Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
c9e1585
Documentation
arch
alpha
arm
avr32
blackfin
cris
frv
h8300
ia64
m32r
m68k
m68knommu
mips
mn10300
parisc
powerpc
s390
sh
sparc
um
x86
boot
configs
crypto
ia32
include
kernel
kvm
lguest
lib
mach-voyager
math-emu
mm
Makefile
dump_pagetables.c
extable.c
fault.c
gup.c
highmem_32.c
hugetlbpage.c
init_32.c
init_64.c
iomap_32.c
ioremap.c
k8topology_64.c
kmmio.c
memtest.c
mmap.c
mmio-mod.c
numa_32.c
numa_64.c
pageattr-test.c
pageattr.c
pat.c
pf_in.c
pf_in.h
pgtable.c
pgtable_32.c
srat_32.c
srat_64.c
testmmiotrace.c
tlb.c
oprofile
pci
power
vdso
video
xen
Kconfig
Kconfig.cpu
Kconfig.debug
Makefile
Makefile_32.cpu
xtensa
.gitignore
Kconfig
block
crypto
drivers
firmware
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
usr
virt
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
arch
/
x86
/
mm
/
fault.c
Copy path
Blame
Blame
Latest commit
Ingo Molnar
Merge branch 'tip/x86/urgent' of git://git.kernel.org/pub/scm/linux/k…
Feb 20, 2009
c9e1585
·
Feb 20, 2009
History
History
1039 lines (920 loc) · 25.8 KB
Breadcrumbs
linux
/
arch
/
x86
/
mm
/
fault.c
Top
File metadata and controls
Code
Blame
1039 lines (920 loc) · 25.8 KB
Raw
/* * Copyright (C) 1995 Linus Torvalds * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs. */ #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mmiotrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/tty.h> #include <linux/vt_kern.h> /* For unblank_screen() */ #include <linux/compiler.h> #include <linux/highmem.h> #include <linux/bootmem.h> /* for max_low_pfn */ #include <linux/vmalloc.h> #include <linux/module.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <linux/kdebug.h> #include <linux/magic.h> #include <asm/system.h> #include <asm/desc.h> #include <asm/segment.h> #include <asm/pgalloc.h> #include <asm/smp.h> #include <asm/tlbflush.h> #include <asm/proto.h> #include <asm-generic/sections.h> #include <asm/traps.h> /* * Page fault error code bits * bit 0 == 0 means no page found, 1 means protection fault * bit 1 == 0 means read, 1 means write * bit 2 == 0 means kernel, 1 means user-mode * bit 3 == 1 means use of reserved bit detected * bit 4 == 1 means fault was an instruction fetch */ #define PF_PROT (1<<0) #define PF_WRITE (1<<1) #define PF_USER (1<<2) #define PF_RSVD (1<<3) #define PF_INSTR (1<<4) static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr) { #ifdef CONFIG_MMIOTRACE if (unlikely(is_kmmio_active())) if (kmmio_handler(regs, addr) == 1) return -1; #endif return 0; } static inline int notify_page_fault(struct pt_regs *regs) { #ifdef CONFIG_KPROBES int ret = 0; /* kprobe_running() needs smp_processor_id() */ if (!user_mode_vm(regs)) { preempt_disable(); if (kprobe_running() && kprobe_fault_handler(regs, 14)) ret = 1; preempt_enable(); } return ret; #else return 0; #endif } /* * X86_32 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. * Check that here and ignore it. * * X86_64 * Sometimes the CPU reports invalid exceptions on prefetch. * Check that here and ignore it. * * Opcode checker based on code by Richard Brunner */ static int is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) { unsigned char *instr; int scan_more = 1; int prefetch = 0; unsigned char *max_instr; /* * If it was a exec (instruction fetch) fault on NX page, then * do not ignore the fault: */ if (error_code & PF_INSTR) return 0; instr = (unsigned char *)convert_ip_to_linear(current, regs); max_instr = instr + 15; if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE) return 0; while (scan_more && instr < max_instr) { unsigned char opcode; unsigned char instr_hi; unsigned char instr_lo; if (probe_kernel_address(instr, opcode)) break; instr_hi = opcode & 0xf0; instr_lo = opcode & 0x0f; instr++; switch (instr_hi) { case 0x20: case 0x30: /* * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. * In X86_64 long mode, the CPU will signal invalid * opcode if some of these prefixes are present so * X86_64 will never get here anyway */ scan_more = ((instr_lo & 7) == 0x6); break; #ifdef CONFIG_X86_64 case 0x40: /* * In AMD64 long mode 0x40..0x4F are valid REX prefixes * Need to figure out under what instruction mode the * instruction was issued. Could check the LDT for lm, * but for now it's good enough to assume that long * mode only uses well known segments or kernel. */ scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS); break; #endif case 0x60: /* 0x64 thru 0x67 are valid prefixes in all modes. */ scan_more = (instr_lo & 0xC) == 0x4; break; case 0xF0: /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ scan_more = !instr_lo || (instr_lo>>1) == 1; break; case 0x00: /* Prefetch instruction is 0x0F0D or 0x0F18 */ scan_more = 0; if (probe_kernel_address(instr, opcode)) break; prefetch = (instr_lo == 0xF) && (opcode == 0x0D || opcode == 0x18); break; default: scan_more = 0; break; } } return prefetch; } static void force_sig_info_fault(int si_signo, int si_code, unsigned long address, struct task_struct *tsk) { siginfo_t info; info.si_signo = si_signo; info.si_errno = 0; info.si_code = si_code; info.si_addr = (void __user *)address; force_sig_info(si_signo, &info, tsk); } #ifdef CONFIG_X86_64 static int bad_address(void *p) { unsigned long dummy; return probe_kernel_address((unsigned long *)p, dummy); } #endif static void dump_pagetable(unsigned long address) { #ifdef CONFIG_X86_32 __typeof__(pte_val(__pte(0))) page; page = read_cr3(); page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT]; #ifdef CONFIG_X86_PAE printk("*pdpt = %016Lx ", page); if ((page >> PAGE_SHIFT) < max_low_pfn && page & _PAGE_PRESENT) { page &= PAGE_MASK; page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT) & (PTRS_PER_PMD - 1)]; printk(KERN_CONT "*pde = %016Lx ", page); page &= ~_PAGE_NX; } #else printk("*pde = %08lx ", page); #endif /* * We must not directly access the pte in the highpte * case if the page table is located in highmem. * And let's rather not kmap-atomic the pte, just in case * it's allocated already. */ if ((page >> PAGE_SHIFT) < max_low_pfn && (page & _PAGE_PRESENT) && !(page & _PAGE_PSE)) { page &= PAGE_MASK; page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)]; printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page); } printk("\n"); #else /* CONFIG_X86_64 */ pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; pgd = (pgd_t *)read_cr3(); pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK); pgd += pgd_index(address); if (bad_address(pgd)) goto bad; printk("PGD %lx ", pgd_val(*pgd)); if (!pgd_present(*pgd)) goto ret; pud = pud_offset(pgd, address); if (bad_address(pud)) goto bad; printk("PUD %lx ", pud_val(*pud)); if (!pud_present(*pud) || pud_large(*pud)) goto ret; pmd = pmd_offset(pud, address); if (bad_address(pmd)) goto bad; printk("PMD %lx ", pmd_val(*pmd)); if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret; pte = pte_offset_kernel(pmd, address); if (bad_address(pte)) goto bad; printk("PTE %lx", pte_val(*pte)); ret: printk("\n"); return; bad: printk("BAD\n"); #endif } #ifdef CONFIG_X86_32 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) { unsigned index = pgd_index(address); pgd_t *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pgd += index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) return NULL; /* * set_pgd(pgd, *pgd_k); here would be useless on PAE * and redundant with the set_pmd() on non-PAE. As would * set_pud. */ pud = pud_offset(pgd, address); pud_k = pud_offset(pgd_k, address); if (!pud_present(*pud_k)) return NULL; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) return NULL; if (!pmd_present(*pmd)) { set_pmd(pmd, *pmd_k); arch_flush_lazy_mmu_mode(); } else BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); return pmd_k; } #endif #ifdef CONFIG_X86_64 static const char errata93_warning[] = KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n" KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n" KERN_ERR "******* Please consider a BIOS update.\n" KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n"; #endif /* Workaround for K8 erratum #93 & buggy BIOS. BIOS SMM functions are required to use a specific workaround to avoid corruption of the 64bit RIP register on C stepping K8. A lot of BIOS that didn't get tested properly miss this. The OS sees this as a page fault with the upper 32bits of RIP cleared. Try to work around it here. Note we only handle faults in kernel here. Does nothing for X86_32 */ static int is_errata93(struct pt_regs *regs, unsigned long address) { #ifdef CONFIG_X86_64 static int warned; if (address != regs->ip) return 0; if ((address >> 32) != 0) return 0; address |= 0xffffffffUL << 32; if ((address >= (u64)_stext && address <= (u64)_etext) || (address >= MODULES_VADDR && address <= MODULES_END)) { if (!warned) { printk(errata93_warning); warned = 1; } regs->ip = address; return 1; } #endif return 0; } /* * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal * addresses >4GB. We catch this in the page fault handler because these * addresses are not reachable. Just detect this case and return. Any code * segment in LDT is compatibility mode. */ static int is_errata100(struct pt_regs *regs, unsigned long address) { #ifdef CONFIG_X86_64 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) return 1; #endif return 0; } static int is_f00f_bug(struct pt_regs *regs, unsigned long address) { #ifdef CONFIG_X86_F00F_BUG unsigned long nr; /* * Pentium F0 0F C7 C8 bug workaround. */ if (boot_cpu_data.f00f_bug) { nr = (address - idt_descr.address) >> 3; if (nr == 6) { do_invalid_op(regs, 0); return 1; } } #endif return 0; } static void show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) { #ifdef CONFIG_X86_32 if (!oops_may_print()) return; #endif #ifdef CONFIG_X86_PAE if (error_code & PF_INSTR) { unsigned int level; pte_t *pte = lookup_address(address, &level); if (pte && pte_present(*pte) && !pte_exec(*pte)) printk(KERN_CRIT "kernel tried to execute " "NX-protected page - exploit attempt? " "(uid: %d)\n", current_uid()); } #endif printk(KERN_ALERT "BUG: unable to handle kernel "); if (address < PAGE_SIZE) printk(KERN_CONT "NULL pointer dereference"); else printk(KERN_CONT "paging request"); printk(KERN_CONT " at %p\n", (void *) address); printk(KERN_ALERT "IP:"); printk_address(regs->ip, 1); dump_pagetable(address); } #ifdef CONFIG_X86_64 static noinline void pgtable_bad(struct pt_regs *regs, unsigned long error_code, unsigned long address) { unsigned long flags = oops_begin(); int sig = SIGKILL; struct task_struct *tsk = current; printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", tsk->comm, address); dump_pagetable(address); tsk->thread.cr2 = address; tsk->thread.trap_no = 14; tsk->thread.error_code = error_code; if (__die("Bad pagetable", regs, error_code)) sig = 0; oops_end(flags, regs, sig); } #endif static noinline void no_context(struct pt_regs *regs, unsigned long error_code, unsigned long address) { struct task_struct *tsk = current; unsigned long *stackend; #ifdef CONFIG_X86_64 unsigned long flags; int sig; #endif /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) return; /* * X86_32 * Valid to do another page fault here, because if this fault * had been triggered by is_prefetch fixup_exception would have * handled it. * * X86_64 * Hall of shame of CPU/BIOS bugs. */ if (is_prefetch(regs, error_code, address)) return; if (is_errata93(regs, address)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ #ifdef CONFIG_X86_32 bust_spinlocks(1); #else flags = oops_begin(); #endif show_fault_oops(regs, error_code, address); stackend = end_of_stack(tsk); if (*stackend != STACK_END_MAGIC) printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); tsk->thread.cr2 = address; tsk->thread.trap_no = 14; tsk->thread.error_code = error_code; #ifdef CONFIG_X86_32 die("Oops", regs, error_code); bust_spinlocks(0); do_exit(SIGKILL); #else sig = SIGKILL; if (__die("Oops", regs, error_code)) sig = 0; /* Executive summary in case the body of the oops scrolled away */ printk(KERN_EMERG "CR2: %016lx\n", address); oops_end(flags, regs, sig); #endif } static void __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, unsigned long address, int si_code) { struct task_struct *tsk = current; /* User mode accesses just cause a SIGSEGV */ if (error_code & PF_USER) { /* * It's possible to have interrupts off here. */ local_irq_enable(); /* * Valid to do another page fault here because this one came * from user space. */ if (is_prefetch(regs, error_code, address)) return; if (is_errata100(regs, address)) return; if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && printk_ratelimit()) { printk( "%s%s[%d]: segfault at %lx ip %p sp %p error %lx", task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG, tsk->comm, task_pid_nr(tsk), address, (void *) regs->ip, (void *) regs->sp, error_code); print_vma_addr(" in ", regs->ip); printk("\n"); } tsk->thread.cr2 = address; /* Kernel addresses are always protection faults */ tsk->thread.error_code = error_code | (address >= TASK_SIZE); tsk->thread.trap_no = 14; force_sig_info_fault(SIGSEGV, si_code, address, tsk); return; } if (is_f00f_bug(regs, address)) return; no_context(regs, error_code, address); } static noinline void bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, unsigned long address) { __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR); } static void __bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address, int si_code) { struct mm_struct *mm = current->mm; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ up_read(&mm->mmap_sem); __bad_area_nosemaphore(regs, error_code, address, si_code); } static noinline void bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) { __bad_area(regs, error_code, address, SEGV_MAPERR); } static noinline void bad_area_access_error(struct pt_regs *regs, unsigned long error_code, unsigned long address) { __bad_area(regs, error_code, address, SEGV_ACCERR); } /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */ static void out_of_memory(struct pt_regs *regs, unsigned long error_code, unsigned long address) { /* * We ran out of memory, call the OOM killer, and return the userspace * (which will retry the fault, or kill us if we got oom-killed). */ up_read(¤t->mm->mmap_sem); pagefault_out_of_memory(); } static void do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address) { struct task_struct *tsk = current; struct mm_struct *mm = tsk->mm; up_read(&mm->mmap_sem); /* Kernel mode? Handle exceptions or die */ if (!(error_code & PF_USER)) no_context(regs, error_code, address); #ifdef CONFIG_X86_32 /* User space => ok to do another page fault */ if (is_prefetch(regs, error_code, address)) return; #endif tsk->thread.cr2 = address; tsk->thread.error_code = error_code; tsk->thread.trap_no = 14; force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk); } static noinline void mm_fault_error(struct pt_regs *regs, unsigned long error_code, unsigned long address, unsigned int fault) { if (fault & VM_FAULT_OOM) out_of_memory(regs, error_code, address); else if (fault & VM_FAULT_SIGBUS) do_sigbus(regs, error_code, address); else BUG(); } static int spurious_fault_check(unsigned long error_code, pte_t *pte) { if ((error_code & PF_WRITE) && !pte_write(*pte)) return 0; if ((error_code & PF_INSTR) && !pte_exec(*pte)) return 0; return 1; } /* * Handle a spurious fault caused by a stale TLB entry. This allows * us to lazily refresh the TLB when increasing the permissions of a * kernel page (RO -> RW or NX -> X). Doing it eagerly is very * expensive since that implies doing a full cross-processor TLB * flush, even if no stale TLB entries exist on other processors. * There are no security implications to leaving a stale TLB when * increasing the permissions on a page. */ static noinline int spurious_fault(unsigned long error_code, unsigned long address) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; int ret; /* Reserved-bit violation or user access to kernel space? */ if (error_code & (PF_USER | PF_RSVD)) return 0; pgd = init_mm.pgd + pgd_index(address); if (!pgd_present(*pgd)) return 0; pud = pud_offset(pgd, address); if (!pud_present(*pud)) return 0; if (pud_large(*pud)) return spurious_fault_check(error_code, (pte_t *) pud); pmd = pmd_offset(pud, address); if (!pmd_present(*pmd)) return 0; if (pmd_large(*pmd)) return spurious_fault_check(error_code, (pte_t *) pmd); pte = pte_offset_kernel(pmd, address); if (!pte_present(*pte)) return 0; ret = spurious_fault_check(error_code, pte); if (!ret) return 0; /* * Make sure we have permissions in PMD * If not, then there's a bug in the page tables. */ ret = spurious_fault_check(error_code, (pte_t *) pmd); WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); return ret; } /* * X86_32 * Handle a fault on the vmalloc or module mapping area * * X86_64 * Handle a fault on the vmalloc area * * This assumes no large pages in there. */ static noinline int vmalloc_fault(unsigned long address) { #ifdef CONFIG_X86_32 unsigned long pgd_paddr; pmd_t *pmd_k; pte_t *pte_k; /* Make sure we are in vmalloc area */ if (!(address >= VMALLOC_START && address < VMALLOC_END)) return -1; /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "current" here. We might be inside * an interrupt in the middle of a task switch.. */ pgd_paddr = read_cr3(); pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); if (!pmd_k) return -1; pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) return -1; return 0; #else pgd_t *pgd, *pgd_ref; pud_t *pud, *pud_ref; pmd_t *pmd, *pmd_ref; pte_t *pte, *pte_ref; /* Make sure we are in vmalloc area */ if (!(address >= VMALLOC_START && address < VMALLOC_END)) return -1; /* Copy kernel mappings over when needed. This can also happen within a race in page table update. In the later case just flush. */ pgd = pgd_offset(current->active_mm, address); pgd_ref = pgd_offset_k(address); if (pgd_none(*pgd_ref)) return -1; if (pgd_none(*pgd)) set_pgd(pgd, *pgd_ref); else BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); /* Below here mismatches are bugs because these lower tables are shared */ pud = pud_offset(pgd, address); pud_ref = pud_offset(pgd_ref, address); if (pud_none(*pud_ref)) return -1; if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref)) BUG(); pmd = pmd_offset(pud, address); pmd_ref = pmd_offset(pud_ref, address); if (pmd_none(*pmd_ref)) return -1; if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref)) BUG(); pte_ref = pte_offset_kernel(pmd_ref, address); if (!pte_present(*pte_ref)) return -1; pte = pte_offset_kernel(pmd, address); /* Don't use pte_page here, because the mappings can point outside mem_map, and the NUMA hash lookup cannot handle that. */ if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref)) BUG(); return 0; #endif } int show_unhandled_signals = 1; static inline int access_error(unsigned long error_code, int write, struct vm_area_struct *vma) { if (write) { /* write, present and write, not present */ if (unlikely(!(vma->vm_flags & VM_WRITE))) return 1; } else if (unlikely(error_code & PF_PROT)) { /* read, present */ return 1; } else { /* read, not present */ if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) return 1; } return 0; } static int fault_in_kernel_space(unsigned long address) { #ifdef CONFIG_X86_32 return address >= TASK_SIZE; #else /* !CONFIG_X86_32 */ return address >= TASK_SIZE64; #endif /* CONFIG_X86_32 */ } /* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ #ifdef CONFIG_X86_64 asmlinkage #endif void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code) { unsigned long address; struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct *vma; int write; int fault; tsk = current; mm = tsk->mm; prefetchw(&mm->mmap_sem); /* get the address */ address = read_cr2(); if (unlikely(kmmio_fault(regs, address))) return; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. * * This verifies that the fault happens in kernel space * (error_code & 4) == 0, and that the fault was not a * protection error (error_code & 9) == 0. */ if (unlikely(fault_in_kernel_space(address))) { if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) && vmalloc_fault(address) >= 0) return; /* Can handle a stale RO->RW TLB */ if (spurious_fault(error_code, address)) return; /* kprobes don't want to hook the spurious faults. */ if (notify_page_fault(regs)) return; /* * Don't take the mm semaphore here. If we fixup a prefetch * fault we could otherwise deadlock. */ bad_area_nosemaphore(regs, error_code, address); return; } /* kprobes don't want to hook the spurious faults. */ if (unlikely(notify_page_fault(regs))) return; /* * It's safe to allow irq's after cr2 has been saved and the * vmalloc fault has been handled. * * User-mode registers count as a user access even for any * potential system fault or CPU buglet. */ if (user_mode_vm(regs)) { local_irq_enable(); error_code |= PF_USER; } else if (regs->flags & X86_EFLAGS_IF) local_irq_enable(); #ifdef CONFIG_X86_64 if (unlikely(error_code & PF_RSVD)) pgtable_bad(regs, error_code, address); #endif /* * If we're in an interrupt, have no user context or are running in an * atomic region then we must not take the fault. */ if (unlikely(in_atomic() || !mm)) { bad_area_nosemaphore(regs, error_code, address); return; } /* * When running in the kernel we expect faults to occur only to * addresses in user space. All other faults represent errors in the * kernel and should generate an OOPS. Unfortunately, in the case of an * erroneous fault occurring in a code path which already holds mmap_sem * we will deadlock attempting to validate the fault against the * address space. Luckily the kernel only validly references user * space from well defined areas of code, which are listed in the * exceptions table. * * As the vast majority of faults will be valid we will only perform * the source reference check when there is a possibility of a deadlock. * Attempt to lock the address space, if we cannot we then validate the * source. If this is invalid we can skip the address space check, * thus avoiding the deadlock. */ if (unlikely(!down_read_trylock(&mm->mmap_sem))) { if ((error_code & PF_USER) == 0 && !search_exception_tables(regs->ip)) { bad_area_nosemaphore(regs, error_code, address); return; } down_read(&mm->mmap_sem); } else { /* * The above down_read_trylock() might have succeeded in which * case we'll have missed the might_sleep() from down_read(). */ might_sleep(); } vma = find_vma(mm, address); if (unlikely(!vma)) { bad_area(regs, error_code, address); return; } if (likely(vma->vm_start <= address)) goto good_area; if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { bad_area(regs, error_code, address); return; } if (error_code & PF_USER) { /* * Accessing the stack below %sp is always a bug. * The large cushion allows instructions like enter * and pusha to work. ("enter $65535,$31" pushes * 32 pointers and then decrements %sp by 65535.) */ if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) { bad_area(regs, error_code, address); return; } } if (unlikely(expand_stack(vma, address))) { bad_area(regs, error_code, address); return; } /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: write = error_code & PF_WRITE; if (unlikely(access_error(error_code, write, vma))) { bad_area_access_error(regs, error_code, address); return; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(mm, vma, address, write); if (unlikely(fault & VM_FAULT_ERROR)) { mm_fault_error(regs, error_code, address, fault); return; } if (fault & VM_FAULT_MAJOR) tsk->maj_flt++; else tsk->min_flt++; #ifdef CONFIG_X86_32 /* * Did it hit the DOS screen memory VA from vm86 mode? */ if (v8086_mode(regs)) { unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT; if (bit < 32) tsk->thread.screen_bitmap |= 1 << bit; } #endif up_read(&mm->mmap_sem); } DEFINE_SPINLOCK(pgd_lock); LIST_HEAD(pgd_list); void vmalloc_sync_all(void) { unsigned long address; #ifdef CONFIG_X86_32 if (SHARED_KERNEL_PMD) return; for (address = VMALLOC_START & PMD_MASK; address >= TASK_SIZE && address < FIXADDR_TOP; address += PMD_SIZE) { unsigned long flags; struct page *page; spin_lock_irqsave(&pgd_lock, flags); list_for_each_entry(page, &pgd_list, lru) { if (!vmalloc_sync_one(page_address(page), address)) break; } spin_unlock_irqrestore(&pgd_lock, flags); } #else /* CONFIG_X86_64 */ for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END; address += PGDIR_SIZE) { const pgd_t *pgd_ref = pgd_offset_k(address); unsigned long flags; struct page *page; if (pgd_none(*pgd_ref)) continue; spin_lock_irqsave(&pgd_lock, flags); list_for_each_entry(page, &pgd_list, lru) { pgd_t *pgd; pgd = (pgd_t *)page_address(page) + pgd_index(address); if (pgd_none(*pgd)) set_pgd(pgd, *pgd_ref); else BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref)); } spin_unlock_irqrestore(&pgd_lock, flags); } #endif }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
You can’t perform that action at this time.