Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
a8fad98
Documentation
arch
block
certs
crypto
drivers
firmware
fs
9p
adfs
affs
afs
autofs4
befs
bfs
btrfs
cachefiles
ceph
cifs
coda
configfs
cramfs
crypto
debugfs
devpts
dlm
ecryptfs
efivarfs
efs
exofs
exportfs
ext2
ext4
f2fs
fat
freevxfs
fscache
fuse
gfs2
hfs
hfsplus
hostfs
hpfs
hugetlbfs
isofs
jbd2
jffs2
jfs
kernfs
lockd
minix
ncpfs
nfs
nfs_common
nfsd
nilfs2
nls
notify
ntfs
ocfs2
omfs
openpromfs
orangefs
overlayfs
proc
pstore
qnx4
qnx6
quota
ramfs
reiserfs
romfs
squashfs
sysfs
sysv
tracefs
ubifs
udf
ufs
Kconfig
Makefile
balloc.c
cylinder.c
dir.c
file.c
ialloc.c
inode.c
namei.c
super.c
swab.h
ufs.h
ufs_fs.h
util.c
util.h
xfs
Kconfig
Kconfig.binfmt
Makefile
aio.c
anon_inodes.c
attr.c
bad_inode.c
binfmt_aout.c
binfmt_elf.c
binfmt_elf_fdpic.c
binfmt_em86.c
binfmt_flat.c
binfmt_misc.c
binfmt_script.c
block_dev.c
buffer.c
char_dev.c
compat.c
compat_binfmt_elf.c
compat_ioctl.c
coredump.c
dax.c
dcache.c
dcookies.c
direct-io.c
drop_caches.c
eventfd.c
eventpoll.c
exec.c
fcntl.c
fhandle.c
file.c
file_table.c
filesystems.c
fs-writeback.c
fs_pin.c
fs_struct.c
inode.c
internal.h
ioctl.c
iomap.c
libfs.c
locks.c
mbcache.c
mount.h
mpage.c
namei.c
namespace.c
no-block.c
nsfs.c
open.c
pipe.c
pnode.c
pnode.h
posix_acl.c
proc_namespace.c
read_write.c
readdir.c
select.c
seq_file.c
signalfd.c
splice.c
stack.c
stat.c
statfs.c
super.c
sync.c
timerfd.c
userfaultfd.c
utimes.c
xattr.c
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
fs
/
ufs
/
inode.c
Copy path
Blame
Blame
Latest commit
History
History
1240 lines (1066 loc) · 32.8 KB
Breadcrumbs
linux
/
fs
/
ufs
/
inode.c
Top
File metadata and controls
Code
Blame
1240 lines (1066 loc) · 32.8 KB
Raw
/* * linux/fs/ufs/inode.c * * Copyright (C) 1998 * Daniel Pirkl <daniel.pirkl@email.cz> * Charles University, Faculty of Mathematics and Physics * * from * * linux/fs/ext2/inode.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/inode.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993 * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include <linux/uaccess.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/time.h> #include <linux/stat.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/buffer_head.h> #include <linux/writeback.h> #include "ufs_fs.h" #include "ufs.h" #include "swab.h" #include "util.h" static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4]) { struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi; int ptrs = uspi->s_apb; int ptrs_bits = uspi->s_apbshift; const long direct_blocks = UFS_NDADDR, indirect_blocks = ptrs, double_blocks = (1 << (ptrs_bits * 2)); int n = 0; UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks); if (i_block < direct_blocks) { offsets[n++] = i_block; } else if ((i_block -= direct_blocks) < indirect_blocks) { offsets[n++] = UFS_IND_BLOCK; offsets[n++] = i_block; } else if ((i_block -= indirect_blocks) < double_blocks) { offsets[n++] = UFS_DIND_BLOCK; offsets[n++] = i_block >> ptrs_bits; offsets[n++] = i_block & (ptrs - 1); } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { offsets[n++] = UFS_TIND_BLOCK; offsets[n++] = i_block >> (ptrs_bits * 2); offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); offsets[n++] = i_block & (ptrs - 1); } else { ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big"); } return n; } typedef struct { void *p; union { __fs32 key32; __fs64 key64; }; struct buffer_head *bh; } Indirect; static inline int grow_chain32(struct ufs_inode_info *ufsi, struct buffer_head *bh, __fs32 *v, Indirect *from, Indirect *to) { Indirect *p; unsigned seq; to->bh = bh; do { seq = read_seqbegin(&ufsi->meta_lock); to->key32 = *(__fs32 *)(to->p = v); for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++) ; } while (read_seqretry(&ufsi->meta_lock, seq)); return (p > to); } static inline int grow_chain64(struct ufs_inode_info *ufsi, struct buffer_head *bh, __fs64 *v, Indirect *from, Indirect *to) { Indirect *p; unsigned seq; to->bh = bh; do { seq = read_seqbegin(&ufsi->meta_lock); to->key64 = *(__fs64 *)(to->p = v); for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++) ; } while (read_seqretry(&ufsi->meta_lock, seq)); return (p > to); } /* * Returns the location of the fragment from * the beginning of the filesystem. */ static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift; int shift = uspi->s_apbshift-uspi->s_fpbshift; Indirect chain[4], *q = chain; unsigned *p; unsigned flags = UFS_SB(sb)->s_flags; u64 res = 0; UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n", uspi->s_fpbshift, uspi->s_apbmask, (unsigned long long)mask); if (depth == 0) goto no_block; again: p = offsets; if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) goto ufs2; if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q)) goto changed; if (!q->key32) goto no_block; while (--depth) { __fs32 *ptr; struct buffer_head *bh; unsigned n = *p++; bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, q->key32) + (n>>shift)); if (!bh) goto no_block; ptr = (__fs32 *)bh->b_data + (n & mask); if (!grow_chain32(ufsi, bh, ptr, chain, ++q)) goto changed; if (!q->key32) goto no_block; } res = fs32_to_cpu(sb, q->key32); goto found; ufs2: if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q)) goto changed; if (!q->key64) goto no_block; while (--depth) { __fs64 *ptr; struct buffer_head *bh; unsigned n = *p++; bh = sb_bread(sb, uspi->s_sbbase + fs64_to_cpu(sb, q->key64) + (n>>shift)); if (!bh) goto no_block; ptr = (__fs64 *)bh->b_data + (n & mask); if (!grow_chain64(ufsi, bh, ptr, chain, ++q)) goto changed; if (!q->key64) goto no_block; } res = fs64_to_cpu(sb, q->key64); found: res += uspi->s_sbbase; no_block: while (q > chain) { brelse(q->bh); q--; } return res; changed: while (q > chain) { brelse(q->bh); q--; } goto again; } /* * Unpacking tails: we have a file with partial final block and * we had been asked to extend it. If the fragment being written * is within the same block, we need to extend the tail just to cover * that fragment. Otherwise the tail is extended to full block. * * Note that we might need to create a _new_ tail, but that will * be handled elsewhere; this is strictly for resizing old * ones. */ static bool ufs_extend_tail(struct inode *inode, u64 writes_to, int *err, struct page *locked_page) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned lastfrag = ufsi->i_lastfrag; /* it's a short file, so unsigned is enough */ unsigned block = ufs_fragstoblks(lastfrag); unsigned new_size; void *p; u64 tmp; if (writes_to < (lastfrag | uspi->s_fpbmask)) new_size = (writes_to & uspi->s_fpbmask) + 1; else new_size = uspi->s_fpb; p = ufs_get_direct_data_ptr(uspi, ufsi, block); tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p), new_size - (lastfrag & uspi->s_fpbmask), err, locked_page); return tmp != 0; } /** * ufs_inode_getfrag() - allocate new fragment(s) * @inode: pointer to inode * @index: number of block pointer within the inode's array. * @new_fragment: number of new allocated fragment(s) * @err: we set it if something wrong * @new: we set it if we allocate new block * @locked_page: for ufs_new_fragments() */ static u64 ufs_inode_getfrag(struct inode *inode, unsigned index, sector_t new_fragment, int *err, int *new, struct page *locked_page) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; u64 tmp, goal, lastfrag; unsigned nfrags = uspi->s_fpb; void *p; /* TODO : to be done for write support if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) goto ufs2; */ p = ufs_get_direct_data_ptr(uspi, ufsi, index); tmp = ufs_data_ptr_to_cpu(sb, p); if (tmp) goto out; lastfrag = ufsi->i_lastfrag; /* will that be a new tail? */ if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag) nfrags = (new_fragment & uspi->s_fpbmask) + 1; goal = 0; if (index) { goal = ufs_data_ptr_to_cpu(sb, ufs_get_direct_data_ptr(uspi, ufsi, index - 1)); if (goal) goal += uspi->s_fpb; } tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, nfrags, err, locked_page); if (!tmp) { *err = -ENOSPC; return 0; } if (new) *new = 1; inode->i_ctime = current_time(inode); if (IS_SYNC(inode)) ufs_sync_inode (inode); mark_inode_dirty(inode); out: return tmp + uspi->s_sbbase; /* This part : To be implemented .... Required only for writing, not required for READ-ONLY. ufs2: u2_block = ufs_fragstoblks(fragment); u2_blockoff = ufs_fragnum(fragment); p = ufsi->i_u1.u2_i_data + block; goal = 0; repeat2: tmp = fs32_to_cpu(sb, *p); lastfrag = ufsi->i_lastfrag; */ } /** * ufs_inode_getblock() - allocate new block * @inode: pointer to inode * @ind_block: block number of the indirect block * @index: number of pointer within the indirect block * @new_fragment: number of new allocated fragment * (block will hold this fragment and also uspi->s_fpb-1) * @err: see ufs_inode_getfrag() * @new: see ufs_inode_getfrag() * @locked_page: see ufs_inode_getfrag() */ static u64 ufs_inode_getblock(struct inode *inode, u64 ind_block, unsigned index, sector_t new_fragment, int *err, int *new, struct page *locked_page) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; int shift = uspi->s_apbshift - uspi->s_fpbshift; u64 tmp = 0, goal; struct buffer_head *bh; void *p; if (!ind_block) return 0; bh = sb_bread(sb, ind_block + (index >> shift)); if (unlikely(!bh)) { *err = -EIO; return 0; } index &= uspi->s_apbmask >> uspi->s_fpbshift; if (uspi->fs_magic == UFS2_MAGIC) p = (__fs64 *)bh->b_data + index; else p = (__fs32 *)bh->b_data + index; tmp = ufs_data_ptr_to_cpu(sb, p); if (tmp) goto out; if (index && (uspi->fs_magic == UFS2_MAGIC ? (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) : (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1])))) goal = tmp + uspi->s_fpb; else goal = bh->b_blocknr + uspi->s_fpb; tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, uspi->s_fpb, err, locked_page); if (!tmp) goto out; if (new) *new = 1; mark_buffer_dirty(bh); if (IS_SYNC(inode)) sync_dirty_buffer(bh); inode->i_ctime = current_time(inode); mark_inode_dirty(inode); out: brelse (bh); UFSD("EXIT\n"); if (tmp) tmp += uspi->s_sbbase; return tmp; } /** * ufs_getfrag_block() - `get_block_t' function, interface between UFS and * readpage, writepage and so on */ static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; int err = 0, new = 0; unsigned offsets[4]; int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets); u64 phys64 = 0; unsigned frag = fragment & uspi->s_fpbmask; phys64 = ufs_frag_map(inode, offsets, depth); if (!create) goto done; if (phys64) { if (fragment >= UFS_NDIR_FRAGMENT) goto done; read_seqlock_excl(&UFS_I(inode)->meta_lock); if (fragment < UFS_I(inode)->i_lastfrag) { read_sequnlock_excl(&UFS_I(inode)->meta_lock); goto done; } read_sequnlock_excl(&UFS_I(inode)->meta_lock); } /* This code entered only while writing ....? */ mutex_lock(&UFS_I(inode)->truncate_mutex); UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment); if (unlikely(!depth)) { ufs_warning(sb, "ufs_get_block", "block > big"); err = -EIO; goto out; } if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) { unsigned lastfrag = UFS_I(inode)->i_lastfrag; unsigned tailfrags = lastfrag & uspi->s_fpbmask; if (tailfrags && fragment >= lastfrag) { if (!ufs_extend_tail(inode, fragment, &err, bh_result->b_page)) goto out; } } if (depth == 1) { phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, &err, &new, bh_result->b_page); } else { int i; phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, &err, NULL, NULL); for (i = 1; i < depth - 1; i++) phys64 = ufs_inode_getblock(inode, phys64, offsets[i], fragment, &err, NULL, NULL); phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1], fragment, &err, &new, bh_result->b_page); } out: if (phys64) { phys64 += frag; map_bh(bh_result, sb, phys64); if (new) set_buffer_new(bh_result); } mutex_unlock(&UFS_I(inode)->truncate_mutex); return err; done: if (phys64) map_bh(bh_result, sb, phys64 + frag); return 0; } static int ufs_writepage(struct page *page, struct writeback_control *wbc) { return block_write_full_page(page,ufs_getfrag_block,wbc); } static int ufs_readpage(struct file *file, struct page *page) { return block_read_full_page(page,ufs_getfrag_block); } int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len) { return __block_write_begin(page, pos, len, ufs_getfrag_block); } static void ufs_truncate_blocks(struct inode *); static void ufs_write_failed(struct address_space *mapping, loff_t to) { struct inode *inode = mapping->host; if (to > inode->i_size) { truncate_pagecache(inode, inode->i_size); ufs_truncate_blocks(inode); } } static int ufs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { int ret; ret = block_write_begin(mapping, pos, len, flags, pagep, ufs_getfrag_block); if (unlikely(ret)) ufs_write_failed(mapping, pos + len); return ret; } static int ufs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { int ret; ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); if (ret < len) ufs_write_failed(mapping, pos + len); return ret; } static sector_t ufs_bmap(struct address_space *mapping, sector_t block) { return generic_block_bmap(mapping,block,ufs_getfrag_block); } const struct address_space_operations ufs_aops = { .readpage = ufs_readpage, .writepage = ufs_writepage, .write_begin = ufs_write_begin, .write_end = ufs_write_end, .bmap = ufs_bmap }; static void ufs_set_inode_ops(struct inode *inode) { if (S_ISREG(inode->i_mode)) { inode->i_op = &ufs_file_inode_operations; inode->i_fop = &ufs_file_operations; inode->i_mapping->a_ops = &ufs_aops; } else if (S_ISDIR(inode->i_mode)) { inode->i_op = &ufs_dir_inode_operations; inode->i_fop = &ufs_dir_operations; inode->i_mapping->a_ops = &ufs_aops; } else if (S_ISLNK(inode->i_mode)) { if (!inode->i_blocks) { inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink; inode->i_op = &simple_symlink_inode_operations; } else { inode->i_mapping->a_ops = &ufs_aops; inode->i_op = &page_symlink_inode_operations; inode_nohighmem(inode); } } else init_special_inode(inode, inode->i_mode, ufs_get_inode_dev(inode->i_sb, UFS_I(inode))); } static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; umode_t mode; /* * Copy data to the in-core inode. */ inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode); set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink)); if (inode->i_nlink == 0) { ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino); return -1; } /* * Linux now has 32-bit uid and gid, so we can support EFT. */ i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode)); i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode)); inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size); inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec); inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec); inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec); inode->i_mtime.tv_nsec = 0; inode->i_atime.tv_nsec = 0; inode->i_ctime.tv_nsec = 0; inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks); inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen); ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags); ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr, sizeof(ufs_inode->ui_u2.ui_addr)); } else { memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink, sizeof(ufs_inode->ui_u2.ui_symlink) - 1); ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0; } return 0; } static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; umode_t mode; UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino); /* * Copy data to the in-core inode. */ inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode); set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink)); if (inode->i_nlink == 0) { ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino); return -1; } /* * Linux now has 32-bit uid and gid, so we can support EFT. */ i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid)); i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid)); inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size); inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime); inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime); inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime); inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec); inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec); inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec); inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks); inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen); ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags); /* ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); */ if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr, sizeof(ufs2_inode->ui_u2.ui_addr)); } else { memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink, sizeof(ufs2_inode->ui_u2.ui_symlink) - 1); ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0; } return 0; } struct inode *ufs_iget(struct super_block *sb, unsigned long ino) { struct ufs_inode_info *ufsi; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct buffer_head * bh; struct inode *inode; int err; UFSD("ENTER, ino %lu\n", ino); if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) { ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n", ino); return ERR_PTR(-EIO); } inode = iget_locked(sb, ino); if (!inode) return ERR_PTR(-ENOMEM); if (!(inode->i_state & I_NEW)) return inode; ufsi = UFS_I(inode); bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino)); if (!bh) { ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); goto bad_inode; } if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; err = ufs2_read_inode(inode, ufs2_inode + ufs_inotofsbo(inode->i_ino)); } else { struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data; err = ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); } if (err) goto bad_inode; inode->i_version++; ufsi->i_lastfrag = (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift; ufsi->i_dir_start_lookup = 0; ufsi->i_osync = 0; ufs_set_inode_ops(inode); brelse(bh); UFSD("EXIT\n"); unlock_new_inode(inode); return inode; bad_inode: iget_failed(inode); return ERR_PTR(-EIO); } static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode) { struct super_block *sb = inode->i_sb; struct ufs_inode_info *ufsi = UFS_I(inode); ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode)); ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode)); ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec); ufs_inode->ui_atime.tv_usec = 0; ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec); ufs_inode->ui_ctime.tv_usec = 0; ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec); ufs_inode->ui_mtime.tv_usec = 0; ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks); ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) { ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow); ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag); } if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0]; } else if (inode->i_blocks) { memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data, sizeof(ufs_inode->ui_u2.ui_addr)); } else { memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, sizeof(ufs_inode->ui_u2.ui_symlink)); } if (!inode->i_nlink) memset (ufs_inode, 0, sizeof(struct ufs_inode)); } static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode) { struct super_block *sb = inode->i_sb; struct ufs_inode_info *ufsi = UFS_I(inode); UFSD("ENTER\n"); ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode)); ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode)); ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec); ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec); ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec); ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec); ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec); ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec); ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks); ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0]; } else if (inode->i_blocks) { memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data, sizeof(ufs_inode->ui_u2.ui_addr)); } else { memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, sizeof(ufs_inode->ui_u2.ui_symlink)); } if (!inode->i_nlink) memset (ufs_inode, 0, sizeof(struct ufs2_inode)); UFSD("EXIT\n"); } static int ufs_update_inode(struct inode * inode, int do_sync) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct buffer_head * bh; UFSD("ENTER, ino %lu\n", inode->i_ino); if (inode->i_ino < UFS_ROOTINO || inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) { ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino); return -1; } bh = sb_bread(sb, ufs_inotofsba(inode->i_ino)); if (!bh) { ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); return -1; } if (uspi->fs_magic == UFS2_MAGIC) { struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; ufs2_update_inode(inode, ufs2_inode + ufs_inotofsbo(inode->i_ino)); } else { struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data; ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); } mark_buffer_dirty(bh); if (do_sync) sync_dirty_buffer(bh); brelse (bh); UFSD("EXIT\n"); return 0; } int ufs_write_inode(struct inode *inode, struct writeback_control *wbc) { return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); } int ufs_sync_inode (struct inode *inode) { return ufs_update_inode (inode, 1); } void ufs_evict_inode(struct inode * inode) { int want_delete = 0; if (!inode->i_nlink && !is_bad_inode(inode)) want_delete = 1; truncate_inode_pages_final(&inode->i_data); if (want_delete) { inode->i_size = 0; if (inode->i_blocks && (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) ufs_truncate_blocks(inode); ufs_update_inode(inode, inode_needs_sync(inode)); } invalidate_inode_buffers(inode); clear_inode(inode); if (want_delete) ufs_free_inode(inode); } struct to_free { struct inode *inode; u64 to; unsigned count; }; static inline void free_data(struct to_free *ctx, u64 from, unsigned count) { if (ctx->count && ctx->to != from) { ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count); ctx->count = 0; } ctx->count += count; ctx->to = from + count; } #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift) static void ufs_trunc_direct(struct inode *inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block * sb; struct ufs_sb_private_info * uspi; void *p; u64 frag1, frag2, frag3, frag4, block1, block2; struct to_free ctx = {.inode = inode}; unsigned i, tmp; UFSD("ENTER: ino %lu\n", inode->i_ino); sb = inode->i_sb; uspi = UFS_SB(sb)->s_uspi; frag1 = DIRECT_FRAGMENT; frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag); frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1); frag3 = frag4 & ~uspi->s_fpbmask; block1 = block2 = 0; if (frag2 > frag3) { frag2 = frag4; frag3 = frag4 = 0; } else if (frag2 < frag3) { block1 = ufs_fragstoblks (frag2); block2 = ufs_fragstoblks (frag3); } UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu," " frag3 %llu, frag4 %llu\n", inode->i_ino, (unsigned long long)frag1, (unsigned long long)frag2, (unsigned long long)block1, (unsigned long long)block2, (unsigned long long)frag3, (unsigned long long)frag4); if (frag1 >= frag2) goto next1; /* * Free first free fragments */ p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1)); tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp ) ufs_panic (sb, "ufs_trunc_direct", "internal error"); frag2 -= frag1; frag1 = ufs_fragnum (frag1); ufs_free_fragments(inode, tmp + frag1, frag2); next1: /* * Free whole blocks */ for (i = block1 ; i < block2; i++) { p = ufs_get_direct_data_ptr(uspi, ufsi, i); tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp) continue; write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); free_data(&ctx, tmp, uspi->s_fpb); } free_data(&ctx, 0, 0); if (frag3 >= frag4) goto next3; /* * Free last free fragments */ p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3)); tmp = ufs_data_ptr_to_cpu(sb, p); if (!tmp ) ufs_panic(sb, "ufs_truncate_direct", "internal error"); frag4 = ufs_fragnum (frag4); write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); ufs_free_fragments (inode, tmp, frag4); next3: UFSD("EXIT: ino %lu\n", inode->i_ino); } static void free_full_branch(struct inode *inode, u64 ind_block, int depth) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize); unsigned i; if (!ubh) return; if (--depth) { for (i = 0; i < uspi->s_apb; i++) { void *p = ubh_get_data_ptr(uspi, ubh, i); u64 block = ufs_data_ptr_to_cpu(sb, p); if (block) free_full_branch(inode, block, depth); } } else { struct to_free ctx = {.inode = inode}; for (i = 0; i < uspi->s_apb; i++) { void *p = ubh_get_data_ptr(uspi, ubh, i); u64 block = ufs_data_ptr_to_cpu(sb, p); if (block) free_data(&ctx, block, uspi->s_fpb); } free_data(&ctx, 0, 0); } ubh_bforget(ubh); ufs_free_blocks(inode, ind_block, uspi->s_fpb); } static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth) { struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned i; if (--depth) { for (i = from; i < uspi->s_apb ; i++) { void *p = ubh_get_data_ptr(uspi, ubh, i); u64 block = ufs_data_ptr_to_cpu(sb, p); if (block) { write_seqlock(&UFS_I(inode)->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&UFS_I(inode)->meta_lock); ubh_mark_buffer_dirty(ubh); free_full_branch(inode, block, depth); } } } else { struct to_free ctx = {.inode = inode}; for (i = from; i < uspi->s_apb; i++) { void *p = ubh_get_data_ptr(uspi, ubh, i); u64 block = ufs_data_ptr_to_cpu(sb, p); if (block) { write_seqlock(&UFS_I(inode)->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&UFS_I(inode)->meta_lock); ubh_mark_buffer_dirty(ubh); free_data(&ctx, block, uspi->s_fpb); } } free_data(&ctx, 0, 0); } if (IS_SYNC(inode) && ubh_buffer_dirty(ubh)) ubh_sync_block(ubh); ubh_brelse(ubh); } static int ufs_alloc_lastblock(struct inode *inode, loff_t size) { int err = 0; struct super_block *sb = inode->i_sb; struct address_space *mapping = inode->i_mapping; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned i, end; sector_t lastfrag; struct page *lastpage; struct buffer_head *bh; u64 phys64; lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift; if (!lastfrag) goto out; lastfrag--; lastpage = ufs_get_locked_page(mapping, lastfrag >> (PAGE_SHIFT - inode->i_blkbits)); if (IS_ERR(lastpage)) { err = -EIO; goto out; } end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1); bh = page_buffers(lastpage); for (i = 0; i < end; ++i) bh = bh->b_this_page; err = ufs_getfrag_block(inode, lastfrag, bh, 1); if (unlikely(err)) goto out_unlock; if (buffer_new(bh)) { clear_buffer_new(bh); clean_bdev_bh_alias(bh); /* * we do not zeroize fragment, because of * if it maped to hole, it already contains zeroes */ set_buffer_uptodate(bh); mark_buffer_dirty(bh); set_page_dirty(lastpage); } if (lastfrag >= UFS_IND_FRAGMENT) { end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1; phys64 = bh->b_blocknr + 1; for (i = 0; i < end; ++i) { bh = sb_getblk(sb, i + phys64); lock_buffer(bh); memset(bh->b_data, 0, sb->s_blocksize); set_buffer_uptodate(bh); mark_buffer_dirty(bh); unlock_buffer(bh); sync_dirty_buffer(bh); brelse(bh); } } out_unlock: ufs_put_locked_page(lastpage); out: return err; } static void ufs_truncate_blocks(struct inode *inode) { struct ufs_inode_info *ufsi = UFS_I(inode); struct super_block *sb = inode->i_sb; struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; unsigned offsets[4]; int depth; int depth2; unsigned i; struct ufs_buffer_head *ubh[3]; void *p; u64 block; if (inode->i_size) { sector_t last = (inode->i_size - 1) >> uspi->s_bshift; depth = ufs_block_to_path(inode, last, offsets); if (!depth) return; } else { depth = 1; } for (depth2 = depth - 1; depth2; depth2--) if (offsets[depth2] != uspi->s_apb - 1) break; mutex_lock(&ufsi->truncate_mutex); if (depth == 1) { ufs_trunc_direct(inode); offsets[0] = UFS_IND_BLOCK; } else { /* get the blocks that should be partially emptied */ p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++); for (i = 0; i < depth2; i++) { block = ufs_data_ptr_to_cpu(sb, p); if (!block) break; ubh[i] = ubh_bread(sb, block, uspi->s_bsize); if (!ubh[i]) { write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); break; } p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++); } while (i--) free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1); } for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) { p = ufs_get_direct_data_ptr(uspi, ufsi, i); block = ufs_data_ptr_to_cpu(sb, p); if (block) { write_seqlock(&ufsi->meta_lock); ufs_data_ptr_clear(uspi, p); write_sequnlock(&ufsi->meta_lock); free_full_branch(inode, block, i - UFS_IND_BLOCK + 1); } } read_seqlock_excl(&ufsi->meta_lock); ufsi->i_lastfrag = DIRECT_FRAGMENT; read_sequnlock_excl(&ufsi->meta_lock); mark_inode_dirty(inode); mutex_unlock(&ufsi->truncate_mutex); } static int ufs_truncate(struct inode *inode, loff_t size) { int err = 0; UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n", inode->i_ino, (unsigned long long)size, (unsigned long long)i_size_read(inode)); if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return -EINVAL; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return -EPERM; err = ufs_alloc_lastblock(inode, size); if (err) goto out; block_truncate_page(inode->i_mapping, size, ufs_getfrag_block); truncate_setsize(inode, size); ufs_truncate_blocks(inode); inode->i_mtime = inode->i_ctime = current_time(inode); mark_inode_dirty(inode); out: UFSD("EXIT: err %d\n", err); return err; } int ufs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); unsigned int ia_valid = attr->ia_valid; int error; error = setattr_prepare(dentry, attr); if (error) return error; if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { error = ufs_truncate(inode, attr->ia_size); if (error) return error; } setattr_copy(inode, attr); mark_inode_dirty(inode); return 0; } const struct inode_operations ufs_file_inode_operations = { .setattr = ufs_setattr, };
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
You can’t perform that action at this time.