Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
acbf1dd
Documentation
LICENSES
arch
block
certs
crypto
drivers
fs
9p
adfs
affs
afs
autofs
befs
bfs
btrfs
tests
Kconfig
Makefile
acl.c
async-thread.c
async-thread.h
backref.c
backref.h
block-group.c
block-group.h
block-rsv.c
block-rsv.h
btrfs_inode.h
check-integrity.c
check-integrity.h
compression.c
compression.h
ctree.c
ctree.h
delalloc-space.c
delalloc-space.h
delayed-inode.c
delayed-inode.h
delayed-ref.c
delayed-ref.h
dev-replace.c
dev-replace.h
dir-item.c
discard.c
discard.h
disk-io.c
disk-io.h
export.c
export.h
extent-io-tree.h
extent-tree.c
extent_io.c
extent_io.h
extent_map.c
extent_map.h
file-item.c
file.c
free-space-cache.c
free-space-cache.h
free-space-tree.c
free-space-tree.h
inode-item.c
inode-map.c
inode-map.h
inode.c
ioctl.c
locking.c
locking.h
lzo.c
misc.h
ordered-data.c
ordered-data.h
orphan.c
print-tree.c
print-tree.h
props.c
props.h
qgroup.c
qgroup.h
raid56.c
raid56.h
rcu-string.h
reada.c
ref-verify.c
ref-verify.h
reflink.c
reflink.h
relocation.c
root-tree.c
scrub.c
send.c
send.h
space-info.c
space-info.h
struct-funcs.c
super.c
sysfs.c
sysfs.h
transaction.c
transaction.h
tree-checker.c
tree-checker.h
tree-defrag.c
tree-log.c
tree-log.h
ulist.c
ulist.h
uuid-tree.c
volumes.c
volumes.h
xattr.c
xattr.h
zlib.c
zstd.c
cachefiles
ceph
cifs
coda
configfs
cramfs
crypto
debugfs
devpts
dlm
ecryptfs
efivarfs
efs
erofs
exfat
exportfs
ext2
ext4
f2fs
fat
freevxfs
fscache
fuse
gfs2
hfs
hfsplus
hostfs
hpfs
hugetlbfs
iomap
isofs
jbd2
jffs2
jfs
kernfs
lockd
minix
nfs
nfs_common
nfsd
nilfs2
nls
notify
ntfs
ocfs2
omfs
openpromfs
orangefs
overlayfs
proc
pstore
qnx4
qnx6
quota
ramfs
reiserfs
romfs
squashfs
sysfs
sysv
tracefs
ubifs
udf
ufs
unicode
vboxsf
verity
xfs
zonefs
Kconfig
Kconfig.binfmt
Makefile
aio.c
anon_inodes.c
attr.c
bad_inode.c
binfmt_aout.c
binfmt_elf.c
binfmt_elf_fdpic.c
binfmt_em86.c
binfmt_flat.c
binfmt_misc.c
binfmt_script.c
block_dev.c
buffer.c
char_dev.c
compat.c
compat_binfmt_elf.c
coredump.c
d_path.c
dax.c
dcache.c
dcookies.c
direct-io.c
drop_caches.c
eventfd.c
eventpoll.c
exec.c
fcntl.c
fhandle.c
file.c
file_table.c
filesystems.c
fs-writeback.c
fs_context.c
fs_parser.c
fs_pin.c
fs_struct.c
fs_types.c
fsopen.c
init.c
inode.c
internal.h
io-wq.c
io-wq.h
io_uring.c
ioctl.c
libfs.c
locks.c
mbcache.c
mount.h
mpage.c
namei.c
namespace.c
no-block.c
nsfs.c
open.c
pipe.c
pnode.c
pnode.h
posix_acl.c
proc_namespace.c
read_write.c
readdir.c
select.c
seq_file.c
signalfd.c
splice.c
stack.c
stat.c
statfs.c
super.c
sync.c
timerfd.c
userfaultfd.c
utimes.c
xattr.c
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.clang-format
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
fs
/
btrfs
/
ordered-data.c
Blame
Blame
Latest commit
History
History
965 lines (861 loc) · 26.5 KB
Breadcrumbs
linux
/
fs
/
btrfs
/
ordered-data.c
Top
File metadata and controls
Code
Blame
965 lines (861 loc) · 26.5 KB
Raw
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/writeback.h> #include <linux/sched/mm.h> #include "misc.h" #include "ctree.h" #include "transaction.h" #include "btrfs_inode.h" #include "extent_io.h" #include "disk-io.h" #include "compression.h" #include "delalloc-space.h" #include "qgroup.h" static struct kmem_cache *btrfs_ordered_extent_cache; static u64 entry_end(struct btrfs_ordered_extent *entry) { if (entry->file_offset + entry->num_bytes < entry->file_offset) return (u64)-1; return entry->file_offset + entry->num_bytes; } /* returns NULL if the insertion worked, or it returns the node it did find * in the tree */ static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_ordered_extent *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); if (file_offset < entry->file_offset) p = &(*p)->rb_left; else if (file_offset >= entry_end(entry)) p = &(*p)->rb_right; else return parent; } rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } /* * look for a given offset in the tree, and if it can't be found return the * first lesser offset */ static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, struct rb_node **prev_ret) { struct rb_node *n = root->rb_node; struct rb_node *prev = NULL; struct rb_node *test; struct btrfs_ordered_extent *entry; struct btrfs_ordered_extent *prev_entry = NULL; while (n) { entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); prev = n; prev_entry = entry; if (file_offset < entry->file_offset) n = n->rb_left; else if (file_offset >= entry_end(entry)) n = n->rb_right; else return n; } if (!prev_ret) return NULL; while (prev && file_offset >= entry_end(prev_entry)) { test = rb_next(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); if (file_offset < entry_end(prev_entry)) break; prev = test; } if (prev) prev_entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); while (prev && file_offset < entry_end(prev_entry)) { test = rb_prev(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); prev = test; } *prev_ret = prev; return NULL; } /* * helper to check if a given offset is inside a given entry */ static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) { if (file_offset < entry->file_offset || entry->file_offset + entry->num_bytes <= file_offset) return 0; return 1; } static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, u64 len) { if (file_offset + len <= entry->file_offset || entry->file_offset + entry->num_bytes <= file_offset) return 0; return 1; } /* * look find the first ordered struct that has this offset, otherwise * the first one less than this offset */ static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, u64 file_offset) { struct rb_root *root = &tree->tree; struct rb_node *prev = NULL; struct rb_node *ret; struct btrfs_ordered_extent *entry; if (tree->last) { entry = rb_entry(tree->last, struct btrfs_ordered_extent, rb_node); if (offset_in_entry(entry, file_offset)) return tree->last; } ret = __tree_search(root, file_offset, &prev); if (!ret) ret = prev; if (ret) tree->last = ret; return ret; } /* * Allocate and add a new ordered_extent into the per-inode tree. * * The tree is given a single reference on the ordered extent that was * inserted. */ static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, int type, int dio, int compress_type) { struct btrfs_root *root = inode->root; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; struct rb_node *node; struct btrfs_ordered_extent *entry; int ret; if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) { /* For nocow write, we can release the qgroup rsv right now */ ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes); if (ret < 0) return ret; ret = 0; } else { /* * The ordered extent has reserved qgroup space, release now * and pass the reserved number for qgroup_record to free. */ ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes); if (ret < 0) return ret; } entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); if (!entry) return -ENOMEM; entry->file_offset = file_offset; entry->disk_bytenr = disk_bytenr; entry->num_bytes = num_bytes; entry->disk_num_bytes = disk_num_bytes; entry->bytes_left = num_bytes; entry->inode = igrab(&inode->vfs_inode); entry->compress_type = compress_type; entry->truncated_len = (u64)-1; entry->qgroup_rsv = ret; if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) set_bit(type, &entry->flags); if (dio) { percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes, fs_info->delalloc_batch); set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); } /* one ref for the tree */ refcount_set(&entry->refs, 1); init_waitqueue_head(&entry->wait); INIT_LIST_HEAD(&entry->list); INIT_LIST_HEAD(&entry->log_list); INIT_LIST_HEAD(&entry->root_extent_list); INIT_LIST_HEAD(&entry->work_list); init_completion(&entry->completion); trace_btrfs_ordered_extent_add(inode, entry); spin_lock_irq(&tree->lock); node = tree_insert(&tree->tree, file_offset, &entry->rb_node); if (node) btrfs_panic(fs_info, -EEXIST, "inconsistency in ordered tree at offset %llu", file_offset); spin_unlock_irq(&tree->lock); spin_lock(&root->ordered_extent_lock); list_add_tail(&entry->root_extent_list, &root->ordered_extents); root->nr_ordered_extents++; if (root->nr_ordered_extents == 1) { spin_lock(&fs_info->ordered_root_lock); BUG_ON(!list_empty(&root->ordered_root)); list_add_tail(&root->ordered_root, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); } spin_unlock(&root->ordered_extent_lock); /* * We don't need the count_max_extents here, we can assume that all of * that work has been done at higher layers, so this is truly the * smallest the extent is going to get. */ spin_lock(&inode->lock); btrfs_mod_outstanding_extents(inode, 1); spin_unlock(&inode->lock); return 0; } int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, int type) { return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, num_bytes, disk_num_bytes, type, 0, BTRFS_COMPRESS_NONE); } int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, int type) { return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, num_bytes, disk_num_bytes, type, 1, BTRFS_COMPRESS_NONE); } int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset, u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes, int type, int compress_type) { return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr, num_bytes, disk_num_bytes, type, 0, compress_type); } /* * Add a struct btrfs_ordered_sum into the list of checksums to be inserted * when an ordered extent is finished. If the list covers more than one * ordered extent, it is split across multiples. */ void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, struct btrfs_ordered_sum *sum) { struct btrfs_ordered_inode_tree *tree; tree = &BTRFS_I(entry->inode)->ordered_tree; spin_lock_irq(&tree->lock); list_add_tail(&sum->list, &entry->list); spin_unlock_irq(&tree->lock); } /* * this is used to account for finished IO across a given range * of the file. The IO may span ordered extents. If * a given ordered_extent is completely done, 1 is returned, otherwise * 0. * * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used * to make sure this function only returns 1 once for a given ordered extent. * * file_offset is updated to one byte past the range that is recorded as * complete. This allows you to walk forward in the file. */ int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode, struct btrfs_ordered_extent **cached, u64 *file_offset, u64 io_size, int uptodate) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; int ret; unsigned long flags; u64 dec_end; u64 dec_start; u64 to_dec; spin_lock_irqsave(&tree->lock, flags); node = tree_search(tree, *file_offset); if (!node) { ret = 1; goto out; } entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, *file_offset)) { ret = 1; goto out; } dec_start = max(*file_offset, entry->file_offset); dec_end = min(*file_offset + io_size, entry->file_offset + entry->num_bytes); *file_offset = dec_end; if (dec_start > dec_end) { btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu", dec_start, dec_end); } to_dec = dec_end - dec_start; if (to_dec > entry->bytes_left) { btrfs_crit(fs_info, "bad ordered accounting left %llu size %llu", entry->bytes_left, to_dec); } entry->bytes_left -= to_dec; if (!uptodate) set_bit(BTRFS_ORDERED_IOERR, &entry->flags); if (entry->bytes_left == 0) { ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); /* test_and_set_bit implies a barrier */ cond_wake_up_nomb(&entry->wait); } else { ret = 1; } out: if (!ret && cached && entry) { *cached = entry; refcount_inc(&entry->refs); } spin_unlock_irqrestore(&tree->lock, flags); return ret == 0; } /* * this is used to account for finished IO across a given range * of the file. The IO should not span ordered extents. If * a given ordered_extent is completely done, 1 is returned, otherwise * 0. * * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used * to make sure this function only returns 1 once for a given ordered extent. */ int btrfs_dec_test_ordered_pending(struct inode *inode, struct btrfs_ordered_extent **cached, u64 file_offset, u64 io_size, int uptodate) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; unsigned long flags; int ret; tree = &BTRFS_I(inode)->ordered_tree; spin_lock_irqsave(&tree->lock, flags); if (cached && *cached) { entry = *cached; goto have_entry; } node = tree_search(tree, file_offset); if (!node) { ret = 1; goto out; } entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); have_entry: if (!offset_in_entry(entry, file_offset)) { ret = 1; goto out; } if (io_size > entry->bytes_left) { btrfs_crit(BTRFS_I(inode)->root->fs_info, "bad ordered accounting left %llu size %llu", entry->bytes_left, io_size); } entry->bytes_left -= io_size; if (!uptodate) set_bit(BTRFS_ORDERED_IOERR, &entry->flags); if (entry->bytes_left == 0) { ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); /* test_and_set_bit implies a barrier */ cond_wake_up_nomb(&entry->wait); } else { ret = 1; } out: if (!ret && cached && entry) { *cached = entry; refcount_inc(&entry->refs); } spin_unlock_irqrestore(&tree->lock, flags); return ret == 0; } /* * used to drop a reference on an ordered extent. This will free * the extent if the last reference is dropped */ void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) { struct list_head *cur; struct btrfs_ordered_sum *sum; trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); if (refcount_dec_and_test(&entry->refs)) { ASSERT(list_empty(&entry->root_extent_list)); ASSERT(list_empty(&entry->log_list)); ASSERT(RB_EMPTY_NODE(&entry->rb_node)); if (entry->inode) btrfs_add_delayed_iput(entry->inode); while (!list_empty(&entry->list)) { cur = entry->list.next; sum = list_entry(cur, struct btrfs_ordered_sum, list); list_del(&sum->list); kvfree(sum); } kmem_cache_free(btrfs_ordered_extent_cache, entry); } } /* * remove an ordered extent from the tree. No references are dropped * and waiters are woken up. */ void btrfs_remove_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_ordered_inode_tree *tree; struct btrfs_inode *btrfs_inode = BTRFS_I(inode); struct btrfs_root *root = btrfs_inode->root; struct rb_node *node; bool pending; /* This is paired with btrfs_add_ordered_extent. */ spin_lock(&btrfs_inode->lock); btrfs_mod_outstanding_extents(btrfs_inode, -1); spin_unlock(&btrfs_inode->lock); if (root != fs_info->tree_root) btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes, false); if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes, fs_info->delalloc_batch); tree = &btrfs_inode->ordered_tree; spin_lock_irq(&tree->lock); node = &entry->rb_node; rb_erase(node, &tree->tree); RB_CLEAR_NODE(node); if (tree->last == node) tree->last = NULL; set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); spin_unlock_irq(&tree->lock); /* * The current running transaction is waiting on us, we need to let it * know that we're complete and wake it up. */ if (pending) { struct btrfs_transaction *trans; /* * The checks for trans are just a formality, it should be set, * but if it isn't we don't want to deref/assert under the spin * lock, so be nice and check if trans is set, but ASSERT() so * if it isn't set a developer will notice. */ spin_lock(&fs_info->trans_lock); trans = fs_info->running_transaction; if (trans) refcount_inc(&trans->use_count); spin_unlock(&fs_info->trans_lock); ASSERT(trans); if (trans) { if (atomic_dec_and_test(&trans->pending_ordered)) wake_up(&trans->pending_wait); btrfs_put_transaction(trans); } } spin_lock(&root->ordered_extent_lock); list_del_init(&entry->root_extent_list); root->nr_ordered_extents--; trace_btrfs_ordered_extent_remove(BTRFS_I(inode), entry); if (!root->nr_ordered_extents) { spin_lock(&fs_info->ordered_root_lock); BUG_ON(list_empty(&root->ordered_root)); list_del_init(&root->ordered_root); spin_unlock(&fs_info->ordered_root_lock); } spin_unlock(&root->ordered_extent_lock); wake_up(&entry->wait); } static void btrfs_run_ordered_extent_work(struct btrfs_work *work) { struct btrfs_ordered_extent *ordered; ordered = container_of(work, struct btrfs_ordered_extent, flush_work); btrfs_start_ordered_extent(ordered->inode, ordered, 1); complete(&ordered->completion); } /* * wait for all the ordered extents in a root. This is done when balancing * space between drives. */ u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, const u64 range_start, const u64 range_len) { struct btrfs_fs_info *fs_info = root->fs_info; LIST_HEAD(splice); LIST_HEAD(skipped); LIST_HEAD(works); struct btrfs_ordered_extent *ordered, *next; u64 count = 0; const u64 range_end = range_start + range_len; mutex_lock(&root->ordered_extent_mutex); spin_lock(&root->ordered_extent_lock); list_splice_init(&root->ordered_extents, &splice); while (!list_empty(&splice) && nr) { ordered = list_first_entry(&splice, struct btrfs_ordered_extent, root_extent_list); if (range_end <= ordered->disk_bytenr || ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { list_move_tail(&ordered->root_extent_list, &skipped); cond_resched_lock(&root->ordered_extent_lock); continue; } list_move_tail(&ordered->root_extent_list, &root->ordered_extents); refcount_inc(&ordered->refs); spin_unlock(&root->ordered_extent_lock); btrfs_init_work(&ordered->flush_work, btrfs_run_ordered_extent_work, NULL, NULL); list_add_tail(&ordered->work_list, &works); btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); cond_resched(); spin_lock(&root->ordered_extent_lock); if (nr != U64_MAX) nr--; count++; } list_splice_tail(&skipped, &root->ordered_extents); list_splice_tail(&splice, &root->ordered_extents); spin_unlock(&root->ordered_extent_lock); list_for_each_entry_safe(ordered, next, &works, work_list) { list_del_init(&ordered->work_list); wait_for_completion(&ordered->completion); btrfs_put_ordered_extent(ordered); cond_resched(); } mutex_unlock(&root->ordered_extent_mutex); return count; } void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, const u64 range_start, const u64 range_len) { struct btrfs_root *root; struct list_head splice; u64 done; INIT_LIST_HEAD(&splice); mutex_lock(&fs_info->ordered_operations_mutex); spin_lock(&fs_info->ordered_root_lock); list_splice_init(&fs_info->ordered_roots, &splice); while (!list_empty(&splice) && nr) { root = list_first_entry(&splice, struct btrfs_root, ordered_root); root = btrfs_grab_root(root); BUG_ON(!root); list_move_tail(&root->ordered_root, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); done = btrfs_wait_ordered_extents(root, nr, range_start, range_len); btrfs_put_root(root); spin_lock(&fs_info->ordered_root_lock); if (nr != U64_MAX) { nr -= done; } } list_splice_tail(&splice, &fs_info->ordered_roots); spin_unlock(&fs_info->ordered_root_lock); mutex_unlock(&fs_info->ordered_operations_mutex); } /* * Used to start IO or wait for a given ordered extent to finish. * * If wait is one, this effectively waits on page writeback for all the pages * in the extent, and it waits on the io completion code to insert * metadata into the btree corresponding to the extent */ void btrfs_start_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry, int wait) { u64 start = entry->file_offset; u64 end = start + entry->num_bytes - 1; trace_btrfs_ordered_extent_start(BTRFS_I(inode), entry); /* * pages in the range can be dirty, clean or writeback. We * start IO on any dirty ones so the wait doesn't stall waiting * for the flusher thread to find them */ if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) filemap_fdatawrite_range(inode->i_mapping, start, end); if (wait) { wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); } } /* * Used to wait on ordered extents across a large range of bytes. */ int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) { int ret = 0; int ret_wb = 0; u64 end; u64 orig_end; struct btrfs_ordered_extent *ordered; if (start + len < start) { orig_end = INT_LIMIT(loff_t); } else { orig_end = start + len - 1; if (orig_end > INT_LIMIT(loff_t)) orig_end = INT_LIMIT(loff_t); } /* start IO across the range first to instantiate any delalloc * extents */ ret = btrfs_fdatawrite_range(inode, start, orig_end); if (ret) return ret; /* * If we have a writeback error don't return immediately. Wait first * for any ordered extents that haven't completed yet. This is to make * sure no one can dirty the same page ranges and call writepages() * before the ordered extents complete - to avoid failures (-EEXIST) * when adding the new ordered extents to the ordered tree. */ ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); end = orig_end; while (1) { ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); if (!ordered) break; if (ordered->file_offset > orig_end) { btrfs_put_ordered_extent(ordered); break; } if (ordered->file_offset + ordered->num_bytes <= start) { btrfs_put_ordered_extent(ordered); break; } btrfs_start_ordered_extent(inode, ordered, 1); end = ordered->file_offset; /* * If the ordered extent had an error save the error but don't * exit without waiting first for all other ordered extents in * the range to complete. */ if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) ret = -EIO; btrfs_put_ordered_extent(ordered); if (end == 0 || end == start) break; end--; } return ret_wb ? ret_wb : ret; } /* * find an ordered extent corresponding to file_offset. return NULL if * nothing is found, otherwise take a reference on the extent and return it */ struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &inode->ordered_tree; spin_lock_irq(&tree->lock); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, file_offset)) entry = NULL; if (entry) refcount_inc(&entry->refs); out: spin_unlock_irq(&tree->lock); return entry; } /* Since the DIO code tries to lock a wide area we need to look for any ordered * extents that exist in the range, rather than just the start of the range. */ struct btrfs_ordered_extent *btrfs_lookup_ordered_range( struct btrfs_inode *inode, u64 file_offset, u64 len) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &inode->ordered_tree; spin_lock_irq(&tree->lock); node = tree_search(tree, file_offset); if (!node) { node = tree_search(tree, file_offset + len); if (!node) goto out; } while (1) { entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (range_overlaps(entry, file_offset, len)) break; if (entry->file_offset >= file_offset + len) { entry = NULL; break; } entry = NULL; node = rb_next(node); if (!node) break; } out: if (entry) refcount_inc(&entry->refs); spin_unlock_irq(&tree->lock); return entry; } /* * Adds all ordered extents to the given list. The list ends up sorted by the * file_offset of the ordered extents. */ void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, struct list_head *list) { struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree; struct rb_node *n; ASSERT(inode_is_locked(&inode->vfs_inode)); spin_lock_irq(&tree->lock); for (n = rb_first(&tree->tree); n; n = rb_next(n)) { struct btrfs_ordered_extent *ordered; ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) continue; ASSERT(list_empty(&ordered->log_list)); list_add_tail(&ordered->log_list, list); refcount_inc(&ordered->refs); } spin_unlock_irq(&tree->lock); } /* * lookup and return any extent before 'file_offset'. NULL is returned * if none is found */ struct btrfs_ordered_extent * btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &inode->ordered_tree; spin_lock_irq(&tree->lock); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); refcount_inc(&entry->refs); out: spin_unlock_irq(&tree->lock); return entry; } /* * search the ordered extents for one corresponding to 'offset' and * try to find a checksum. This is used because we allow pages to * be reclaimed before their checksum is actually put into the btree */ int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, u8 *sum, int len) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_ordered_sum *ordered_sum; struct btrfs_ordered_extent *ordered; struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; unsigned long num_sectors; unsigned long i; u32 sectorsize = btrfs_inode_sectorsize(inode); const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); int index = 0; ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), offset); if (!ordered) return 0; spin_lock_irq(&tree->lock); list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { if (disk_bytenr >= ordered_sum->bytenr && disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { i = (disk_bytenr - ordered_sum->bytenr) >> inode->i_sb->s_blocksize_bits; num_sectors = ordered_sum->len >> inode->i_sb->s_blocksize_bits; num_sectors = min_t(int, len - index, num_sectors - i); memcpy(sum + index, ordered_sum->sums + i * csum_size, num_sectors * csum_size); index += (int)num_sectors * csum_size; if (index == len) goto out; disk_bytenr += num_sectors * sectorsize; } } out: spin_unlock_irq(&tree->lock); btrfs_put_ordered_extent(ordered); return index; } /* * btrfs_flush_ordered_range - Lock the passed range and ensures all pending * ordered extents in it are run to completion. * * @inode: Inode whose ordered tree is to be searched * @start: Beginning of range to flush * @end: Last byte of range to lock * @cached_state: If passed, will return the extent state responsible for the * locked range. It's the caller's responsibility to free the cached state. * * This function always returns with the given range locked, ensuring after it's * called no order extent can be pending. */ void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, struct extent_state **cached_state) { struct btrfs_ordered_extent *ordered; struct extent_state *cache = NULL; struct extent_state **cachedp = &cache; if (cached_state) cachedp = cached_state; while (1) { lock_extent_bits(&inode->io_tree, start, end, cachedp); ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); if (!ordered) { /* * If no external cached_state has been passed then * decrement the extra ref taken for cachedp since we * aren't exposing it outside of this function */ if (!cached_state) refcount_dec(&cache->refs); break; } unlock_extent_cached(&inode->io_tree, start, end, cachedp); btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1); btrfs_put_ordered_extent(ordered); } } int __init ordered_data_init(void) { btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", sizeof(struct btrfs_ordered_extent), 0, SLAB_MEM_SPREAD, NULL); if (!btrfs_ordered_extent_cache) return -ENOMEM; return 0; } void __cold ordered_data_exit(void) { kmem_cache_destroy(btrfs_ordered_extent_cache); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
You can’t perform that action at this time.