Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
c6653f4
Documentation
LICENSES
arch
alpha
arc
arm
arm64
csky
hexagon
loongarch
m68k
microblaze
mips
nios2
openrisc
parisc
powerpc
boot
configs
crypto
include
kernel
ptrace
syscalls
trace
vdso
.gitignore
85xx_entry_mapping.S
Makefile
align.c
asm-offsets.c
audit.c
audit_32.h
btext.c
cacheinfo.c
cacheinfo.h
compat_audit.c
cpu_setup_44x.S
cpu_setup_6xx.S
cpu_setup_e500.S
cpu_setup_pa6t.S
cpu_setup_power.c
cpu_setup_ppc970.S
cpu_specs.h
cpu_specs_40x.h
cpu_specs_44x.h
cpu_specs_47x.h
cpu_specs_85xx.h
cpu_specs_8xx.h
cpu_specs_book3s_32.h
cpu_specs_book3s_64.h
cpu_specs_e500mc.h
cputable.c
crash_dump.c
dawr.c
dbell.c
dexcr.c
dma-iommu.c
dma-mask.c
dma-swiotlb.c
dt_cpu_ftrs.c
early_32.c
eeh.c
eeh_cache.c
eeh_driver.c
eeh_event.c
eeh_pe.c
eeh_sysfs.c
entry_32.S
epapr_hcalls.S
epapr_paravirt.c
exceptions-64e.S
exceptions-64s.S
fadump.c
firmware.c
fpu.S
head_32.h
head_40x.S
head_44x.S
head_64.S
head_85xx.S
head_8xx.S
head_book3s_32.S
head_booke.h
hw_breakpoint.c
hw_breakpoint_constraints.c
idle.c
idle_64e.S
idle_6xx.S
idle_85xx.S
idle_book3s.S
ima_arch.c
interrupt.c
interrupt_64.S
io-workarounds.c
io.c
iomap.c
iommu.c
irq.c
irq_64.c
isa-bridge.c
jump_label.c
kdebugfs.c
kgdb.c
kprobes-ftrace.c
kprobes.c
kvm.c
kvm_emul.S
l2cr_6xx.S
legacy_serial.c
mce.c
mce_power.c
misc.S
misc_32.S
misc_64.S
module.c
module_32.c
module_64.c
msi.c
note.S
nvram_64.c
of_platform.c
optprobes.c
optprobes_head.S
paca.c
pci-common.c
pci-hotplug.c
pci_32.c
pci_64.c
pci_dn.c
pci_of_scan.c
pmc.c
ppc_save_regs.S
proc_powerpc.c
process.c
prom.c
prom_entry_64.S
prom_init.c
prom_init_check.sh
prom_parse.c
reloc_32.S
reloc_64.S
rtas-proc.c
rtas-rtc.c
rtas.c
rtas_entry.S
rtas_flash.c
rtas_pci.c
rtasd.c
secure_boot.c
security.c
secvar-ops.c
secvar-sysfs.c
setup-common.c
setup.h
setup_32.c
setup_64.c
signal.c
signal.h
signal_32.c
signal_64.c
smp-tbsync.c
smp.c
stacktrace.c
static_call.c
suspend.c
switch.S
swsusp.c
swsusp_32.S
swsusp_64.c
swsusp_85xx.S
swsusp_asm64.S
sys_ppc32.c
syscall.c
syscalls.c
sysfs.c
systbl.c
tau_6xx.c
time.c
tm.S
traps.c
ucall.S
udbg.c
udbg_16550.c
uprobes.c
vdso.c
vdso32_wrapper.S
vdso64_wrapper.S
vecemu.c
vector.S
vmlinux.lds.S
watchdog.c
kexec
kvm
lib
math-emu
mm
net
perf
platforms
purgatory
sysdev
tools
xmon
Kbuild
Kconfig
Kconfig.debug
Makefile
Makefile.postlink
riscv
s390
sh
sparc
um
x86
xtensa
.gitignore
Kconfig
block
certs
crypto
drivers
fs
include
init
io_uring
ipc
kernel
lib
mm
net
rust
samples
scripts
security
sound
tools
usr
virt
.clang-format
.cocciconfig
.editorconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
.rustfmt.toml
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
arch
/
powerpc
/
kernel
/
eeh_pe.c
Copy path
Blame
Blame
Latest commit
Ganesh Goudar
and
Michael Ellerman
powerpc/eeh: avoid possible crash when edev->pdev changes
Jun 23, 2024
a1216e6
·
Jun 23, 2024
History
History
870 lines (757 loc) · 21.5 KB
Breadcrumbs
linux
/
arch
/
powerpc
/
kernel
/
eeh_pe.c
Top
File metadata and controls
Code
Blame
870 lines (757 loc) · 21.5 KB
Raw
// SPDX-License-Identifier: GPL-2.0-or-later /* * The file intends to implement PE based on the information from * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. * All the PEs should be organized as hierarchy tree. The first level * of the tree will be associated to existing PHBs since the particular * PE is only meaningful in one PHB domain. * * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. */ #include <linux/delay.h> #include <linux/export.h> #include <linux/gfp.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/pci.h> #include <linux/string.h> #include <asm/pci-bridge.h> #include <asm/ppc-pci.h> static int eeh_pe_aux_size = 0; static LIST_HEAD(eeh_phb_pe); /** * eeh_set_pe_aux_size - Set PE auxiliary data size * @size: PE auxiliary data size in bytes * * Set PE auxiliary data size. */ void eeh_set_pe_aux_size(int size) { if (size < 0) return; eeh_pe_aux_size = size; } /** * eeh_pe_alloc - Allocate PE * @phb: PCI controller * @type: PE type * * Allocate PE instance dynamically. */ static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) { struct eeh_pe *pe; size_t alloc_size; alloc_size = sizeof(struct eeh_pe); if (eeh_pe_aux_size) { alloc_size = ALIGN(alloc_size, cache_line_size()); alloc_size += eeh_pe_aux_size; } /* Allocate PHB PE */ pe = kzalloc(alloc_size, GFP_KERNEL); if (!pe) return NULL; /* Initialize PHB PE */ pe->type = type; pe->phb = phb; INIT_LIST_HEAD(&pe->child_list); INIT_LIST_HEAD(&pe->edevs); pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), cache_line_size()); return pe; } /** * eeh_phb_pe_create - Create PHB PE * @phb: PCI controller * * The function should be called while the PHB is detected during * system boot or PCI hotplug in order to create PHB PE. */ int eeh_phb_pe_create(struct pci_controller *phb) { struct eeh_pe *pe; /* Allocate PHB PE */ pe = eeh_pe_alloc(phb, EEH_PE_PHB); if (!pe) { pr_err("%s: out of memory!\n", __func__); return -ENOMEM; } /* Put it into the list */ list_add_tail(&pe->child, &eeh_phb_pe); pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number); return 0; } /** * eeh_wait_state - Wait for PE state * @pe: EEH PE * @max_wait: maximal period in millisecond * * Wait for the state of associated PE. It might take some time * to retrieve the PE's state. */ int eeh_wait_state(struct eeh_pe *pe, int max_wait) { int ret; int mwait; /* * According to PAPR, the state of PE might be temporarily * unavailable. Under the circumstance, we have to wait * for indicated time determined by firmware. The maximal * wait time is 5 minutes, which is acquired from the original * EEH implementation. Also, the original implementation * also defined the minimal wait time as 1 second. */ #define EEH_STATE_MIN_WAIT_TIME (1000) #define EEH_STATE_MAX_WAIT_TIME (300 * 1000) while (1) { ret = eeh_ops->get_state(pe, &mwait); if (ret != EEH_STATE_UNAVAILABLE) return ret; if (max_wait <= 0) { pr_warn("%s: Timeout when getting PE's state (%d)\n", __func__, max_wait); return EEH_STATE_NOT_SUPPORT; } if (mwait < EEH_STATE_MIN_WAIT_TIME) { pr_warn("%s: Firmware returned bad wait value %d\n", __func__, mwait); mwait = EEH_STATE_MIN_WAIT_TIME; } else if (mwait > EEH_STATE_MAX_WAIT_TIME) { pr_warn("%s: Firmware returned too long wait value %d\n", __func__, mwait); mwait = EEH_STATE_MAX_WAIT_TIME; } msleep(min(mwait, max_wait)); max_wait -= mwait; } } /** * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB * @phb: PCI controller * * The overall PEs form hierarchy tree. The first layer of the * hierarchy tree is composed of PHB PEs. The function is used * to retrieve the corresponding PHB PE according to the given PHB. */ struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) { struct eeh_pe *pe; list_for_each_entry(pe, &eeh_phb_pe, child) { /* * Actually, we needn't check the type since * the PE for PHB has been determined when that * was created. */ if ((pe->type & EEH_PE_PHB) && pe->phb == phb) return pe; } return NULL; } /** * eeh_pe_next - Retrieve the next PE in the tree * @pe: current PE * @root: root PE * * The function is used to retrieve the next PE in the * hierarchy PE tree. */ struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root) { struct list_head *next = pe->child_list.next; if (next == &pe->child_list) { while (1) { if (pe == root) return NULL; next = pe->child.next; if (next != &pe->parent->child_list) break; pe = pe->parent; } } return list_entry(next, struct eeh_pe, child); } /** * eeh_pe_traverse - Traverse PEs in the specified PHB * @root: root PE * @fn: callback * @flag: extra parameter to callback * * The function is used to traverse the specified PE and its * child PEs. The traversing is to be terminated once the * callback returns something other than NULL, or no more PEs * to be traversed. */ void *eeh_pe_traverse(struct eeh_pe *root, eeh_pe_traverse_func fn, void *flag) { struct eeh_pe *pe; void *ret; eeh_for_each_pe(root, pe) { ret = fn(pe, flag); if (ret) return ret; } return NULL; } /** * eeh_pe_dev_traverse - Traverse the devices from the PE * @root: EEH PE * @fn: function callback * @flag: extra parameter to callback * * The function is used to traverse the devices of the specified * PE and its child PEs. */ void eeh_pe_dev_traverse(struct eeh_pe *root, eeh_edev_traverse_func fn, void *flag) { struct eeh_pe *pe; struct eeh_dev *edev, *tmp; if (!root) { pr_warn("%s: Invalid PE %p\n", __func__, root); return; } /* Traverse root PE */ eeh_for_each_pe(root, pe) eeh_pe_for_each_dev(pe, edev, tmp) fn(edev, flag); } /** * __eeh_pe_get - Check the PE address * * For one particular PE, it can be identified by PE address * or tranditional BDF address. BDF address is composed of * Bus/Device/Function number. The extra data referred by flag * indicates which type of address should be used. */ static void *__eeh_pe_get(struct eeh_pe *pe, void *flag) { int *target_pe = flag; /* PHB PEs are special and should be ignored */ if (pe->type & EEH_PE_PHB) return NULL; if (*target_pe == pe->addr) return pe; return NULL; } /** * eeh_pe_get - Search PE based on the given address * @phb: PCI controller * @pe_no: PE number * * Search the corresponding PE based on the specified address which * is included in the eeh device. The function is used to check if * the associated PE has been created against the PE address. It's * notable that the PE address has 2 format: traditional PE address * which is composed of PCI bus/device/function number, or unified * PE address. */ struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no) { struct eeh_pe *root = eeh_phb_pe_get(phb); return eeh_pe_traverse(root, __eeh_pe_get, &pe_no); } /** * eeh_pe_tree_insert - Add EEH device to parent PE * @edev: EEH device * @new_pe_parent: PE to create additional PEs under * * Add EEH device to the PE in edev->pe_config_addr. If a PE already * exists with that address then @edev is added to that PE. Otherwise * a new PE is created and inserted into the PE tree as a child of * @new_pe_parent. * * If @new_pe_parent is NULL then the new PE will be inserted under * directly under the PHB. */ int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent) { struct pci_controller *hose = edev->controller; struct eeh_pe *pe, *parent; /* * Search the PE has been existing or not according * to the PE address. If that has been existing, the * PE should be composed of PCI bus and its subordinate * components. */ pe = eeh_pe_get(hose, edev->pe_config_addr); if (pe) { if (pe->type & EEH_PE_INVALID) { list_add_tail(&edev->entry, &pe->edevs); edev->pe = pe; /* * We're running to here because of PCI hotplug caused by * EEH recovery. We need clear EEH_PE_INVALID until the top. */ parent = pe; while (parent) { if (!(parent->type & EEH_PE_INVALID)) break; parent->type &= ~EEH_PE_INVALID; parent = parent->parent; } eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n", pe->parent->addr); } else { /* Mark the PE as type of PCI bus */ pe->type = EEH_PE_BUS; edev->pe = pe; /* Put the edev to PE */ list_add_tail(&edev->entry, &pe->edevs); eeh_edev_dbg(edev, "Added to bus PE\n"); } return 0; } /* Create a new EEH PE */ if (edev->physfn) pe = eeh_pe_alloc(hose, EEH_PE_VF); else pe = eeh_pe_alloc(hose, EEH_PE_DEVICE); if (!pe) { pr_err("%s: out of memory!\n", __func__); return -ENOMEM; } pe->addr = edev->pe_config_addr; /* * Put the new EEH PE into hierarchy tree. If the parent * can't be found, the newly created PE will be attached * to PHB directly. Otherwise, we have to associate the * PE with its parent. */ if (!new_pe_parent) { new_pe_parent = eeh_phb_pe_get(hose); if (!new_pe_parent) { pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", __func__, hose->global_number); edev->pe = NULL; kfree(pe); return -EEXIST; } } /* link new PE into the tree */ pe->parent = new_pe_parent; list_add_tail(&pe->child, &new_pe_parent->child_list); /* * Put the newly created PE into the child list and * link the EEH device accordingly. */ list_add_tail(&edev->entry, &pe->edevs); edev->pe = pe; eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n", new_pe_parent->addr); return 0; } /** * eeh_pe_tree_remove - Remove one EEH device from the associated PE * @edev: EEH device * * The PE hierarchy tree might be changed when doing PCI hotplug. * Also, the PCI devices or buses could be removed from the system * during EEH recovery. So we have to call the function remove the * corresponding PE accordingly if necessary. */ int eeh_pe_tree_remove(struct eeh_dev *edev) { struct eeh_pe *pe, *parent, *child; bool keep, recover; int cnt; pe = eeh_dev_to_pe(edev); if (!pe) { eeh_edev_dbg(edev, "No PE found for device.\n"); return -EEXIST; } /* Remove the EEH device */ edev->pe = NULL; list_del(&edev->entry); /* * Check if the parent PE includes any EEH devices. * If not, we should delete that. Also, we should * delete the parent PE if it doesn't have associated * child PEs and EEH devices. */ while (1) { parent = pe->parent; /* PHB PEs should never be removed */ if (pe->type & EEH_PE_PHB) break; /* * XXX: KEEP is set while resetting a PE. I don't think it's * ever set without RECOVERING also being set. I could * be wrong though so catch that with a WARN. */ keep = !!(pe->state & EEH_PE_KEEP); recover = !!(pe->state & EEH_PE_RECOVERING); WARN_ON(keep && !recover); if (!keep && !recover) { if (list_empty(&pe->edevs) && list_empty(&pe->child_list)) { list_del(&pe->child); kfree(pe); } else { break; } } else { /* * Mark the PE as invalid. At the end of the recovery * process any invalid PEs will be garbage collected. * * We need to delay the free()ing of them since we can * remove edev's while traversing the PE tree which * might trigger the removal of a PE and we can't * deal with that (yet). */ if (list_empty(&pe->edevs)) { cnt = 0; list_for_each_entry(child, &pe->child_list, child) { if (!(child->type & EEH_PE_INVALID)) { cnt++; break; } } if (!cnt) pe->type |= EEH_PE_INVALID; else break; } } pe = parent; } return 0; } /** * eeh_pe_update_time_stamp - Update PE's frozen time stamp * @pe: EEH PE * * We have time stamp for each PE to trace its time of getting * frozen in last hour. The function should be called to update * the time stamp on first error of the specific PE. On the other * handle, we needn't account for errors happened in last hour. */ void eeh_pe_update_time_stamp(struct eeh_pe *pe) { time64_t tstamp; if (!pe) return; if (pe->freeze_count <= 0) { pe->freeze_count = 0; pe->tstamp = ktime_get_seconds(); } else { tstamp = ktime_get_seconds(); if (tstamp - pe->tstamp > 3600) { pe->tstamp = tstamp; pe->freeze_count = 0; } } } /** * eeh_pe_state_mark - Mark specified state for PE and its associated device * @pe: EEH PE * * EEH error affects the current PE and its child PEs. The function * is used to mark appropriate state for the affected PEs and the * associated devices. */ void eeh_pe_state_mark(struct eeh_pe *root, int state) { struct eeh_pe *pe; eeh_for_each_pe(root, pe) if (!(pe->state & EEH_PE_REMOVED)) pe->state |= state; } EXPORT_SYMBOL_GPL(eeh_pe_state_mark); /** * eeh_pe_mark_isolated * @pe: EEH PE * * Record that a PE has been isolated by marking the PE and its children as * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices * as pci_channel_io_frozen. */ void eeh_pe_mark_isolated(struct eeh_pe *root) { struct eeh_pe *pe; struct eeh_dev *edev; struct pci_dev *pdev; eeh_pe_state_mark(root, EEH_PE_ISOLATED); eeh_for_each_pe(root, pe) { list_for_each_entry(edev, &pe->edevs, entry) { pdev = eeh_dev_to_pci_dev(edev); if (pdev) pdev->error_state = pci_channel_io_frozen; } /* Block PCI config access if required */ if (pe->state & EEH_PE_CFG_RESTRICTED) pe->state |= EEH_PE_CFG_BLOCKED; } } EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated); static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag) { int mode = *((int *)flag); edev->mode |= mode; } /** * eeh_pe_dev_state_mark - Mark state for all device under the PE * @pe: EEH PE * * Mark specific state for all child devices of the PE. */ void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) { eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); } /** * eeh_pe_state_clear - Clear state for the PE * @data: EEH PE * @state: state * @include_passed: include passed-through devices? * * The function is used to clear the indicated state from the * given PE. Besides, we also clear the check count of the PE * as well. */ void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed) { struct eeh_pe *pe; struct eeh_dev *edev, *tmp; struct pci_dev *pdev; eeh_for_each_pe(root, pe) { /* Keep the state of permanently removed PE intact */ if (pe->state & EEH_PE_REMOVED) continue; if (!include_passed && eeh_pe_passed(pe)) continue; pe->state &= ~state; /* * Special treatment on clearing isolated state. Clear * check count since last isolation and put all affected * devices to normal state. */ if (!(state & EEH_PE_ISOLATED)) continue; pe->check_count = 0; eeh_pe_for_each_dev(pe, edev, tmp) { pdev = eeh_dev_to_pci_dev(edev); if (!pdev) continue; pdev->error_state = pci_channel_io_normal; } /* Unblock PCI config access if required */ if (pe->state & EEH_PE_CFG_RESTRICTED) pe->state &= ~EEH_PE_CFG_BLOCKED; } } /* * Some PCI bridges (e.g. PLX bridges) have primary/secondary * buses assigned explicitly by firmware, and we probably have * lost that after reset. So we have to delay the check until * the PCI-CFG registers have been restored for the parent * bridge. * * Don't use normal PCI-CFG accessors, which probably has been * blocked on normal path during the stage. So we need utilize * eeh operations, which is always permitted. */ static void eeh_bridge_check_link(struct eeh_dev *edev) { int cap; uint32_t val; int timeout = 0; /* * We only check root port and downstream ports of * PCIe switches */ if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) return; eeh_edev_dbg(edev, "Checking PCIe link...\n"); /* Check slot status */ cap = edev->pcie_cap; eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val); if (!(val & PCI_EXP_SLTSTA_PDS)) { eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val); return; } /* Check power status if we have the capability */ eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val); if (val & PCI_EXP_SLTCAP_PCP) { eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val); if (val & PCI_EXP_SLTCTL_PCC) { eeh_edev_dbg(edev, "In power-off state, power it on ...\n"); val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); val |= (0x0100 & PCI_EXP_SLTCTL_PIC); eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val); msleep(2 * 1000); } } /* Enable link */ eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val); val &= ~PCI_EXP_LNKCTL_LD; eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val); /* Check link */ if (!edev->pdev->link_active_reporting) { eeh_edev_dbg(edev, "No link reporting capability\n"); msleep(1000); return; } /* Wait the link is up until timeout (5s) */ timeout = 0; while (timeout < 5000) { msleep(20); timeout += 20; eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val); if (val & PCI_EXP_LNKSTA_DLLLA) break; } if (val & PCI_EXP_LNKSTA_DLLLA) eeh_edev_dbg(edev, "Link up (%s)\n", (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); else eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val); } #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) static void eeh_restore_bridge_bars(struct eeh_dev *edev) { int i; /* * Device BARs: 0x10 - 0x18 * Bus numbers and windows: 0x18 - 0x30 */ for (i = 4; i < 13; i++) eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); /* Rom: 0x38 */ eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]); /* Cache line & Latency timer: 0xC 0xD */ eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, SAVED_BYTE(PCI_CACHE_LINE_SIZE)); eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, SAVED_BYTE(PCI_LATENCY_TIMER)); /* Max latency, min grant, interrupt ping and line: 0x3C */ eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); /* PCI Command: 0x4 */ eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); /* Check the PCIe link is ready */ eeh_bridge_check_link(edev); } static void eeh_restore_device_bars(struct eeh_dev *edev) { int i; u32 cmd; for (i = 4; i < 10; i++) eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]); /* 12 == Expansion ROM Address */ eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]); eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1, SAVED_BYTE(PCI_CACHE_LINE_SIZE)); eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1, SAVED_BYTE(PCI_LATENCY_TIMER)); /* max latency, min grant, interrupt pin and line */ eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]); /* * Restore PERR & SERR bits, some devices require it, * don't touch the other command bits */ eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd); if (edev->config_space[1] & PCI_COMMAND_PARITY) cmd |= PCI_COMMAND_PARITY; else cmd &= ~PCI_COMMAND_PARITY; if (edev->config_space[1] & PCI_COMMAND_SERR) cmd |= PCI_COMMAND_SERR; else cmd &= ~PCI_COMMAND_SERR; eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd); } /** * eeh_restore_one_device_bars - Restore the Base Address Registers for one device * @data: EEH device * @flag: Unused * * Loads the PCI configuration space base address registers, * the expansion ROM base address, the latency timer, and etc. * from the saved values in the device node. */ static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag) { /* Do special restore for bridges */ if (edev->mode & EEH_DEV_BRIDGE) eeh_restore_bridge_bars(edev); else eeh_restore_device_bars(edev); if (eeh_ops->restore_config) eeh_ops->restore_config(edev); } /** * eeh_pe_restore_bars - Restore the PCI config space info * @pe: EEH PE * * This routine performs a recursive walk to the children * of this device as well. */ void eeh_pe_restore_bars(struct eeh_pe *pe) { /* * We needn't take the EEH lock since eeh_pe_dev_traverse() * will take that. */ eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); } /** * eeh_pe_loc_get - Retrieve location code binding to the given PE * @pe: EEH PE * * Retrieve the location code of the given PE. If the primary PE bus * is root bus, we will grab location code from PHB device tree node * or root port. Otherwise, the upstream bridge's device tree node * of the primary PE bus will be checked for the location code. */ const char *eeh_pe_loc_get(struct eeh_pe *pe) { struct pci_bus *bus = eeh_pe_bus_get(pe); struct device_node *dn; const char *loc = NULL; while (bus) { dn = pci_bus_to_OF_node(bus); if (!dn) { bus = bus->parent; continue; } if (pci_is_root_bus(bus)) loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); else loc = of_get_property(dn, "ibm,slot-location-code", NULL); if (loc) return loc; bus = bus->parent; } return "N/A"; } /** * eeh_pe_bus_get - Retrieve PCI bus according to the given PE * @pe: EEH PE * * Retrieve the PCI bus according to the given PE. Basically, * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the * primary PCI bus will be retrieved. The parent bus will be * returned for BUS PE. However, we don't have associated PCI * bus for DEVICE PE. */ struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) { struct eeh_dev *edev; struct pci_dev *pdev; struct pci_bus *bus = NULL; if (pe->type & EEH_PE_PHB) return pe->phb->bus; /* The primary bus might be cached during probe time */ if (pe->state & EEH_PE_PRI_BUS) return pe->bus; /* Retrieve the parent PCI bus of first (top) PCI device */ edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry); pci_lock_rescan_remove(); pdev = eeh_dev_to_pci_dev(edev); if (pdev) bus = pdev->bus; pci_unlock_rescan_remove(); return bus; }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
You can’t perform that action at this time.