Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
c5b6aba
Documentation
LICENSES
arch
block
certs
crypto
drivers
fs
include
init
io_uring
ipc
kernel
bpf
cgroup
configs
debug
dma
entry
events
futex
gcov
irq
kcsan
livepatch
locking
Makefile
irqflag-debug.c
lock_events.c
lock_events.h
lock_events_list.h
lockdep.c
lockdep_internals.h
lockdep_proc.c
lockdep_states.h
locktorture.c
mcs_spinlock.h
mutex-debug.c
mutex.c
mutex.h
osq_lock.c
percpu-rwsem.c
qrwlock.c
qspinlock.c
qspinlock.h
qspinlock_paravirt.h
qspinlock_stat.h
rtmutex.c
rtmutex_api.c
rtmutex_common.h
rwbase_rt.c
rwsem.c
semaphore.c
spinlock.c
spinlock_debug.c
spinlock_rt.c
test-ww_mutex.c
ww_mutex.h
ww_rt_mutex.c
module
power
printk
rcu
sched
time
trace
.gitignore
Kconfig.freezer
Kconfig.hz
Kconfig.kexec
Kconfig.locks
Kconfig.preempt
Makefile
acct.c
async.c
audit.c
audit.h
audit_fsnotify.c
audit_tree.c
audit_watch.c
auditfilter.c
auditsc.c
backtracetest.c
bounds.c
capability.c
cfi.c
compat.c
configs.c
context_tracking.c
cpu.c
cpu_pm.c
crash_core.c
crash_reserve.c
cred.c
delayacct.c
dma.c
elfcorehdr.c
exec_domain.c
exit.c
exit.h
extable.c
fail_function.c
fork.c
freezer.c
gen_kheaders.sh
groups.c
hung_task.c
iomem.c
irq_work.c
jump_label.c
kallsyms.c
kallsyms_internal.h
kallsyms_selftest.c
kallsyms_selftest.h
kcmp.c
kcov.c
kexec.c
kexec_core.c
kexec_elf.c
kexec_file.c
kexec_internal.h
kheaders.c
kprobes.c
ksyms_common.c
ksysfs.c
kthread.c
latencytop.c
module_signature.c
notifier.c
nsproxy.c
padata.c
panic.c
params.c
pid.c
pid_namespace.c
pid_sysctl.h
profile.c
ptrace.c
range.c
reboot.c
regset.c
relay.c
resource.c
resource_kunit.c
rseq.c
scftorture.c
scs.c
seccomp.c
signal.c
smp.c
smpboot.c
smpboot.h
softirq.c
stackleak.c
stacktrace.c
static_call.c
static_call_inline.c
stop_machine.c
sys.c
sys_ni.c
sysctl-test.c
sysctl.c
task_work.c
taskstats.c
torture.c
tracepoint.c
tsacct.c
ucount.c
uid16.c
uid16.h
umh.c
up.c
user-return-notifier.c
user.c
user_namespace.c
usermode_driver.c
utsname.c
utsname_sysctl.c
vhost_task.c
vmcore_info.c
watch_queue.c
watchdog.c
watchdog_buddy.c
watchdog_perf.c
workqueue.c
workqueue_internal.h
lib
mm
net
rust
samples
scripts
security
sound
tools
usr
virt
.clang-format
.clippy.toml
.cocciconfig
.editorconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
.rustfmt.toml
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
kernel
/
locking
/
mutex.c
Blame
Blame
Latest commit
History
History
1160 lines (985 loc) · 29.7 KB
Breadcrumbs
linux
/
kernel
/
locking
/
mutex.c
Top
File metadata and controls
Code
Blame
1160 lines (985 loc) · 29.7 KB
Raw
// SPDX-License-Identifier: GPL-2.0-only /* * kernel/locking/mutex.c * * Mutexes: blocking mutual exclusion locks * * Started by Ingo Molnar: * * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and * David Howells for suggestions and improvements. * * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline * from the -rt tree, where it was originally implemented for rtmutexes * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale * and Sven Dietrich. * * Also see Documentation/locking/mutex-design.rst. */ #include <linux/mutex.h> #include <linux/ww_mutex.h> #include <linux/sched/signal.h> #include <linux/sched/rt.h> #include <linux/sched/wake_q.h> #include <linux/sched/debug.h> #include <linux/export.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/debug_locks.h> #include <linux/osq_lock.h> #define CREATE_TRACE_POINTS #include <trace/events/lock.h> #ifndef CONFIG_PREEMPT_RT #include "mutex.h" #ifdef CONFIG_DEBUG_MUTEXES # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond) #else # define MUTEX_WARN_ON(cond) #endif void __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) { atomic_long_set(&lock->owner, 0); raw_spin_lock_init(&lock->wait_lock); INIT_LIST_HEAD(&lock->wait_list); #ifdef CONFIG_MUTEX_SPIN_ON_OWNER osq_lock_init(&lock->osq); #endif debug_mutex_init(lock, name, key); } EXPORT_SYMBOL(__mutex_init); static inline struct task_struct *__owner_task(unsigned long owner) { return (struct task_struct *)(owner & ~MUTEX_FLAGS); } bool mutex_is_locked(struct mutex *lock) { return __mutex_owner(lock) != NULL; } EXPORT_SYMBOL(mutex_is_locked); static inline unsigned long __owner_flags(unsigned long owner) { return owner & MUTEX_FLAGS; } /* Do not use the return value as a pointer directly. */ unsigned long mutex_get_owner(struct mutex *lock) { unsigned long owner = atomic_long_read(&lock->owner); return (unsigned long)__owner_task(owner); } /* * Returns: __mutex_owner(lock) on failure or NULL on success. */ static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff) { unsigned long owner, curr = (unsigned long)current; owner = atomic_long_read(&lock->owner); for (;;) { /* must loop, can race against a flag */ unsigned long flags = __owner_flags(owner); unsigned long task = owner & ~MUTEX_FLAGS; if (task) { if (flags & MUTEX_FLAG_PICKUP) { if (task != curr) break; flags &= ~MUTEX_FLAG_PICKUP; } else if (handoff) { if (flags & MUTEX_FLAG_HANDOFF) break; flags |= MUTEX_FLAG_HANDOFF; } else { break; } } else { MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP)); task = curr; } if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) { if (task == curr) return NULL; break; } } return __owner_task(owner); } /* * Trylock or set HANDOFF */ static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff) { return !__mutex_trylock_common(lock, handoff); } /* * Actual trylock that will work on any unlocked state. */ static inline bool __mutex_trylock(struct mutex *lock) { return !__mutex_trylock_common(lock, false); } #ifndef CONFIG_DEBUG_LOCK_ALLOC /* * Lockdep annotations are contained to the slow paths for simplicity. * There is nothing that would stop spreading the lockdep annotations outwards * except more code. */ /* * Optimistic trylock that only works in the uncontended case. Make sure to * follow with a __mutex_trylock() before failing. */ static __always_inline bool __mutex_trylock_fast(struct mutex *lock) { unsigned long curr = (unsigned long)current; unsigned long zero = 0UL; MUTEX_WARN_ON(lock->magic != lock); if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) return true; return false; } static __always_inline bool __mutex_unlock_fast(struct mutex *lock) { unsigned long curr = (unsigned long)current; return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL); } #endif static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) { atomic_long_or(flag, &lock->owner); } static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) { atomic_long_andnot(flag, &lock->owner); } static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) { return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; } /* * Add @waiter to a given location in the lock wait_list and set the * FLAG_WAITERS flag if it's the first waiter. */ static void __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, struct list_head *list) { #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER WRITE_ONCE(current->blocker_mutex, lock); #endif debug_mutex_add_waiter(lock, waiter, current); list_add_tail(&waiter->list, list); if (__mutex_waiter_is_first(lock, waiter)) __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); } static void __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter) { list_del(&waiter->list); if (likely(list_empty(&lock->wait_list))) __mutex_clear_flag(lock, MUTEX_FLAGS); debug_mutex_remove_waiter(lock, waiter, current); #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER WRITE_ONCE(current->blocker_mutex, NULL); #endif } /* * Give up ownership to a specific task, when @task = NULL, this is equivalent * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves * WAITERS. Provides RELEASE semantics like a regular unlock, the * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. */ static void __mutex_handoff(struct mutex *lock, struct task_struct *task) { unsigned long owner = atomic_long_read(&lock->owner); for (;;) { unsigned long new; MUTEX_WARN_ON(__owner_task(owner) != current); MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); new = (owner & MUTEX_FLAG_WAITERS); new |= (unsigned long)task; if (task) new |= MUTEX_FLAG_PICKUP; if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new)) break; } } #ifndef CONFIG_DEBUG_LOCK_ALLOC /* * We split the mutex lock/unlock logic into separate fastpath and * slowpath functions, to reduce the register pressure on the fastpath. * We also put the fastpath first in the kernel image, to make sure the * branch is predicted by the CPU as default-untaken. */ static void __sched __mutex_lock_slowpath(struct mutex *lock); /** * mutex_lock - acquire the mutex * @lock: the mutex to be acquired * * Lock the mutex exclusively for this task. If the mutex is not * available right now, it will sleep until it can get it. * * The mutex must later on be released by the same task that * acquired it. Recursive locking is not allowed. The task * may not exit without first unlocking the mutex. Also, kernel * memory where the mutex resides must not be freed with * the mutex still locked. The mutex must first be initialized * (or statically defined) before it can be locked. memset()-ing * the mutex to 0 is not allowed. * * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging * checks that will enforce the restrictions and will also do * deadlock debugging) * * This function is similar to (but not equivalent to) down(). */ void __sched mutex_lock(struct mutex *lock) { might_sleep(); if (!__mutex_trylock_fast(lock)) __mutex_lock_slowpath(lock); } EXPORT_SYMBOL(mutex_lock); #endif #include "ww_mutex.h" #ifdef CONFIG_MUTEX_SPIN_ON_OWNER /* * Trylock variant that returns the owning task on failure. */ static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) { return __mutex_trylock_common(lock, false); } static inline bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) { struct ww_mutex *ww; ww = container_of(lock, struct ww_mutex, base); /* * If ww->ctx is set the contents are undefined, only * by acquiring wait_lock there is a guarantee that * they are not invalid when reading. * * As such, when deadlock detection needs to be * performed the optimistic spinning cannot be done. * * Check this in every inner iteration because we may * be racing against another thread's ww_mutex_lock. */ if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) return false; /* * If we aren't on the wait list yet, cancel the spin * if there are waiters. We want to avoid stealing the * lock from a waiter with an earlier stamp, since the * other thread may already own a lock that we also * need. */ if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) return false; /* * Similarly, stop spinning if we are no longer the * first waiter. */ if (waiter && !__mutex_waiter_is_first(lock, waiter)) return false; return true; } /* * Look out! "owner" is an entirely speculative pointer access and not * reliable. * * "noinline" so that this function shows up on perf profiles. */ static noinline bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) { bool ret = true; lockdep_assert_preemption_disabled(); while (__mutex_owner(lock) == owner) { /* * Ensure we emit the owner->on_cpu, dereference _after_ * checking lock->owner still matches owner. And we already * disabled preemption which is equal to the RCU read-side * crital section in optimistic spinning code. Thus the * task_strcut structure won't go away during the spinning * period */ barrier(); /* * Use vcpu_is_preempted to detect lock holder preemption issue. */ if (!owner_on_cpu(owner) || need_resched()) { ret = false; break; } if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { ret = false; break; } cpu_relax(); } return ret; } /* * Initial check for entering the mutex spinning loop */ static inline int mutex_can_spin_on_owner(struct mutex *lock) { struct task_struct *owner; int retval = 1; lockdep_assert_preemption_disabled(); if (need_resched()) return 0; /* * We already disabled preemption which is equal to the RCU read-side * crital section in optimistic spinning code. Thus the task_strcut * structure won't go away during the spinning period. */ owner = __mutex_owner(lock); if (owner) retval = owner_on_cpu(owner); /* * If lock->owner is not set, the mutex has been released. Return true * such that we'll trylock in the spin path, which is a faster option * than the blocking slow path. */ return retval; } /* * Optimistic spinning. * * We try to spin for acquisition when we find that the lock owner * is currently running on a (different) CPU and while we don't * need to reschedule. The rationale is that if the lock owner is * running, it is likely to release the lock soon. * * The mutex spinners are queued up using MCS lock so that only one * spinner can compete for the mutex. However, if mutex spinning isn't * going to happen, there is no point in going through the lock/unlock * overhead. * * Returns true when the lock was taken, otherwise false, indicating * that we need to jump to the slowpath and sleep. * * The waiter flag is set to true if the spinner is a waiter in the wait * queue. The waiter-spinner will spin on the lock directly and concurrently * with the spinner at the head of the OSQ, if present, until the owner is * changed to itself. */ static __always_inline bool mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) { if (!waiter) { /* * The purpose of the mutex_can_spin_on_owner() function is * to eliminate the overhead of osq_lock() and osq_unlock() * in case spinning isn't possible. As a waiter-spinner * is not going to take OSQ lock anyway, there is no need * to call mutex_can_spin_on_owner(). */ if (!mutex_can_spin_on_owner(lock)) goto fail; /* * In order to avoid a stampede of mutex spinners trying to * acquire the mutex all at once, the spinners need to take a * MCS (queued) lock first before spinning on the owner field. */ if (!osq_lock(&lock->osq)) goto fail; } for (;;) { struct task_struct *owner; /* Try to acquire the mutex... */ owner = __mutex_trylock_or_owner(lock); if (!owner) break; /* * There's an owner, wait for it to either * release the lock or go to sleep. */ if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) goto fail_unlock; /* * The cpu_relax() call is a compiler barrier which forces * everything in this loop to be re-loaded. We don't need * memory barriers as we'll eventually observe the right * values at the cost of a few extra spins. */ cpu_relax(); } if (!waiter) osq_unlock(&lock->osq); return true; fail_unlock: if (!waiter) osq_unlock(&lock->osq); fail: /* * If we fell out of the spin path because of need_resched(), * reschedule now, before we try-lock the mutex. This avoids getting * scheduled out right after we obtained the mutex. */ if (need_resched()) { /* * We _should_ have TASK_RUNNING here, but just in case * we do not, make it so, otherwise we might get stuck. */ __set_current_state(TASK_RUNNING); schedule_preempt_disabled(); } return false; } #else static __always_inline bool mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) { return false; } #endif static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); /** * mutex_unlock - release the mutex * @lock: the mutex to be released * * Unlock a mutex that has been locked by this task previously. * * This function must not be used in interrupt context. Unlocking * of a not locked mutex is not allowed. * * The caller must ensure that the mutex stays alive until this function has * returned - mutex_unlock() can NOT directly be used to release an object such * that another concurrent task can free it. * Mutexes are different from spinlocks & refcounts in this aspect. * * This function is similar to (but not equivalent to) up(). */ void __sched mutex_unlock(struct mutex *lock) { #ifndef CONFIG_DEBUG_LOCK_ALLOC if (__mutex_unlock_fast(lock)) return; #endif __mutex_unlock_slowpath(lock, _RET_IP_); } EXPORT_SYMBOL(mutex_unlock); /** * ww_mutex_unlock - release the w/w mutex * @lock: the mutex to be released * * Unlock a mutex that has been locked by this task previously with any of the * ww_mutex_lock* functions (with or without an acquire context). It is * forbidden to release the locks after releasing the acquire context. * * This function must not be used in interrupt context. Unlocking * of a unlocked mutex is not allowed. */ void __sched ww_mutex_unlock(struct ww_mutex *lock) { __ww_mutex_unlock(lock); mutex_unlock(&lock->base); } EXPORT_SYMBOL(ww_mutex_unlock); /* * Lock a mutex (possibly interruptible), slowpath: */ static __always_inline int __sched __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass, struct lockdep_map *nest_lock, unsigned long ip, struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) { DEFINE_WAKE_Q(wake_q); struct mutex_waiter waiter; struct ww_mutex *ww; unsigned long flags; int ret; if (!use_ww_ctx) ww_ctx = NULL; might_sleep(); MUTEX_WARN_ON(lock->magic != lock); ww = container_of(lock, struct ww_mutex, base); if (ww_ctx) { if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) return -EALREADY; /* * Reset the wounded flag after a kill. No other process can * race and wound us here since they can't have a valid owner * pointer if we don't have any locks held. */ if (ww_ctx->acquired == 0) ww_ctx->wounded = 0; #ifdef CONFIG_DEBUG_LOCK_ALLOC nest_lock = &ww_ctx->dep_map; #endif } preempt_disable(); mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); if (__mutex_trylock(lock) || mutex_optimistic_spin(lock, ww_ctx, NULL)) { /* got the lock, yay! */ lock_acquired(&lock->dep_map, ip); if (ww_ctx) ww_mutex_set_context_fastpath(ww, ww_ctx); trace_contention_end(lock, 0); preempt_enable(); return 0; } raw_spin_lock_irqsave(&lock->wait_lock, flags); /* * After waiting to acquire the wait_lock, try again. */ if (__mutex_trylock(lock)) { if (ww_ctx) __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); goto skip_wait; } debug_mutex_lock_common(lock, &waiter); waiter.task = current; if (use_ww_ctx) waiter.ww_ctx = ww_ctx; lock_contended(&lock->dep_map, ip); if (!use_ww_ctx) { /* add waiting tasks to the end of the waitqueue (FIFO): */ __mutex_add_waiter(lock, &waiter, &lock->wait_list); } else { /* * Add in stamp order, waking up waiters that must kill * themselves. */ ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q); if (ret) goto err_early_kill; } set_current_state(state); trace_contention_begin(lock, LCB_F_MUTEX); for (;;) { bool first; /* * Once we hold wait_lock, we're serialized against * mutex_unlock() handing the lock off to us, do a trylock * before testing the error conditions to make sure we pick up * the handoff. */ if (__mutex_trylock(lock)) goto acquired; /* * Check for signals and kill conditions while holding * wait_lock. This ensures the lock cancellation is ordered * against mutex_unlock() and wake-ups do not go missing. */ if (signal_pending_state(state, current)) { ret = -EINTR; goto err; } if (ww_ctx) { ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); if (ret) goto err; } raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); schedule_preempt_disabled(); first = __mutex_waiter_is_first(lock, &waiter); set_current_state(state); /* * Here we order against unlock; we must either see it change * state back to RUNNING and fall through the next schedule(), * or we must see its unlock and acquire. */ if (__mutex_trylock_or_handoff(lock, first)) break; if (first) { trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN); if (mutex_optimistic_spin(lock, ww_ctx, &waiter)) break; trace_contention_begin(lock, LCB_F_MUTEX); } raw_spin_lock_irqsave(&lock->wait_lock, flags); } raw_spin_lock_irqsave(&lock->wait_lock, flags); acquired: __set_current_state(TASK_RUNNING); if (ww_ctx) { /* * Wound-Wait; we stole the lock (!first_waiter), check the * waiters as anyone might want to wound us. */ if (!ww_ctx->is_wait_die && !__mutex_waiter_is_first(lock, &waiter)) __ww_mutex_check_waiters(lock, ww_ctx, &wake_q); } __mutex_remove_waiter(lock, &waiter); debug_mutex_free_waiter(&waiter); skip_wait: /* got the lock - cleanup and rejoice! */ lock_acquired(&lock->dep_map, ip); trace_contention_end(lock, 0); if (ww_ctx) ww_mutex_lock_acquired(ww, ww_ctx); raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); preempt_enable(); return 0; err: __set_current_state(TASK_RUNNING); __mutex_remove_waiter(lock, &waiter); err_early_kill: trace_contention_end(lock, ret); raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); debug_mutex_free_waiter(&waiter); mutex_release(&lock->dep_map, ip); preempt_enable(); return ret; } static int __sched __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, struct lockdep_map *nest_lock, unsigned long ip) { return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); } static int __sched __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass, unsigned long ip, struct ww_acquire_ctx *ww_ctx) { return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true); } /** * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context * @ww: mutex to lock * @ww_ctx: optional w/w acquire context * * Trylocks a mutex with the optional acquire context; no deadlock detection is * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise. * * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is * specified, -EALREADY handling may happen in calls to ww_mutex_trylock. * * A mutex acquired with this function must be released with ww_mutex_unlock. */ int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) { if (!ww_ctx) return mutex_trylock(&ww->base); MUTEX_WARN_ON(ww->base.magic != &ww->base); /* * Reset the wounded flag after a kill. No other process can * race and wound us here, since they can't have a valid owner * pointer if we don't have any locks held. */ if (ww_ctx->acquired == 0) ww_ctx->wounded = 0; if (__mutex_trylock(&ww->base)) { ww_mutex_set_context_fastpath(ww, ww_ctx); mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_); return 1; } return 0; } EXPORT_SYMBOL(ww_mutex_trylock); #ifdef CONFIG_DEBUG_LOCK_ALLOC void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass) { __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); } EXPORT_SYMBOL_GPL(mutex_lock_nested); void __sched _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) { __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); } EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); int __sched mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) { return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); } EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); int __sched mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) { return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); } EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) { int token; might_sleep(); token = io_schedule_prepare(); __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_, NULL, 0); io_schedule_finish(token); } EXPORT_SYMBOL_GPL(mutex_lock_io_nested); static inline int ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) { #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH unsigned tmp; if (ctx->deadlock_inject_countdown-- == 0) { tmp = ctx->deadlock_inject_interval; if (tmp > UINT_MAX/4) tmp = UINT_MAX; else tmp = tmp*2 + tmp + tmp/2; ctx->deadlock_inject_interval = tmp; ctx->deadlock_inject_countdown = tmp; ctx->contending_lock = lock; ww_mutex_unlock(lock); return -EDEADLK; } #endif return 0; } int __sched ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) { int ret; might_sleep(); ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, _RET_IP_, ctx); if (!ret && ctx && ctx->acquired > 1) return ww_mutex_deadlock_injection(lock, ctx); return ret; } EXPORT_SYMBOL_GPL(ww_mutex_lock); int __sched ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) { int ret; might_sleep(); ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, _RET_IP_, ctx); if (!ret && ctx && ctx->acquired > 1) return ww_mutex_deadlock_injection(lock, ctx); return ret; } EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); #endif /* * Release the lock, slowpath: */ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) { struct task_struct *next = NULL; DEFINE_WAKE_Q(wake_q); unsigned long owner; unsigned long flags; mutex_release(&lock->dep_map, ip); /* * Release the lock before (potentially) taking the spinlock such that * other contenders can get on with things ASAP. * * Except when HANDOFF, in that case we must not clear the owner field, * but instead set it to the top waiter. */ owner = atomic_long_read(&lock->owner); for (;;) { MUTEX_WARN_ON(__owner_task(owner) != current); MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP); if (owner & MUTEX_FLAG_HANDOFF) break; if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) { if (owner & MUTEX_FLAG_WAITERS) break; return; } } raw_spin_lock_irqsave(&lock->wait_lock, flags); debug_mutex_unlock(lock); if (!list_empty(&lock->wait_list)) { /* get the first entry from the wait-list: */ struct mutex_waiter *waiter = list_first_entry(&lock->wait_list, struct mutex_waiter, list); next = waiter->task; debug_mutex_wake_waiter(lock, waiter); wake_q_add(&wake_q, next); } if (owner & MUTEX_FLAG_HANDOFF) __mutex_handoff(lock, next); raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q); } #ifndef CONFIG_DEBUG_LOCK_ALLOC /* * Here come the less common (and hence less performance-critical) APIs: * mutex_lock_interruptible() and mutex_trylock(). */ static noinline int __sched __mutex_lock_killable_slowpath(struct mutex *lock); static noinline int __sched __mutex_lock_interruptible_slowpath(struct mutex *lock); /** * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. * @lock: The mutex to be acquired. * * Lock the mutex like mutex_lock(). If a signal is delivered while the * process is sleeping, this function will return without acquiring the * mutex. * * Context: Process context. * Return: 0 if the lock was successfully acquired or %-EINTR if a * signal arrived. */ int __sched mutex_lock_interruptible(struct mutex *lock) { might_sleep(); if (__mutex_trylock_fast(lock)) return 0; return __mutex_lock_interruptible_slowpath(lock); } EXPORT_SYMBOL(mutex_lock_interruptible); /** * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. * @lock: The mutex to be acquired. * * Lock the mutex like mutex_lock(). If a signal which will be fatal to * the current process is delivered while the process is sleeping, this * function will return without acquiring the mutex. * * Context: Process context. * Return: 0 if the lock was successfully acquired or %-EINTR if a * fatal signal arrived. */ int __sched mutex_lock_killable(struct mutex *lock) { might_sleep(); if (__mutex_trylock_fast(lock)) return 0; return __mutex_lock_killable_slowpath(lock); } EXPORT_SYMBOL(mutex_lock_killable); /** * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O * @lock: The mutex to be acquired. * * Lock the mutex like mutex_lock(). While the task is waiting for this * mutex, it will be accounted as being in the IO wait state by the * scheduler. * * Context: Process context. */ void __sched mutex_lock_io(struct mutex *lock) { int token; token = io_schedule_prepare(); mutex_lock(lock); io_schedule_finish(token); } EXPORT_SYMBOL_GPL(mutex_lock_io); static noinline void __sched __mutex_lock_slowpath(struct mutex *lock) { __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); } static noinline int __sched __mutex_lock_killable_slowpath(struct mutex *lock) { return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); } static noinline int __sched __mutex_lock_interruptible_slowpath(struct mutex *lock) { return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); } static noinline int __sched __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) { return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, _RET_IP_, ctx); } static noinline int __sched __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) { return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, _RET_IP_, ctx); } #endif #ifndef CONFIG_DEBUG_LOCK_ALLOC /** * mutex_trylock - try to acquire the mutex, without waiting * @lock: the mutex to be acquired * * Try to acquire the mutex atomically. Returns 1 if the mutex * has been acquired successfully, and 0 on contention. * * NOTE: this function follows the spin_trylock() convention, so * it is negated from the down_trylock() return values! Be careful * about this when converting semaphore users to mutexes. * * This function must not be used in interrupt context. The * mutex must be released by the same task that acquired it. */ int __sched mutex_trylock(struct mutex *lock) { MUTEX_WARN_ON(lock->magic != lock); return __mutex_trylock(lock); } EXPORT_SYMBOL(mutex_trylock); #else int __sched _mutex_trylock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock) { bool locked; MUTEX_WARN_ON(lock->magic != lock); locked = __mutex_trylock(lock); if (locked) mutex_acquire_nest(&lock->dep_map, 0, 1, nest_lock, _RET_IP_); return locked; } EXPORT_SYMBOL(_mutex_trylock_nest_lock); #endif #ifndef CONFIG_DEBUG_LOCK_ALLOC int __sched ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) { might_sleep(); if (__mutex_trylock_fast(&lock->base)) { if (ctx) ww_mutex_set_context_fastpath(lock, ctx); return 0; } return __ww_mutex_lock_slowpath(lock, ctx); } EXPORT_SYMBOL(ww_mutex_lock); int __sched ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) { might_sleep(); if (__mutex_trylock_fast(&lock->base)) { if (ctx) ww_mutex_set_context_fastpath(lock, ctx); return 0; } return __ww_mutex_lock_interruptible_slowpath(lock, ctx); } EXPORT_SYMBOL(ww_mutex_lock_interruptible); #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ #endif /* !CONFIG_PREEMPT_RT */ EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin); EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end); /** * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 * @cnt: the atomic which we are to dec * @lock: the mutex to return holding if we dec to 0 * * return true and hold lock if we dec to 0, return false otherwise */ int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) { /* dec if we can't possibly hit 0 */ if (atomic_add_unless(cnt, -1, 1)) return 0; /* we might hit 0, so take the lock */ mutex_lock(lock); if (!atomic_dec_and_test(cnt)) { /* when we actually did the dec, we didn't hit 0 */ mutex_unlock(lock); return 0; } /* we hit 0, and we hold the lock */ return 1; } EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
You can’t perform that action at this time.