Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
b7b27aa
Documentation
arch
alpha
arc
arm
arm64
blackfin
c6x
cris
frv
h8300
hexagon
ia64
m32r
m68k
metag
microblaze
mips
mn10300
nios2
openrisc
parisc
powerpc
riscv
s390
score
sh
sparc
tile
um
unicore32
x86
boot
configs
crypto
entry
events
hyperv
ia32
include
kernel
kvm
Kconfig
Makefile
cpuid.c
cpuid.h
debugfs.c
emulate.c
hyperv.c
hyperv.h
i8254.c
i8254.h
i8259.c
ioapic.c
ioapic.h
irq.c
irq.h
irq_comm.c
kvm_cache_regs.h
lapic.c
lapic.h
mmu.c
mmu.h
mmu_audit.c
mmutrace.h
mtrr.c
page_track.c
paging_tmpl.h
pmu.c
pmu.h
pmu_amd.c
pmu_intel.c
svm.c
trace.h
tss.h
vmx.c
x86.c
x86.h
lib
math-emu
mm
net
oprofile
pci
platform
power
purgatory
ras
realmode
tools
um
video
xen
.gitignore
Kbuild
Kconfig
Kconfig.cpu
Kconfig.debug
Makefile
Makefile.um
Makefile_32.cpu
xtensa
.gitignore
Kconfig
block
certs
crypto
drivers
firmware
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
arch
/
x86
/
kvm
/
cpuid.c
Blame
Blame
Latest commit
History
History
905 lines (789 loc) · 23.3 KB
Breadcrumbs
linux
/
arch
/
x86
/
kvm
/
cpuid.c
Top
File metadata and controls
Code
Blame
905 lines (789 loc) · 23.3 KB
Raw
/* * Kernel-based Virtual Machine driver for Linux * cpuid support routines * * derived from arch/x86/kvm/x86.c * * Copyright 2011 Red Hat, Inc. and/or its affiliates. * Copyright IBM Corporation, 2008 * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include <linux/kvm_host.h> #include <linux/export.h> #include <linux/vmalloc.h> #include <linux/uaccess.h> #include <linux/sched/stat.h> #include <asm/processor.h> #include <asm/user.h> #include <asm/fpu/xstate.h> #include "cpuid.h" #include "lapic.h" #include "mmu.h" #include "trace.h" #include "pmu.h" static u32 xstate_required_size(u64 xstate_bv, bool compacted) { int feature_bit = 0; u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; xstate_bv &= XFEATURE_MASK_EXTEND; while (xstate_bv) { if (xstate_bv & 0x1) { u32 eax, ebx, ecx, edx, offset; cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); offset = compacted ? ret : ebx; ret = max(ret, offset + eax); } xstate_bv >>= 1; feature_bit++; } return ret; } bool kvm_mpx_supported(void) { return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) && kvm_x86_ops->mpx_supported()); } EXPORT_SYMBOL_GPL(kvm_mpx_supported); u64 kvm_supported_xcr0(void) { u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0; if (!kvm_mpx_supported()) xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); return xcr0; } #define F(x) bit(X86_FEATURE_##x) /* For scattered features from cpufeatures.h; we currently expose none */ #define KF(x) bit(KVM_CPUID_BIT_##x) int kvm_update_cpuid(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; struct kvm_lapic *apic = vcpu->arch.apic; best = kvm_find_cpuid_entry(vcpu, 1, 0); if (!best) return 0; /* Update OSXSAVE bit */ if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) { best->ecx &= ~F(OSXSAVE); if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) best->ecx |= F(OSXSAVE); } best->edx &= ~F(APIC); if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE) best->edx |= F(APIC); if (apic) { if (best->ecx & F(TSC_DEADLINE_TIMER)) apic->lapic_timer.timer_mode_mask = 3 << 17; else apic->lapic_timer.timer_mode_mask = 1 << 17; } best = kvm_find_cpuid_entry(vcpu, 7, 0); if (best) { /* Update OSPKE bit */ if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) { best->ecx &= ~F(OSPKE); if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) best->ecx |= F(OSPKE); } } best = kvm_find_cpuid_entry(vcpu, 0xD, 0); if (!best) { vcpu->arch.guest_supported_xcr0 = 0; vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; } else { vcpu->arch.guest_supported_xcr0 = (best->eax | ((u64)best->edx << 32)) & kvm_supported_xcr0(); vcpu->arch.guest_xstate_size = best->ebx = xstate_required_size(vcpu->arch.xcr0, false); } best = kvm_find_cpuid_entry(vcpu, 0xD, 1); if (best && (best->eax & (F(XSAVES) | F(XSAVEC)))) best->ebx = xstate_required_size(vcpu->arch.xcr0, true); /* * The existing code assumes virtual address is 48-bit or 57-bit in the * canonical address checks; exit if it is ever changed. */ best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); if (best) { int vaddr_bits = (best->eax & 0xff00) >> 8; if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) return -EINVAL; } /* Update physical-address width */ vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); kvm_mmu_reset_context(vcpu); kvm_pmu_refresh(vcpu); return 0; } static int is_efer_nx(void) { unsigned long long efer = 0; rdmsrl_safe(MSR_EFER, &efer); return efer & EFER_NX; } static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) { int i; struct kvm_cpuid_entry2 *e, *entry; entry = NULL; for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { e = &vcpu->arch.cpuid_entries[i]; if (e->function == 0x80000001) { entry = e; break; } } if (entry && (entry->edx & F(NX)) && !is_efer_nx()) { entry->edx &= ~F(NX); printk(KERN_INFO "kvm: guest NX capability removed\n"); } } int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *best; best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); if (!best || best->eax < 0x80000008) goto not_found; best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); if (best) return best->eax & 0xff; not_found: return 36; } EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr); /* when an old userspace process fills a new kernel module */ int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid *cpuid, struct kvm_cpuid_entry __user *entries) { int r, i; struct kvm_cpuid_entry *cpuid_entries = NULL; r = -E2BIG; if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) goto out; r = -ENOMEM; if (cpuid->nent) { cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent); if (!cpuid_entries) goto out; r = -EFAULT; if (copy_from_user(cpuid_entries, entries, cpuid->nent * sizeof(struct kvm_cpuid_entry))) goto out; } for (i = 0; i < cpuid->nent; i++) { vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; vcpu->arch.cpuid_entries[i].index = 0; vcpu->arch.cpuid_entries[i].flags = 0; vcpu->arch.cpuid_entries[i].padding[0] = 0; vcpu->arch.cpuid_entries[i].padding[1] = 0; vcpu->arch.cpuid_entries[i].padding[2] = 0; } vcpu->arch.cpuid_nent = cpuid->nent; cpuid_fix_nx_cap(vcpu); kvm_apic_set_version(vcpu); kvm_x86_ops->cpuid_update(vcpu); r = kvm_update_cpuid(vcpu); out: vfree(cpuid_entries); return r; } int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries) { int r; r = -E2BIG; if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) goto out; r = -EFAULT; if (copy_from_user(&vcpu->arch.cpuid_entries, entries, cpuid->nent * sizeof(struct kvm_cpuid_entry2))) goto out; vcpu->arch.cpuid_nent = cpuid->nent; kvm_apic_set_version(vcpu); kvm_x86_ops->cpuid_update(vcpu); r = kvm_update_cpuid(vcpu); out: return r; } int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries) { int r; r = -E2BIG; if (cpuid->nent < vcpu->arch.cpuid_nent) goto out; r = -EFAULT; if (copy_to_user(entries, &vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) goto out; return 0; out: cpuid->nent = vcpu->arch.cpuid_nent; return r; } static void cpuid_mask(u32 *word, int wordnum) { *word &= boot_cpu_data.x86_capability[wordnum]; } static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, u32 index) { entry->function = function; entry->index = index; cpuid_count(entry->function, entry->index, &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); entry->flags = 0; } static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry, u32 func, u32 index, int *nent, int maxnent) { switch (func) { case 0: entry->eax = 1; /* only one leaf currently */ ++*nent; break; case 1: entry->ecx = F(MOVBE); ++*nent; break; default: break; } entry->function = func; entry->index = index; return 0; } static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, u32 index, int *nent, int maxnent) { int r; unsigned f_nx = is_efer_nx() ? F(NX) : 0; #ifdef CONFIG_X86_64 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL) ? F(GBPAGES) : 0; unsigned f_lm = F(LM); #else unsigned f_gbpages = 0; unsigned f_lm = 0; #endif unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0; unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0; unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0; unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0; /* cpuid 1.edx */ const u32 kvm_cpuid_1_edx_x86_features = F(FPU) | F(VME) | F(DE) | F(PSE) | F(TSC) | F(MSR) | F(PAE) | F(MCE) | F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | 0 /* Reserved, DS, ACPI */ | F(MMX) | F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | 0 /* HTT, TM, Reserved, PBE */; /* cpuid 0x80000001.edx */ const u32 kvm_cpuid_8000_0001_edx_x86_features = F(FPU) | F(VME) | F(DE) | F(PSE) | F(TSC) | F(MSR) | F(PAE) | F(MCE) | F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | F(PAT) | F(PSE36) | 0 /* Reserved */ | f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp | 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); /* cpuid 1.ecx */ const u32 kvm_cpuid_1_ecx_x86_features = /* NOTE: MONITOR (and MWAIT) are emulated as NOP, * but *not* advertised to guests via CPUID ! */ F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | 0 /* DS-CPL, VMX, SMX, EST */ | 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ | F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | F(F16C) | F(RDRAND); /* cpuid 0x80000001.ecx */ const u32 kvm_cpuid_8000_0001_ecx_x86_features = F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM); /* cpuid 0xC0000001.edx */ const u32 kvm_cpuid_C000_0001_edx_x86_features = F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | F(PMM) | F(PMM_EN); /* cpuid 7.0.ebx */ const u32 kvm_cpuid_7_0_ebx_x86_features = F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) | F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) | F(SHA_NI) | F(AVX512BW) | F(AVX512VL); /* cpuid 0xD.1.eax */ const u32 kvm_cpuid_D_1_eax_x86_features = F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves; /* cpuid 7.0.ecx*/ const u32 kvm_cpuid_7_0_ecx_x86_features = F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ); /* cpuid 7.0.edx*/ const u32 kvm_cpuid_7_0_edx_x86_features = F(AVX512_4VNNIW) | F(AVX512_4FMAPS); /* all calls to cpuid_count() should be made on the same cpu */ get_cpu(); r = -E2BIG; if (*nent >= maxnent) goto out; do_cpuid_1_ent(entry, function, index); ++*nent; switch (function) { case 0: entry->eax = min(entry->eax, (u32)0xd); break; case 1: entry->edx &= kvm_cpuid_1_edx_x86_features; cpuid_mask(&entry->edx, CPUID_1_EDX); entry->ecx &= kvm_cpuid_1_ecx_x86_features; cpuid_mask(&entry->ecx, CPUID_1_ECX); /* we support x2apic emulation even if host does not support * it since we emulate x2apic in software */ entry->ecx |= F(X2APIC); break; /* function 2 entries are STATEFUL. That is, repeated cpuid commands * may return different values. This forces us to get_cpu() before * issuing the first command, and also to emulate this annoying behavior * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ case 2: { int t, times = entry->eax & 0xff; entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; for (t = 1; t < times; ++t) { if (*nent >= maxnent) goto out; do_cpuid_1_ent(&entry[t], function, 0); entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; ++*nent; } break; } /* function 4 has additional index. */ case 4: { int i, cache_type; entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; /* read more entries until cache_type is zero */ for (i = 1; ; ++i) { if (*nent >= maxnent) goto out; cache_type = entry[i - 1].eax & 0x1f; if (!cache_type) break; do_cpuid_1_ent(&entry[i], function, i); entry[i].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; ++*nent; } break; } case 6: /* Thermal management */ entry->eax = 0x4; /* allow ARAT */ entry->ebx = 0; entry->ecx = 0; entry->edx = 0; break; case 7: { entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; /* Mask ebx against host capability word 9 */ if (index == 0) { entry->ebx &= kvm_cpuid_7_0_ebx_x86_features; cpuid_mask(&entry->ebx, CPUID_7_0_EBX); // TSC_ADJUST is emulated entry->ebx |= F(TSC_ADJUST); entry->ecx &= kvm_cpuid_7_0_ecx_x86_features; cpuid_mask(&entry->ecx, CPUID_7_ECX); /* PKU is not yet implemented for shadow paging. */ if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) entry->ecx &= ~F(PKU); entry->edx &= kvm_cpuid_7_0_edx_x86_features; cpuid_mask(&entry->edx, CPUID_7_EDX); } else { entry->ebx = 0; entry->ecx = 0; entry->edx = 0; } entry->eax = 0; break; } case 9: break; case 0xa: { /* Architectural Performance Monitoring */ struct x86_pmu_capability cap; union cpuid10_eax eax; union cpuid10_edx edx; perf_get_x86_pmu_capability(&cap); /* * Only support guest architectural pmu on a host * with architectural pmu. */ if (!cap.version) memset(&cap, 0, sizeof(cap)); eax.split.version_id = min(cap.version, 2); eax.split.num_counters = cap.num_counters_gp; eax.split.bit_width = cap.bit_width_gp; eax.split.mask_length = cap.events_mask_len; edx.split.num_counters_fixed = cap.num_counters_fixed; edx.split.bit_width_fixed = cap.bit_width_fixed; edx.split.reserved = 0; entry->eax = eax.full; entry->ebx = cap.events_mask; entry->ecx = 0; entry->edx = edx.full; break; } /* function 0xb has additional index. */ case 0xb: { int i, level_type; entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; /* read more entries until level_type is zero */ for (i = 1; ; ++i) { if (*nent >= maxnent) goto out; level_type = entry[i - 1].ecx & 0xff00; if (!level_type) break; do_cpuid_1_ent(&entry[i], function, i); entry[i].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; ++*nent; } break; } case 0xd: { int idx, i; u64 supported = kvm_supported_xcr0(); entry->eax &= supported; entry->ebx = xstate_required_size(supported, false); entry->ecx = entry->ebx; entry->edx &= supported >> 32; entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; if (!supported) break; for (idx = 1, i = 1; idx < 64; ++idx) { u64 mask = ((u64)1 << idx); if (*nent >= maxnent) goto out; do_cpuid_1_ent(&entry[i], function, idx); if (idx == 1) { entry[i].eax &= kvm_cpuid_D_1_eax_x86_features; cpuid_mask(&entry[i].eax, CPUID_D_1_EAX); entry[i].ebx = 0; if (entry[i].eax & (F(XSAVES)|F(XSAVEC))) entry[i].ebx = xstate_required_size(supported, true); } else { if (entry[i].eax == 0 || !(supported & mask)) continue; if (WARN_ON_ONCE(entry[i].ecx & 1)) continue; } entry[i].ecx = 0; entry[i].edx = 0; entry[i].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; ++*nent; ++i; } break; } case KVM_CPUID_SIGNATURE: { static const char signature[12] = "KVMKVMKVM\0\0"; const u32 *sigptr = (const u32 *)signature; entry->eax = KVM_CPUID_FEATURES; entry->ebx = sigptr[0]; entry->ecx = sigptr[1]; entry->edx = sigptr[2]; break; } case KVM_CPUID_FEATURES: entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | (1 << KVM_FEATURE_NOP_IO_DELAY) | (1 << KVM_FEATURE_CLOCKSOURCE2) | (1 << KVM_FEATURE_ASYNC_PF) | (1 << KVM_FEATURE_PV_EOI) | (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | (1 << KVM_FEATURE_PV_UNHALT); if (sched_info_on()) entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); entry->ebx = 0; entry->ecx = 0; entry->edx = 0; break; case 0x80000000: entry->eax = min(entry->eax, 0x8000001a); break; case 0x80000001: entry->edx &= kvm_cpuid_8000_0001_edx_x86_features; cpuid_mask(&entry->edx, CPUID_8000_0001_EDX); entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features; cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX); break; case 0x80000007: /* Advanced power management */ /* invariant TSC is CPUID.80000007H:EDX[8] */ entry->edx &= (1 << 8); /* mask against host */ entry->edx &= boot_cpu_data.x86_power; entry->eax = entry->ebx = entry->ecx = 0; break; case 0x80000008: { unsigned g_phys_as = (entry->eax >> 16) & 0xff; unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); unsigned phys_as = entry->eax & 0xff; if (!g_phys_as) g_phys_as = phys_as; entry->eax = g_phys_as | (virt_as << 8); entry->ebx = entry->edx = 0; break; } case 0x80000019: entry->ecx = entry->edx = 0; break; case 0x8000001a: break; case 0x8000001d: break; /*Add support for Centaur's CPUID instruction*/ case 0xC0000000: /*Just support up to 0xC0000004 now*/ entry->eax = min(entry->eax, 0xC0000004); break; case 0xC0000001: entry->edx &= kvm_cpuid_C000_0001_edx_x86_features; cpuid_mask(&entry->edx, CPUID_C000_0001_EDX); break; case 3: /* Processor serial number */ case 5: /* MONITOR/MWAIT */ case 0xC0000002: case 0xC0000003: case 0xC0000004: default: entry->eax = entry->ebx = entry->ecx = entry->edx = 0; break; } kvm_x86_ops->set_supported_cpuid(function, entry); r = 0; out: put_cpu(); return r; } static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func, u32 idx, int *nent, int maxnent, unsigned int type) { if (type == KVM_GET_EMULATED_CPUID) return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent); return __do_cpuid_ent(entry, func, idx, nent, maxnent); } #undef F struct kvm_cpuid_param { u32 func; u32 idx; bool has_leaf_count; bool (*qualifier)(const struct kvm_cpuid_param *param); }; static bool is_centaur_cpu(const struct kvm_cpuid_param *param) { return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR; } static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, __u32 num_entries, unsigned int ioctl_type) { int i; __u32 pad[3]; if (ioctl_type != KVM_GET_EMULATED_CPUID) return false; /* * We want to make sure that ->padding is being passed clean from * userspace in case we want to use it for something in the future. * * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we * have to give ourselves satisfied only with the emulated side. /me * sheds a tear. */ for (i = 0; i < num_entries; i++) { if (copy_from_user(pad, entries[i].padding, sizeof(pad))) return true; if (pad[0] || pad[1] || pad[2]) return true; } return false; } int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries, unsigned int type) { struct kvm_cpuid_entry2 *cpuid_entries; int limit, nent = 0, r = -E2BIG, i; u32 func; static const struct kvm_cpuid_param param[] = { { .func = 0, .has_leaf_count = true }, { .func = 0x80000000, .has_leaf_count = true }, { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true }, { .func = KVM_CPUID_SIGNATURE }, { .func = KVM_CPUID_FEATURES }, }; if (cpuid->nent < 1) goto out; if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) cpuid->nent = KVM_MAX_CPUID_ENTRIES; if (sanity_check_entries(entries, cpuid->nent, type)) return -EINVAL; r = -ENOMEM; cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); if (!cpuid_entries) goto out; r = 0; for (i = 0; i < ARRAY_SIZE(param); i++) { const struct kvm_cpuid_param *ent = ¶m[i]; if (ent->qualifier && !ent->qualifier(ent)) continue; r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx, &nent, cpuid->nent, type); if (r) goto out_free; if (!ent->has_leaf_count) continue; limit = cpuid_entries[nent - 1].eax; for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func) r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx, &nent, cpuid->nent, type); if (r) goto out_free; } r = -EFAULT; if (copy_to_user(entries, cpuid_entries, nent * sizeof(struct kvm_cpuid_entry2))) goto out_free; cpuid->nent = nent; r = 0; out_free: vfree(cpuid_entries); out: return r; } static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) { struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; struct kvm_cpuid_entry2 *ej; int j = i; int nent = vcpu->arch.cpuid_nent; e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; /* when no next entry is found, the current entry[i] is reselected */ do { j = (j + 1) % nent; ej = &vcpu->arch.cpuid_entries[j]; } while (ej->function != e->function); ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; return j; } /* find an entry with matching function, matching index (if needed), and that * should be read next (if it's stateful) */ static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, u32 function, u32 index) { if (e->function != function) return 0; if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) return 0; if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) return 0; return 1; } struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, u32 function, u32 index) { int i; struct kvm_cpuid_entry2 *best = NULL; for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { struct kvm_cpuid_entry2 *e; e = &vcpu->arch.cpuid_entries[i]; if (is_matching_cpuid_entry(e, function, index)) { if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) move_to_next_stateful_cpuid_entry(vcpu, i); best = e; break; } } return best; } EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); /* * If no match is found, check whether we exceed the vCPU's limit * and return the content of the highest valid _standard_ leaf instead. * This is to satisfy the CPUID specification. */ static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu, u32 function, u32 index) { struct kvm_cpuid_entry2 *maxlevel; maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0); if (!maxlevel || maxlevel->eax >= function) return NULL; if (function & 0x80000000) { maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0); if (!maxlevel) return NULL; } return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index); } bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) { u32 function = *eax, index = *ecx; struct kvm_cpuid_entry2 *best; bool entry_found = true; best = kvm_find_cpuid_entry(vcpu, function, index); if (!best) { entry_found = false; if (!check_limit) goto out; best = check_cpuid_limit(vcpu, function, index); } out: if (best) { *eax = best->eax; *ebx = best->ebx; *ecx = best->ecx; *edx = best->edx; } else *eax = *ebx = *ecx = *edx = 0; trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found); return entry_found; } EXPORT_SYMBOL_GPL(kvm_cpuid); int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) { u32 eax, ebx, ecx, edx; if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) return 1; eax = kvm_register_read(vcpu, VCPU_REGS_RAX); ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true); kvm_register_write(vcpu, VCPU_REGS_RAX, eax); kvm_register_write(vcpu, VCPU_REGS_RBX, ebx); kvm_register_write(vcpu, VCPU_REGS_RCX, ecx); kvm_register_write(vcpu, VCPU_REGS_RDX, edx); return kvm_skip_emulated_instruction(vcpu); } EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
You can’t perform that action at this time.