port to be the only one in the port matrix of * this port. */ if (priv->ports[port].enable) mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, PCR_MATRIX(BIT(cpu_dp->index))); priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index)); /* When a port is removed from the bridge, the port would be set up * back to the default as is at initial boot which is a VLAN-unaware * port. */ mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, MT7530_PORT_MATRIX_MODE); mutex_unlock(&priv->reg_mutex); } static int mt7530_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { struct mt7530_priv *priv = ds->priv; int ret; u8 port_mask = BIT(port); mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { struct mt7530_priv *priv = ds->priv; int ret; u8 port_mask = BIT(port); mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct mt7530_priv *priv = ds->priv; struct mt7530_fdb _fdb = { 0 }; int cnt = MT7530_NUM_FDB_RECORDS; int ret = 0; u32 rsp = 0; mutex_lock(&priv->reg_mutex); ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); if (ret < 0) goto err; do { if (rsp & ATC_SRCH_HIT) { mt7530_fdb_read(priv, &_fdb); if (_fdb.port_mask & BIT(port)) { ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, data); if (ret < 0) break; } } } while (--cnt && !(rsp & ATC_SRCH_END) && !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); err: mutex_unlock(&priv->reg_mutex); return 0; } static int mt7530_port_mdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct mt7530_priv *priv = ds->priv; const u8 *addr = mdb->addr; u16 vid = mdb->vid; u8 port_mask = 0; int ret; mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) & PORT_MAP_MASK; port_mask |= BIT(port); mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_port_mdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct mt7530_priv *priv = ds->priv; const u8 *addr = mdb->addr; u16 vid = mdb->vid; u8 port_mask = 0; int ret; mutex_lock(&priv->reg_mutex); mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP); if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL)) port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP) & PORT_MAP_MASK; port_mask &= ~BIT(port); mt7530_fdb_write(priv, vid, port_mask, addr, -1, port_mask ? STATIC_ENT : STATIC_EMP); ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); mutex_unlock(&priv->reg_mutex); return ret; } static int mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) { struct mt7530_dummy_poll p; u32 val; int ret; val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; mt7530_write(priv, MT7530_VTCR, val); INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); ret = readx_poll_timeout(_mt7530_read, &p, val, !(val & VTCR_BUSY), 20, 20000); if (ret < 0) { dev_err(priv->dev, "poll timeout\n"); return ret; } val = mt7530_read(priv, MT7530_VTCR); if (val & VTCR_INVALID) { dev_err(priv->dev, "read VTCR invalid\n"); return -EINVAL; } return 0; } static int mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, struct netlink_ext_ack *extack) { struct dsa_port *dp = dsa_to_port(ds, port); struct dsa_port *cpu_dp = dp->cpu_dp; if (vlan_filtering) { /* The port is being kept as VLAN-unaware port when bridge is * set up with vlan_filtering not being set, Otherwise, the * port and the corresponding CPU port is required the setup * for becoming a VLAN-aware port. */ mt7530_port_set_vlan_aware(ds, port); mt7530_port_set_vlan_aware(ds, cpu_dp->index); } else { mt7530_port_set_vlan_unaware(ds, port); } return 0; } static void mt7530_hw_vlan_add(struct mt7530_priv *priv, struct mt7530_hw_vlan_entry *entry) { struct dsa_port *dp = dsa_to_port(priv->ds, entry->port); u8 new_members; u32 val; new_members = entry->old_members | BIT(entry->port); /* Validate the entry with independent learning, create egress tag per * VLAN and joining the port as one of the port members. */ val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) | VLAN_VALID; mt7530_write(priv, MT7530_VAWD1, val); /* Decide whether adding tag or not for those outgoing packets from the * port inside the VLAN. * CPU port is always taken as a tagged port for serving more than one * VLANs across and also being applied with egress type stack mode for * that VLAN tags would be appended after hardware special tag used as * DSA tag. */ if (dsa_port_is_cpu(dp)) val = MT7530_VLAN_EGRESS_STACK; else if (entry->untagged) val = MT7530_VLAN_EGRESS_UNTAG; else val = MT7530_VLAN_EGRESS_TAG; mt7530_rmw(priv, MT7530_VAWD2, ETAG_CTRL_P_MASK(entry->port), ETAG_CTRL_P(entry->port, val)); } static void mt7530_hw_vlan_del(struct mt7530_priv *priv, struct mt7530_hw_vlan_entry *entry) { u8 new_members; u32 val; new_members = entry->old_members & ~BIT(entry->port); val = mt7530_read(priv, MT7530_VAWD1); if (!(val & VLAN_VALID)) { dev_err(priv->dev, "Cannot be deleted due to invalid entry\n"); return; } if (new_members) { val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID; mt7530_write(priv, MT7530_VAWD1, val); } else { mt7530_write(priv, MT7530_VAWD1, 0); mt7530_write(priv, MT7530_VAWD2, 0); } } static void mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, struct mt7530_hw_vlan_entry *entry, mt7530_vlan_op vlan_op) { u32 val; /* Fetch entry */ mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); val = mt7530_read(priv, MT7530_VAWD1); entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; /* Manipulate entry */ vlan_op(priv, entry); /* Flush result to hardware */ mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); } static int mt7530_setup_vlan0(struct mt7530_priv *priv) { u32 val; /* Validate the entry with independent learning, keep the original * ingress tag attribute. */ val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) | VLAN_VALID; mt7530_write(priv, MT7530_VAWD1, val); return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0); } static int mt7530_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; struct mt7530_hw_vlan_entry new_entry; struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); mt7530_hw_vlan_entry_init(&new_entry, port, untagged); mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add); if (pvid) { priv->ports[port].pvid = vlan->vid; /* Accept all frames if PVID is set */ mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, MT7530_VLAN_ACC_ALL); /* Only configure PVID if VLAN filtering is enabled */ if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID(vlan->vid)); } else if (vlan->vid && priv->ports[port].pvid == vlan->vid) { /* This VLAN is overwritten without PVID, so unset it */ priv->ports[port].pvid = G0_PORT_VID_DEF; /* Only accept tagged frames if the port is VLAN-aware */ if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, MT7530_VLAN_ACC_TAGGED); mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID_DEF); } mutex_unlock(&priv->reg_mutex); return 0; } static int mt7530_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct mt7530_hw_vlan_entry target_entry; struct mt7530_priv *priv = ds->priv; mutex_lock(&priv->reg_mutex); mt7530_hw_vlan_entry_init(&target_entry, port, 0); mt7530_hw_vlan_update(priv, vlan->vid, &target_entry, mt7530_hw_vlan_del); /* PVID is being restored to the default whenever the PVID port * is being removed from the VLAN. */ if (priv->ports[port].pvid == vlan->vid) { priv->ports[port].pvid = G0_PORT_VID_DEF; /* Only accept tagged frames if the port is VLAN-aware */ if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port))) mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK, MT7530_VLAN_ACC_TAGGED); mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, G0_PORT_VID_DEF); } mutex_unlock(&priv->reg_mutex); return 0; } static int mt753x_mirror_port_get(unsigned int id, u32 val) { return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) : MIRROR_PORT(val); } static int mt753x_mirror_port_set(unsigned int id, u32 val) { return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) : MIRROR_PORT(val); } static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress, struct netlink_ext_ack *extack) { struct mt7530_priv *priv = ds->priv; int monitor_port; u32 val; /* Check for existent entry */ if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) return -EEXIST; val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); /* MT7530 only supports one monitor port */ monitor_port = mt753x_mirror_port_get(priv->id, val); if (val & MT753X_MIRROR_EN(priv->id) && monitor_port != mirror->to_local_port) return -EEXIST; val |= MT753X_MIRROR_EN(priv->id); val &= ~MT753X_MIRROR_MASK(priv->id); val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port); mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); val = mt7530_read(priv, MT7530_PCR_P(port)); if (ingress) { val |= PORT_RX_MIR; priv->mirror_rx |= BIT(port); } else { val |= PORT_TX_MIR; priv->mirror_tx |= BIT(port); } mt7530_write(priv, MT7530_PCR_P(port), val); return 0; } static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror) { struct mt7530_priv *priv = ds->priv; u32 val; val = mt7530_read(priv, MT7530_PCR_P(port)); if (mirror->ingress) { val &= ~PORT_RX_MIR; priv->mirror_rx &= ~BIT(port); } else { val &= ~PORT_TX_MIR; priv->mirror_tx &= ~BIT(port); } mt7530_write(priv, MT7530_PCR_P(port), val); if (!priv->mirror_rx && !priv->mirror_tx) { val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); val &= ~MT753X_MIRROR_EN(priv->id); mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); } } static enum dsa_tag_protocol mtk_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { return DSA_TAG_PROTO_MTK; } #ifdef CONFIG_GPIOLIB static inline u32 mt7530_gpio_to_bit(unsigned int offset) { /* Map GPIO offset to register bit * [ 2: 0] port 0 LED 0..2 as GPIO 0..2 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5 * [10: 8] port 2 LED 0..2 as GPIO 6..8 * [14:12] port 3 LED 0..2 as GPIO 9..11 * [18:16] port 4 LED 0..2 as GPIO 12..14 */ return BIT(offset + offset / 3); } static int mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit); } static void mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); if (value) mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); else mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); } static int mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ? GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; } static int mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); mt7530_clear(priv, MT7530_LED_GPIO_OE, bit); mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit); return 0; } static int mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value) { struct mt7530_priv *priv = gpiochip_get_data(gc); u32 bit = mt7530_gpio_to_bit(offset); mt7530_set(priv, MT7530_LED_GPIO_DIR, bit); if (value) mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); else mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); mt7530_set(priv, MT7530_LED_GPIO_OE, bit); return 0; } static int mt7530_setup_gpio(struct mt7530_priv *priv) { struct device *dev = priv->dev; struct gpio_chip *gc; gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL); if (!gc) return -ENOMEM; mt7530_write(priv, MT7530_LED_GPIO_OE, 0); mt7530_write(priv, MT7530_LED_GPIO_DIR, 0); mt7530_write(priv, MT7530_LED_IO_MODE, 0); gc->label = "mt7530"; gc->parent = dev; gc->owner = THIS_MODULE; gc->get_direction = mt7530_gpio_get_direction; gc->direction_input = mt7530_gpio_direction_input; gc->direction_output = mt7530_gpio_direction_output; gc->get = mt7530_gpio_get; gc->set = mt7530_gpio_set; gc->base = -1; gc->ngpio = 15; gc->can_sleep = true; return devm_gpiochip_add_data(dev, gc, priv); } #endif /* CONFIG_GPIOLIB */ static irqreturn_t mt7530_irq_thread_fn(int irq, void *dev_id) { struct mt7530_priv *priv = dev_id; bool handled = false; u32 val; int p; mt7530_mutex_lock(priv); val = mt7530_mii_read(priv, MT7530_SYS_INT_STS); mt7530_mii_write(priv, MT7530_SYS_INT_STS, val); mt7530_mutex_unlock(priv); for (p = 0; p < MT7530_NUM_PHYS; p++) { if (BIT(p) & val) { unsigned int irq; irq = irq_find_mapping(priv->irq_domain, p); handle_nested_irq(irq); handled = true; } } return IRQ_RETVAL(handled); } static void mt7530_irq_mask(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); priv->irq_enable &= ~BIT(d->hwirq); } static void mt7530_irq_unmask(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); priv->irq_enable |= BIT(d->hwirq); } static void mt7530_irq_bus_lock(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); mt7530_mutex_lock(priv); } static void mt7530_irq_bus_sync_unlock(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); mt7530_mutex_unlock(priv); } static struct irq_chip mt7530_irq_chip = { .name = KBUILD_MODNAME, .irq_mask = mt7530_irq_mask, .irq_unmask = mt7530_irq_unmask, .irq_bus_lock = mt7530_irq_bus_lock, .irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock, }; static int mt7530_irq_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_data(irq, domain->host_data); irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq); irq_set_nested_thread(irq, true); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops mt7530_irq_domain_ops = { .map = mt7530_irq_map, .xlate = irq_domain_xlate_onecell, }; static void mt7988_irq_mask(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); priv->irq_enable &= ~BIT(d->hwirq); mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); } static void mt7988_irq_unmask(struct irq_data *d) { struct mt7530_priv *priv = irq_data_get_irq_chip_data(d); priv->irq_enable |= BIT(d->hwirq); mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable); } static struct irq_chip mt7988_irq_chip = { .name = KBUILD_MODNAME, .irq_mask = mt7988_irq_mask, .irq_unmask = mt7988_irq_unmask, }; static int mt7988_irq_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_data(irq, domain->host_data); irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq); irq_set_nested_thread(irq, true); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops mt7988_irq_domain_ops = { .map = mt7988_irq_map, .xlate = irq_domain_xlate_onecell, }; static void mt7530_setup_mdio_irq(struct mt7530_priv *priv) { struct dsa_switch *ds = priv->ds; int p; for (p = 0; p < MT7530_NUM_PHYS; p++) { if (BIT(p) & ds->phys_mii_mask) { unsigned int irq; irq = irq_create_mapping(priv->irq_domain, p); ds->user_mii_bus->irq[p] = irq; } } } static int mt7530_setup_irq(struct mt7530_priv *priv) { struct device *dev = priv->dev; struct device_node *np = dev->of_node; int ret; if (!of_property_read_bool(np, "interrupt-controller")) { dev_info(dev, "no interrupt support\n"); return 0; } priv->irq = of_irq_get(np, 0); if (priv->irq <= 0) { dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq); return priv->irq ? : -EINVAL; } if (priv->id == ID_MT7988) priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS, &mt7988_irq_domain_ops, priv); else priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS, &mt7530_irq_domain_ops, priv); if (!priv->irq_domain) { dev_err(dev, "failed to create IRQ domain\n"); return -ENOMEM; } /* This register must be set for MT7530 to properly fire interrupts */ if (priv->id != ID_MT7531) mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL); ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn, IRQF_ONESHOT, KBUILD_MODNAME, priv); if (ret) { irq_domain_remove(priv->irq_domain); dev_err(dev, "failed to request IRQ: %d\n", ret); return ret; } return 0; } static void mt7530_free_mdio_irq(struct mt7530_priv *priv) { int p; for (p = 0; p < MT7530_NUM_PHYS; p++) { if (BIT(p) & priv->ds->phys_mii_mask) { unsigned int irq; irq = irq_find_mapping(priv->irq_domain, p); irq_dispose_mapping(irq); } } } static void mt7530_free_irq_common(struct mt7530_priv *priv) { free_irq(priv->irq, priv); irq_domain_remove(priv->irq_domain); } static void mt7530_free_irq(struct mt7530_priv *priv) { struct device_node *mnp, *np = priv->dev->of_node; mnp = of_get_child_by_name(np, "mdio"); if (!mnp) mt7530_free_mdio_irq(priv); of_node_put(mnp); mt7530_free_irq_common(priv); } static int mt7530_setup_mdio(struct mt7530_priv *priv) { struct device_node *mnp, *np = priv->dev->of_node; struct dsa_switch *ds = priv->ds; struct device *dev = priv->dev; struct mii_bus *bus; static int idx; int ret = 0; mnp = of_get_child_by_name(np, "mdio"); if (mnp && !of_device_is_available(mnp)) goto out; bus = devm_mdiobus_alloc(dev); if (!bus) { ret = -ENOMEM; goto out; } if (!mnp) ds->user_mii_bus = bus; bus->priv = priv; bus->name = KBUILD_MODNAME "-mii"; snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++); bus->read = mt753x_phy_read_c22; bus->write = mt753x_phy_write_c22; bus->read_c45 = mt753x_phy_read_c45; bus->write_c45 = mt753x_phy_write_c45; bus->parent = dev; bus->phy_mask = ~ds->phys_mii_mask; if (priv->irq && !mnp) mt7530_setup_mdio_irq(priv); ret = devm_of_mdiobus_register(dev, bus, mnp); if (ret) { dev_err(dev, "failed to register MDIO bus: %d\n", ret); if (priv->irq && !mnp) mt7530_free_mdio_irq(priv); } out: of_node_put(mnp); return ret; } static int mt7530_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; struct device_node *dn = NULL; struct device_node *phy_node; struct device_node *mac_np; struct mt7530_dummy_poll p; phy_interface_t interface; struct dsa_port *cpu_dp; u32 id, val; int ret, i; /* The parent node of conduit netdev which holds the common system * controller also is the container for two GMACs nodes representing * as two netdev instances. */ dsa_switch_for_each_cpu_port(cpu_dp, ds) { dn = cpu_dp->conduit->dev.of_node->parent; /* It doesn't matter which CPU port is found first, * their conduits should share the same parent OF node */ break; } if (!dn) { dev_err(ds->dev, "parent OF node of DSA conduit not found"); return -EINVAL; } ds->assisted_learning_on_cpu_port = true; ds->mtu_enforcement_ingress = true; if (priv->id == ID_MT7530) { regulator_set_voltage(priv->core_pwr, 1000000, 1000000); ret = regulator_enable(priv->core_pwr); if (ret < 0) { dev_err(priv->dev, "Failed to enable core power: %d\n", ret); return ret; } regulator_set_voltage(priv->io_pwr, 3300000, 3300000); ret = regulator_enable(priv->io_pwr); if (ret < 0) { dev_err(priv->dev, "Failed to enable io pwr: %d\n", ret); return ret; } } /* Reset whole chip through gpio pin or memory-mapped registers for * different type of hardware */ if (priv->mcm) { reset_control_assert(priv->rstc); usleep_range(1000, 1100); reset_control_deassert(priv->rstc); } else { gpiod_set_value_cansleep(priv->reset, 0); usleep_range(1000, 1100); gpiod_set_value_cansleep(priv->reset, 1); } /* Waiting for MT7530 got to stable */ INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 20, 1000000); if (ret < 0) { dev_err(priv->dev, "reset timeout\n"); return ret; } id = mt7530_read(priv, MT7530_CREV); id >>= CHIP_NAME_SHIFT; if (id != MT7530_ID) { dev_err(priv->dev, "chip %x can't be supported\n", id); return -ENODEV; } if ((val & HWTRAP_XTAL_MASK) == HWTRAP_XTAL_20MHZ) { dev_err(priv->dev, "MT7530 with a 20MHz XTAL is not supported!\n"); return -EINVAL; } /* Reset the switch through internal reset */ mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | SYS_CTRL_REG_RST); mt7530_pll_setup(priv); /* Lower Tx driving for TRGMII path */ for (i = 0; i < NUM_TRGMII_CTRL; i++) mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), TD_DM_DRVP(8) | TD_DM_DRVN(8)); for (i = 0; i < NUM_TRGMII_CTRL; i++) mt7530_rmw(priv, MT7530_TRGMII_RD(i), RD_TAP_MASK, RD_TAP(16)); /* Enable port 6 */ val = mt7530_read(priv, MT7530_MHWTRAP); val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; val |= MHWTRAP_MANUAL; mt7530_write(priv, MT7530_MHWTRAP, val); priv->p6_interface = PHY_INTERFACE_MODE_NA; mt753x_trap_frames(priv); /* Enable and reset MIB counters */ mt7530_mib_reset(ds); for (i = 0; i < MT7530_NUM_PORTS; i++) { /* Disable forwarding by default on all ports */ mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, PCR_MATRIX_CLR); /* Disable learning by default on all ports */ mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); if (dsa_is_cpu_port(ds, i)) { ret = mt753x_cpu_port_enable(ds, i); if (ret) return ret; } else { mt7530_port_disable(ds, i); /* Set default PVID to 0 on all user ports */ mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, G0_PORT_VID_DEF); } /* Enable consistent egress tag */ mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); } /* Setup VLAN ID 0 for VLAN-unaware bridges */ ret = mt7530_setup_vlan0(priv); if (ret) return ret; /* Setup port 5 */ if (!dsa_is_unused_port(ds, 5)) { priv->p5_intf_sel = P5_INTF_SEL_GMAC5; } else { /* Scan the ethernet nodes. Look for GMAC1, lookup the used PHY. * Set priv->p5_intf_sel to the appropriate value if PHY muxing * is detected. */ for_each_child_of_node(dn, mac_np) { if (!of_device_is_compatible(mac_np, "mediatek,eth-mac")) continue; ret = of_property_read_u32(mac_np, "reg", &id); if (ret < 0 || id != 1) continue; phy_node = of_parse_phandle(mac_np, "phy-handle", 0); if (!phy_node) continue; if (phy_node->parent == priv->dev->of_node->parent) { ret = of_get_phy_mode(mac_np, &interface); if (ret && ret != -ENODEV) { of_node_put(mac_np); of_node_put(phy_node); return ret; } id = of_mdio_parse_addr(ds->dev, phy_node); if (id == 0) priv->p5_intf_sel = P5_INTF_SEL_PHY_P0; if (id == 4) priv->p5_intf_sel = P5_INTF_SEL_PHY_P4; } of_node_put(mac_np); of_node_put(phy_node); break; } if (priv->p5_intf_sel == P5_INTF_SEL_PHY_P0 || priv->p5_intf_sel == P5_INTF_SEL_PHY_P4) mt7530_setup_port5(ds, interface); } #ifdef CONFIG_GPIOLIB if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) { ret = mt7530_setup_gpio(priv); if (ret) return ret; } #endif /* CONFIG_GPIOLIB */ /* Flush the FDB table */ ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); if (ret < 0) return ret; return 0; } static int mt7531_setup_common(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; int ret, i; mt753x_trap_frames(priv); /* Enable and reset MIB counters */ mt7530_mib_reset(ds); /* Disable flooding on all ports */ mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK); for (i = 0; i < MT7530_NUM_PORTS; i++) { /* Disable forwarding by default on all ports */ mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, PCR_MATRIX_CLR); /* Disable learning by default on all ports */ mt7530_set(priv, MT7530_PSC_P(i), SA_DIS); mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); if (dsa_is_cpu_port(ds, i)) { ret = mt753x_cpu_port_enable(ds, i); if (ret) return ret; } else { mt7530_port_disable(ds, i); /* Set default PVID to 0 on all user ports */ mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK, G0_PORT_VID_DEF); } /* Enable consistent egress tag */ mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); } /* Flush the FDB table */ ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); if (ret < 0) return ret; return 0; } static int mt7531_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; struct mt7530_dummy_poll p; u32 val, id; int ret, i; /* Reset whole chip through gpio pin or memory-mapped registers for * different type of hardware */ if (priv->mcm) { reset_control_assert(priv->rstc); usleep_range(1000, 1100); reset_control_deassert(priv->rstc); } else { gpiod_set_value_cansleep(priv->reset, 0); usleep_range(1000, 1100); gpiod_set_value_cansleep(priv->reset, 1); } /* Waiting for MT7530 got to stable */ INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 20, 1000000); if (ret < 0) { dev_err(priv->dev, "reset timeout\n"); return ret; } id = mt7530_read(priv, MT7531_CREV); id >>= CHIP_NAME_SHIFT; if (id != MT7531_ID) { dev_err(priv->dev, "chip %x can't be supported\n", id); return -ENODEV; } /* MT7531AE has got two SGMII units. One for port 5, one for port 6. * MT7531BE has got only one SGMII unit which is for port 6. */ val = mt7530_read(priv, MT7531_TOP_SIG_SR); priv->p5_sgmii = !!(val & PAD_DUAL_SGMII_EN); /* all MACs must be forced link-down before sw reset */ for (i = 0; i < MT7530_NUM_PORTS; i++) mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK); /* Reset the switch through internal reset */ mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | SYS_CTRL_REG_RST); if (!priv->p5_sgmii) { mt7531_pll_setup(priv); } else { /* Let ds->user_mii_bus be able to access external phy. */ mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, MT7531_EXT_P_MDC_11); mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, MT7531_EXT_P_MDIO_12); } if (!dsa_is_unused_port(ds, 5)) priv->p5_intf_sel = P5_INTF_SEL_GMAC5; mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, MT7531_GPIO0_INTERRUPT); /* Let phylink decide the interface later. */ priv->p5_interface = PHY_INTERFACE_MODE_NA; priv->p6_interface = PHY_INTERFACE_MODE_NA; /* Enable PHY core PLL, since phy_device has not yet been created * provided for phy_[read,write]_mmd_indirect is called, we provide * our own mt7531_ind_mmd_phy_[read,write] to complete this * function. */ val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, CORE_PLL_GROUP4); val |= MT7531_PHY_PLL_BYPASS_MODE; val &= ~MT7531_PHY_PLL_OFF; mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, CORE_PLL_GROUP4, val); mt7531_setup_common(ds); /* Setup VLAN ID 0 for VLAN-unaware bridges */ ret = mt7530_setup_vlan0(priv); if (ret) return ret; ds->assisted_learning_on_cpu_port = true; ds->mtu_enforcement_ingress = true; return 0; } static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { switch (port) { /* Ports which are connected to switch PHYs. There is no MII pinout. */ case 0 ... 4: __set_bit(PHY_INTERFACE_MODE_GMII, config->supported_interfaces); break; /* Port 5 supports rgmii with delays, mii, and gmii. */ case 5: phy_interface_set_rgmii(config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_GMII, config->supported_interfaces); break; /* Port 6 supports rgmii and trgmii. */ case 6: __set_bit(PHY_INTERFACE_MODE_RGMII, config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_TRGMII, config->supported_interfaces); break; } } static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { struct mt7530_priv *priv = ds->priv; switch (port) { /* Ports which are connected to switch PHYs. There is no MII pinout. */ case 0 ... 4: __set_bit(PHY_INTERFACE_MODE_GMII, config->supported_interfaces); break; /* Port 5 supports rgmii with delays on MT7531BE, sgmii/802.3z on * MT7531AE. */ case 5: if (!priv->p5_sgmii) { phy_interface_set_rgmii(config->supported_interfaces); break; } fallthrough; /* Port 6 supports sgmii/802.3z. */ case 6: __set_bit(PHY_INTERFACE_MODE_SGMII, config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_1000BASEX, config->supported_interfaces); __set_bit(PHY_INTERFACE_MODE_2500BASEX, config->supported_interfaces); config->mac_capabilities |= MAC_2500FD; break; } } static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { switch (port) { /* Ports which are connected to switch PHYs. There is no MII pinout. */ case 0 ... 3: __set_bit(PHY_INTERFACE_MODE_INTERNAL, config->supported_interfaces); break; /* Port 6 is connected to SoC's XGMII MAC. There is no MII pinout. */ case 6: __set_bit(PHY_INTERFACE_MODE_INTERNAL, config->supported_interfaces); config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | MAC_10000FD; } } static int mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; if (port == 5) mt7530_setup_port5(priv->ds, interface); else if (port == 6) mt7530_setup_port6(priv->ds, interface); return 0; } static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port, phy_interface_t interface, struct phy_device *phydev) { u32 val; if (priv->p5_sgmii) { dev_err(priv->dev, "RGMII mode is not available for port %d\n", port); return -EINVAL; } val = mt7530_read(priv, MT7531_CLKGEN_CTRL); val |= GP_CLK_EN; val &= ~GP_MODE_MASK; val |= GP_MODE(MT7531_GP_MODE_RGMII); val &= ~CLK_SKEW_IN_MASK; val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); val &= ~CLK_SKEW_OUT_MASK; val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; /* Do not adjust rgmii delay when vendor phy driver presents. */ if (!phydev || phy_driver_is_genphy(phydev)) { val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); switch (interface) { case PHY_INTERFACE_MODE_RGMII: val |= TXCLK_NO_REVERSE; val |= RXCLK_NO_DELAY; break; case PHY_INTERFACE_MODE_RGMII_RXID: val |= TXCLK_NO_REVERSE; break; case PHY_INTERFACE_MODE_RGMII_TXID: val |= RXCLK_NO_DELAY; break; case PHY_INTERFACE_MODE_RGMII_ID: break; default: return -EINVAL; } } mt7530_write(priv, MT7531_CLKGEN_CTRL, val); return 0; } static bool mt753x_is_mac_port(u32 port) { return (port == 5 || port == 6); } static int mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { if (dsa_is_cpu_port(ds, port) && interface == PHY_INTERFACE_MODE_INTERNAL) return 0; return -EINVAL; } static int mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; struct phy_device *phydev; struct dsa_port *dp; if (!mt753x_is_mac_port(port)) { dev_err(priv->dev, "port %d is not a MAC port\n", port); return -EINVAL; } switch (interface) { case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: dp = dsa_to_port(ds, port); phydev = dp->user->phydev; return mt7531_rgmii_setup(priv, port, interface, phydev); case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_NA: case PHY_INTERFACE_MODE_1000BASEX: case PHY_INTERFACE_MODE_2500BASEX: /* handled in SGMII PCS driver */ return 0; default: return -EINVAL; } return -EINVAL; } static int mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode, const struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; return priv->info->mac_port_config(ds, port, mode, state->interface); } static struct phylink_pcs * mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; switch (interface) { case PHY_INTERFACE_MODE_TRGMII: return &priv->pcs[port].pcs; case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_1000BASEX: case PHY_INTERFACE_MODE_2500BASEX: return priv->ports[port].sgmii_pcs; default: return NULL; } } static void mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, const struct phylink_link_state *state) { struct mt7530_priv *priv = ds->priv; u32 mcr_cur, mcr_new; switch (port) { case 0 ... 4: if (state->interface != PHY_INTERFACE_MODE_GMII && state->interface != PHY_INTERFACE_MODE_INTERNAL) goto unsupported; break; case 5: if (priv->p5_interface == state->interface) break; if (mt753x_mac_config(ds, port, mode, state) < 0) goto unsupported; if (priv->p5_intf_sel != P5_DISABLED) priv->p5_interface = state->interface; break; case 6: if (priv->p6_interface == state->interface) break; if (mt753x_mac_config(ds, port, mode, state) < 0) goto unsupported; priv->p6_interface = state->interface; break; default: unsupported: dev_err(ds->dev, "%s: unsupported %s port: %i\n", __func__, phy_modes(state->interface), port); return; } mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port)); mcr_new = mcr_cur; mcr_new &= ~PMCR_LINK_SETTINGS_MASK; mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN | PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id); /* Are we connected to external phy */ if (port == 5 && dsa_is_user_port(ds, 5)) mcr_new |= PMCR_EXT_PHY; if (mcr_new != mcr_cur) mt7530_write(priv, MT7530_PMCR_P(port), mcr_new); } static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { struct mt7530_priv *priv = ds->priv; mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); } static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev, int speed, int duplex, bool tx_pause, bool rx_pause) { struct mt7530_priv *priv = ds->priv; u32 mcr; mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK; /* MT753x MAC works in 1G full duplex mode for all up-clocked * variants. */ if (interface == PHY_INTERFACE_MODE_TRGMII || (phy_interface_mode_is_8023z(interface))) { speed = SPEED_1000; duplex = DUPLEX_FULL; } switch (speed) { case SPEED_1000: mcr |= PMCR_FORCE_SPEED_1000; break; case SPEED_100: mcr |= PMCR_FORCE_SPEED_100; break; } if (duplex == DUPLEX_FULL) { mcr |= PMCR_FORCE_FDX; if (tx_pause) mcr |= PMCR_TX_FC_EN; if (rx_pause) mcr |= PMCR_RX_FC_EN; } if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) { switch (speed) { case SPEED_1000: mcr |= PMCR_FORCE_EEE1G; break; case SPEED_100: mcr |= PMCR_FORCE_EEE100; break; } } mt7530_set(priv, MT7530_PMCR_P(port), mcr); } static int mt7531_cpu_port_config(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; phy_interface_t interface; int speed; int ret; switch (port) { case 5: if (!priv->p5_sgmii) interface = PHY_INTERFACE_MODE_RGMII; else interface = PHY_INTERFACE_MODE_2500BASEX; priv->p5_interface = interface; break; case 6: interface = PHY_INTERFACE_MODE_2500BASEX; priv->p6_interface = interface; break; default: return -EINVAL; } if (interface == PHY_INTERFACE_MODE_2500BASEX) speed = SPEED_2500; else speed = SPEED_1000; ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface); if (ret) return ret; mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPU_PORT_SETTING(priv->id)); mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL, speed, DUPLEX_FULL, true, true); return 0; } static int mt7988_cpu_port_config(struct dsa_switch *ds, int port) { struct mt7530_priv *priv = ds->priv; mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPU_PORT_SETTING(priv->id)); mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, PHY_INTERFACE_MODE_INTERNAL, NULL, SPEED_10000, DUPLEX_FULL, true, true); return 0; } static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { struct mt7530_priv *priv = ds->priv; /* This switch only supports full-duplex at 1Gbps */ config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | MAC_10 | MAC_100 | MAC_1000FD; priv->info->mac_port_get_caps(ds, port, config); } static int mt753x_pcs_validate(struct phylink_pcs *pcs, unsigned long *supported, const struct phylink_link_state *state) { /* Autonegotiation is not supported in TRGMII nor 802.3z modes */ if (state->interface == PHY_INTERFACE_MODE_TRGMII || phy_interface_mode_is_8023z(state->interface)) phylink_clear(supported, Autoneg); return 0; } static void mt7530_pcs_get_state(struct phylink_pcs *pcs, struct phylink_link_state *state) { struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv; int port = pcs_to_mt753x_pcs(pcs)->port; u32 pmsr; pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); state->link = (pmsr & PMSR_LINK); state->an_complete = state->link; state->duplex = !!(pmsr & PMSR_DPX); switch (pmsr & PMSR_SPEED_MASK) { case PMSR_SPEED_10: state->speed = SPEED_10; break; case PMSR_SPEED_100: state->speed = SPEED_100; break; case PMSR_SPEED_1000: state->speed = SPEED_1000; break; default: state->speed = SPEED_UNKNOWN; break; } state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); if (pmsr & PMSR_RX_FC) state->pause |= MLO_PAUSE_RX; if (pmsr & PMSR_TX_FC) state->pause |= MLO_PAUSE_TX; } static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, phy_interface_t interface, const unsigned long *advertising, bool permit_pause_to_mac) { return 0; } static void mt7530_pcs_an_restart(struct phylink_pcs *pcs) { } static const struct phylink_pcs_ops mt7530_pcs_ops = { .pcs_validate = mt753x_pcs_validate, .pcs_get_state = mt7530_pcs_get_state, .pcs_config = mt753x_pcs_config, .pcs_an_restart = mt7530_pcs_an_restart, }; static int mt753x_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; int i, ret; /* Initialise the PCS devices */ for (i = 0; i < priv->ds->num_ports; i++) { priv->pcs[i].pcs.ops = priv->info->pcs_ops; priv->pcs[i].pcs.neg_mode = true; priv->pcs[i].priv = priv; priv->pcs[i].port = i; } ret = priv->info->sw_setup(ds); if (ret) return ret; ret = mt7530_setup_irq(priv); if (ret) return ret; ret = mt7530_setup_mdio(priv); if (ret && priv->irq) mt7530_free_irq_common(priv); if (priv->create_sgmii) { ret = priv->create_sgmii(priv); if (ret && priv->irq) mt7530_free_irq(priv); } return ret; } static int mt753x_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_keee *e) { struct mt7530_priv *priv = ds->priv; u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port)); e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN); e->tx_lpi_timer = GET_LPI_THRESH(eeecr); return 0; } static int mt753x_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_keee *e) { struct mt7530_priv *priv = ds->priv; u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN; if (e->tx_lpi_timer > 0xFFF) return -EINVAL; set = SET_LPI_THRESH(e->tx_lpi_timer); if (!e->tx_lpi_enabled) /* Force LPI Mode without a delay */ set |= LPI_MODE_EN; mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set); return 0; } static void mt753x_conduit_state_change(struct dsa_switch *ds, const struct net_device *conduit, bool operational) { struct dsa_port *cpu_dp = conduit->dsa_ptr; struct mt7530_priv *priv = ds->priv; int val = 0; u8 mask; /* Set the CPU port to trap frames to for MT7530. Trapped frames will be * forwarded to the numerically smallest CPU port whose conduit * interface is up. */ if (priv->id != ID_MT7530 && priv->id != ID_MT7621) return; mask = BIT(cpu_dp->index); if (operational) priv->active_cpu_ports |= mask; else priv->active_cpu_ports &= ~mask; if (priv->active_cpu_ports) val = CPU_EN | CPU_PORT(__ffs(priv->active_cpu_ports)); mt7530_rmw(priv, MT7530_MFC, CPU_EN | CPU_PORT_MASK, val); } static int mt7988_setup(struct dsa_switch *ds) { struct mt7530_priv *priv = ds->priv; /* Reset the switch */ reset_control_assert(priv->rstc); usleep_range(20, 50); reset_control_deassert(priv->rstc); usleep_range(20, 50); /* Reset the switch PHYs */ mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST); return mt7531_setup_common(ds); } const struct dsa_switch_ops mt7530_switch_ops = { .get_tag_protocol = mtk_get_tag_protocol, .setup = mt753x_setup, .preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port, .get_strings = mt7530_get_strings, .get_ethtool_stats = mt7530_get_ethtool_stats, .get_sset_count = mt7530_get_sset_count, .set_ageing_time = mt7530_set_ageing_time, .port_enable = mt7530_port_enable, .port_disable = mt7530_port_disable, .port_change_mtu = mt7530_port_change_mtu, .port_max_mtu = mt7530_port_max_mtu, .port_stp_state_set = mt7530_stp_state_set, .port_pre_bridge_flags = mt7530_port_pre_bridge_flags, .port_bridge_flags = mt7530_port_bridge_flags, .port_bridge_join = mt7530_port_bridge_join, .port_bridge_leave = mt7530_port_bridge_leave, .port_fdb_add = mt7530_port_fdb_add, .port_fdb_del = mt7530_port_fdb_del, .port_fdb_dump = mt7530_port_fdb_dump, .port_mdb_add = mt7530_port_mdb_add, .port_mdb_del = mt7530_port_mdb_del, .port_vlan_filtering = mt7530_port_vlan_filtering, .port_vlan_add = mt7530_port_vlan_add, .port_vlan_del = mt7530_port_vlan_del, .port_mirror_add = mt753x_port_mirror_add, .port_mirror_del = mt753x_port_mirror_del, .phylink_get_caps = mt753x_phylink_get_caps, .phylink_mac_select_pcs = mt753x_phylink_mac_select_pcs, .phylink_mac_config = mt753x_phylink_mac_config, .phylink_mac_link_down = mt753x_phylink_mac_link_down, .phylink_mac_link_up = mt753x_phylink_mac_link_up, .get_mac_eee = mt753x_get_mac_eee, .set_mac_eee = mt753x_set_mac_eee, .conduit_state_change = mt753x_conduit_state_change, }; EXPORT_SYMBOL_GPL(mt7530_switch_ops); const struct mt753x_info mt753x_table[] = { [ID_MT7621] = { .id = ID_MT7621, .pcs_ops = &mt7530_pcs_ops, .sw_setup = mt7530_setup, .phy_read_c22 = mt7530_phy_read_c22, .phy_write_c22 = mt7530_phy_write_c22, .phy_read_c45 = mt7530_phy_read_c45, .phy_write_c45 = mt7530_phy_write_c45, .mac_port_get_caps = mt7530_mac_port_get_caps, .mac_port_config = mt7530_mac_config, }, [ID_MT7530] = { .id = ID_MT7530, .pcs_ops = &mt7530_pcs_ops, .sw_setup = mt7530_setup, .phy_read_c22 = mt7530_phy_read_c22, .phy_write_c22 = mt7530_phy_write_c22, .phy_read_c45 = mt7530_phy_read_c45, .phy_write_c45 = mt7530_phy_write_c45, .mac_port_get_caps = mt7530_mac_port_get_caps, .mac_port_config = mt7530_mac_config, }, [ID_MT7531] = { .id = ID_MT7531, .pcs_ops = &mt7530_pcs_ops, .sw_setup = mt7531_setup, .phy_read_c22 = mt7531_ind_c22_phy_read, .phy_write_c22 = mt7531_ind_c22_phy_write, .phy_read_c45 = mt7531_ind_c45_phy_read, .phy_write_c45 = mt7531_ind_c45_phy_write, .cpu_port_config = mt7531_cpu_port_config, .mac_port_get_caps = mt7531_mac_port_get_caps, .mac_port_config = mt7531_mac_config, }, [ID_MT7988] = { .id = ID_MT7988, .pcs_ops = &mt7530_pcs_ops, .sw_setup = mt7988_setup, .phy_read_c22 = mt7531_ind_c22_phy_read, .phy_write_c22 = mt7531_ind_c22_phy_write, .phy_read_c45 = mt7531_ind_c45_phy_read, .phy_write_c45 = mt7531_ind_c45_phy_write, .cpu_port_config = mt7988_cpu_port_config, .mac_port_get_caps = mt7988_mac_port_get_caps, .mac_port_config = mt7988_mac_config, }, }; EXPORT_SYMBOL_GPL(mt753x_table); int mt7530_probe_common(struct mt7530_priv *priv) { struct device *dev = priv->dev; priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL); if (!priv->ds) return -ENOMEM; priv->ds->dev = dev; priv->ds->num_ports = MT7530_NUM_PORTS; /* Get the hardware identifier from the devicetree node. * We will need it for some of the clock and regulator setup. */ priv->info = of_device_get_match_data(dev); if (!priv->info) return -EINVAL; /* Sanity check if these required device operations are filled * properly. */ if (!priv->info->sw_setup || !priv->info->phy_read_c22 || !priv->info->phy_write_c22 || !priv->info->mac_port_get_caps || !priv->info->mac_port_config) return -EINVAL; priv->id = priv->info->id; priv->dev = dev; priv->ds->priv = priv; priv->ds->ops = &mt7530_switch_ops; mutex_init(&priv->reg_mutex); dev_set_drvdata(dev, priv); return 0; } EXPORT_SYMBOL_GPL(mt7530_probe_common); void mt7530_remove_common(struct mt7530_priv *priv) { if (priv->irq) mt7530_free_irq(priv); dsa_unregister_switch(priv->ds); mutex_destroy(&priv->reg_mutex); } EXPORT_SYMBOL_GPL(mt7530_remove_common); MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); MODULE_LICENSE("GPL");
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
You can’t perform that action at this time.