Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
b1992df
Documentation
arch
alpha
arm
avr32
blackfin
cris
frv
h8300
i386
ia64
m32r
m68k
m68knommu
mips
parisc
powerpc
ppc
s390
sh
sh64
sparc
sparc64
um
v850
x86
boot
crypto
ia32
kernel
lib
mach-default
mach-es7000
mach-generic
mach-visws
mach-voyager
math-emu
mm
Makefile
Makefile_32
Makefile_64
boot_ioremap_32.c
discontig_32.c
extable_32.c
extable_64.c
fault_32.c
fault_64.c
highmem_32.c
hugetlbpage.c
init_32.c
init_64.c
ioremap_32.c
ioremap_64.c
k8topology_64.c
mmap_32.c
mmap_64.c
numa_64.c
pageattr_32.c
pageattr_64.c
pgtable_32.c
srat_64.c
oprofile
pci
power
vdso
video
xen
x86_64
xtensa
block
crypto
drivers
fs
include
init
ipc
kernel
lib
mm
net
scripts
security
sound
usr
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
arch
/
x86
/
mm
/
fault_32.c
Copy path
Blame
Blame
Latest commit
History
History
654 lines (581 loc) · 16.9 KB
Breadcrumbs
linux
/
arch
/
x86
/
mm
/
fault_32.c
Top
File metadata and controls
Code
Blame
654 lines (581 loc) · 16.9 KB
Raw
/* * linux/arch/i386/mm/fault.c * * Copyright (C) 1995 Linus Torvalds */ #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/tty.h> #include <linux/vt_kern.h> /* For unblank_screen() */ #include <linux/highmem.h> #include <linux/bootmem.h> /* for max_low_pfn */ #include <linux/vmalloc.h> #include <linux/module.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <linux/kdebug.h> #include <linux/kprobes.h> #include <asm/system.h> #include <asm/desc.h> #include <asm/segment.h> extern void die(const char *,struct pt_regs *,long); #ifdef CONFIG_KPROBES static inline int notify_page_fault(struct pt_regs *regs) { int ret = 0; /* kprobe_running() needs smp_processor_id() */ if (!user_mode_vm(regs)) { preempt_disable(); if (kprobe_running() && kprobe_fault_handler(regs, 14)) ret = 1; preempt_enable(); } return ret; } #else static inline int notify_page_fault(struct pt_regs *regs) { return 0; } #endif /* * Return EIP plus the CS segment base. The segment limit is also * adjusted, clamped to the kernel/user address space (whichever is * appropriate), and returned in *eip_limit. * * The segment is checked, because it might have been changed by another * task between the original faulting instruction and here. * * If CS is no longer a valid code segment, or if EIP is beyond the * limit, or if it is a kernel address when CS is not a kernel segment, * then the returned value will be greater than *eip_limit. * * This is slow, but is very rarely executed. */ static inline unsigned long get_segment_eip(struct pt_regs *regs, unsigned long *eip_limit) { unsigned long eip = regs->eip; unsigned seg = regs->xcs & 0xffff; u32 seg_ar, seg_limit, base, *desc; /* Unlikely, but must come before segment checks. */ if (unlikely(regs->eflags & VM_MASK)) { base = seg << 4; *eip_limit = base + 0xffff; return base + (eip & 0xffff); } /* The standard kernel/user address space limit. */ *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg; /* By far the most common cases. */ if (likely(SEGMENT_IS_FLAT_CODE(seg))) return eip; /* Check the segment exists, is within the current LDT/GDT size, that kernel/user (ring 0..3) has the appropriate privilege, that it's a code segment, and get the limit. */ __asm__ ("larl %3,%0; lsll %3,%1" : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg)); if ((~seg_ar & 0x9800) || eip > seg_limit) { *eip_limit = 0; return 1; /* So that returned eip > *eip_limit. */ } /* Get the GDT/LDT descriptor base. When you look for races in this code remember that LDT and other horrors are only used in user space. */ if (seg & (1<<2)) { /* Must lock the LDT while reading it. */ mutex_lock(¤t->mm->context.lock); desc = current->mm->context.ldt; desc = (void *)desc + (seg & ~7); } else { /* Must disable preemption while reading the GDT. */ desc = (u32 *)get_cpu_gdt_table(get_cpu()); desc = (void *)desc + (seg & ~7); } /* Decode the code segment base from the descriptor */ base = get_desc_base((unsigned long *)desc); if (seg & (1<<2)) { mutex_unlock(¤t->mm->context.lock); } else put_cpu(); /* Adjust EIP and segment limit, and clamp at the kernel limit. It's legitimate for segments to wrap at 0xffffffff. */ seg_limit += base; if (seg_limit < *eip_limit && seg_limit >= base) *eip_limit = seg_limit; return eip + base; } /* * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. * Check that here and ignore it. */ static int __is_prefetch(struct pt_regs *regs, unsigned long addr) { unsigned long limit; unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit); int scan_more = 1; int prefetch = 0; int i; for (i = 0; scan_more && i < 15; i++) { unsigned char opcode; unsigned char instr_hi; unsigned char instr_lo; if (instr > (unsigned char *)limit) break; if (probe_kernel_address(instr, opcode)) break; instr_hi = opcode & 0xf0; instr_lo = opcode & 0x0f; instr++; switch (instr_hi) { case 0x20: case 0x30: /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */ scan_more = ((instr_lo & 7) == 0x6); break; case 0x60: /* 0x64 thru 0x67 are valid prefixes in all modes. */ scan_more = (instr_lo & 0xC) == 0x4; break; case 0xF0: /* 0xF0, 0xF2, and 0xF3 are valid prefixes */ scan_more = !instr_lo || (instr_lo>>1) == 1; break; case 0x00: /* Prefetch instruction is 0x0F0D or 0x0F18 */ scan_more = 0; if (instr > (unsigned char *)limit) break; if (probe_kernel_address(instr, opcode)) break; prefetch = (instr_lo == 0xF) && (opcode == 0x0D || opcode == 0x18); break; default: scan_more = 0; break; } } return prefetch; } static inline int is_prefetch(struct pt_regs *regs, unsigned long addr, unsigned long error_code) { if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD && boot_cpu_data.x86 >= 6)) { /* Catch an obscure case of prefetch inside an NX page. */ if (nx_enabled && (error_code & 16)) return 0; return __is_prefetch(regs, addr); } return 0; } static noinline void force_sig_info_fault(int si_signo, int si_code, unsigned long address, struct task_struct *tsk) { siginfo_t info; info.si_signo = si_signo; info.si_errno = 0; info.si_code = si_code; info.si_addr = (void __user *)address; force_sig_info(si_signo, &info, tsk); } fastcall void do_invalid_op(struct pt_regs *, unsigned long); static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) { unsigned index = pgd_index(address); pgd_t *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pgd += index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) return NULL; /* * set_pgd(pgd, *pgd_k); here would be useless on PAE * and redundant with the set_pmd() on non-PAE. As would * set_pud. */ pud = pud_offset(pgd, address); pud_k = pud_offset(pgd_k, address); if (!pud_present(*pud_k)) return NULL; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) return NULL; if (!pmd_present(*pmd)) { set_pmd(pmd, *pmd_k); arch_flush_lazy_mmu_mode(); } else BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); return pmd_k; } /* * Handle a fault on the vmalloc or module mapping area * * This assumes no large pages in there. */ static inline int vmalloc_fault(unsigned long address) { unsigned long pgd_paddr; pmd_t *pmd_k; pte_t *pte_k; /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "current" here. We might be inside * an interrupt in the middle of a task switch.. */ pgd_paddr = read_cr3(); pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); if (!pmd_k) return -1; pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) return -1; return 0; } int show_unhandled_signals = 1; /* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. * * error_code: * bit 0 == 0 means no page found, 1 means protection fault * bit 1 == 0 means read, 1 means write * bit 2 == 0 means kernel, 1 means user-mode * bit 3 == 1 means use of reserved bit detected * bit 4 == 1 means fault was an instruction fetch */ fastcall void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code) { struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct * vma; unsigned long address; int write, si_code; int fault; /* get the address */ address = read_cr2(); tsk = current; si_code = SEGV_MAPERR; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. * * This verifies that the fault happens in kernel space * (error_code & 4) == 0, and that the fault was not a * protection error (error_code & 9) == 0. */ if (unlikely(address >= TASK_SIZE)) { if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0) return; if (notify_page_fault(regs)) return; /* * Don't take the mm semaphore here. If we fixup a prefetch * fault we could otherwise deadlock. */ goto bad_area_nosemaphore; } if (notify_page_fault(regs)) return; /* It's safe to allow irq's after cr2 has been saved and the vmalloc fault has been handled. */ if (regs->eflags & (X86_EFLAGS_IF|VM_MASK)) local_irq_enable(); mm = tsk->mm; /* * If we're in an interrupt, have no user context or are running in an * atomic region then we must not take the fault.. */ if (in_atomic() || !mm) goto bad_area_nosemaphore; /* When running in the kernel we expect faults to occur only to * addresses in user space. All other faults represent errors in the * kernel and should generate an OOPS. Unfortunatly, in the case of an * erroneous fault occurring in a code path which already holds mmap_sem * we will deadlock attempting to validate the fault against the * address space. Luckily the kernel only validly references user * space from well defined areas of code, which are listed in the * exceptions table. * * As the vast majority of faults will be valid we will only perform * the source reference check when there is a possibilty of a deadlock. * Attempt to lock the address space, if we cannot we then validate the * source. If this is invalid we can skip the address space check, * thus avoiding the deadlock. */ if (!down_read_trylock(&mm->mmap_sem)) { if ((error_code & 4) == 0 && !search_exception_tables(regs->eip)) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); } vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (error_code & 4) { /* * Accessing the stack below %esp is always a bug. * The large cushion allows instructions like enter * and pusha to work. ("enter $65535,$31" pushes * 32 pointers and then decrements %esp by 65535.) */ if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp) goto bad_area; } if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: si_code = SEGV_ACCERR; write = 0; switch (error_code & 3) { default: /* 3: write, present */ /* fall through */ case 2: /* write, not present */ if (!(vma->vm_flags & VM_WRITE)) goto bad_area; write++; break; case 1: /* read, present */ goto bad_area; case 0: /* read, not present */ if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) goto bad_area; } survive: /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(mm, vma, address, write); if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; BUG(); } if (fault & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; /* * Did it hit the DOS screen memory VA from vm86 mode? */ if (regs->eflags & VM_MASK) { unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; if (bit < 32) tsk->thread.screen_bitmap |= 1 << bit; } up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (error_code & 4) { /* * It's possible to have interrupts off here. */ local_irq_enable(); /* * Valid to do another page fault here because this one came * from user space. */ if (is_prefetch(regs, address, error_code)) return; if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && printk_ratelimit()) { printk("%s%s[%d]: segfault at %08lx eip %08lx " "esp %08lx error %lx\n", tsk->pid > 1 ? KERN_INFO : KERN_EMERG, tsk->comm, tsk->pid, address, regs->eip, regs->esp, error_code); } tsk->thread.cr2 = address; /* Kernel addresses are always protection faults */ tsk->thread.error_code = error_code | (address >= TASK_SIZE); tsk->thread.trap_no = 14; force_sig_info_fault(SIGSEGV, si_code, address, tsk); return; } #ifdef CONFIG_X86_F00F_BUG /* * Pentium F0 0F C7 C8 bug workaround. */ if (boot_cpu_data.f00f_bug) { unsigned long nr; nr = (address - idt_descr.address) >> 3; if (nr == 6) { do_invalid_op(regs, 0); return; } } #endif no_context: /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) return; /* * Valid to do another page fault here, because if this fault * had been triggered by is_prefetch fixup_exception would have * handled it. */ if (is_prefetch(regs, address, error_code)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); if (oops_may_print()) { __typeof__(pte_val(__pte(0))) page; #ifdef CONFIG_X86_PAE if (error_code & 16) { pte_t *pte = lookup_address(address); if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) printk(KERN_CRIT "kernel tried to execute " "NX-protected page - exploit attempt? " "(uid: %d)\n", current->uid); } #endif if (address < PAGE_SIZE) printk(KERN_ALERT "BUG: unable to handle kernel NULL " "pointer dereference"); else printk(KERN_ALERT "BUG: unable to handle kernel paging" " request"); printk(" at virtual address %08lx\n",address); printk(KERN_ALERT "printing eip: %08lx ", regs->eip); page = read_cr3(); page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; #ifdef CONFIG_X86_PAE printk("*pdpt = %016Lx ", page); if ((page >> PAGE_SHIFT) < max_low_pfn && page & _PAGE_PRESENT) { page &= PAGE_MASK; page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)]; printk(KERN_ALERT "*pde = %016Lx ", page); page &= ~_PAGE_NX; } #else printk("*pde = %08lx ", page); #endif /* * We must not directly access the pte in the highpte * case if the page table is located in highmem. * And let's rather not kmap-atomic the pte, just in case * it's allocated already. */ if ((page >> PAGE_SHIFT) < max_low_pfn && (page & _PAGE_PRESENT) && !(page & _PAGE_PSE)) { page &= PAGE_MASK; page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)]; printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); } printk("\n"); } tsk->thread.cr2 = address; tsk->thread.trap_no = 14; tsk->thread.error_code = error_code; die("Oops", regs, error_code); bust_spinlocks(0); do_exit(SIGKILL); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (is_init(tsk)) { yield(); down_read(&mm->mmap_sem); goto survive; } printk("VM: killing process %s\n", tsk->comm); if (error_code & 4) do_group_exit(SIGKILL); goto no_context; do_sigbus: up_read(&mm->mmap_sem); /* Kernel mode? Handle exceptions or die */ if (!(error_code & 4)) goto no_context; /* User space => ok to do another page fault */ if (is_prefetch(regs, address, error_code)) return; tsk->thread.cr2 = address; tsk->thread.error_code = error_code; tsk->thread.trap_no = 14; force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); } void vmalloc_sync_all(void) { /* * Note that races in the updates of insync and start aren't * problematic: insync can only get set bits added, and updates to * start are only improving performance (without affecting correctness * if undone). */ static DECLARE_BITMAP(insync, PTRS_PER_PGD); static unsigned long start = TASK_SIZE; unsigned long address; if (SHARED_KERNEL_PMD) return; BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK); for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) { if (!test_bit(pgd_index(address), insync)) { unsigned long flags; struct page *page; spin_lock_irqsave(&pgd_lock, flags); for (page = pgd_list; page; page = (struct page *)page->index) if (!vmalloc_sync_one(page_address(page), address)) { BUG_ON(page != pgd_list); break; } spin_unlock_irqrestore(&pgd_lock, flags); if (!page) set_bit(pgd_index(address), insync); } if (address == start && test_bit(pgd_index(address), insync)) start = address + PGDIR_SIZE; } }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
You can’t perform that action at this time.