Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
d4175c6
Documentation
LICENSES
arch
block
certs
crypto
drivers
fs
9p
adfs
affs
afs
autofs
befs
bfs
btrfs
tests
Kconfig
Makefile
acl.c
async-thread.c
async-thread.h
backref.c
backref.h
block-group.c
block-group.h
block-rsv.c
block-rsv.h
btrfs_inode.h
check-integrity.c
check-integrity.h
compression.c
compression.h
ctree.c
ctree.h
delalloc-space.c
delalloc-space.h
delayed-inode.c
delayed-inode.h
delayed-ref.c
delayed-ref.h
dev-replace.c
dev-replace.h
dir-item.c
discard.c
discard.h
disk-io.c
disk-io.h
export.c
export.h
extent-io-tree.h
extent-tree.c
extent_io.c
extent_io.h
extent_map.c
extent_map.h
file-item.c
file.c
free-space-cache.c
free-space-cache.h
free-space-tree.c
free-space-tree.h
inode-item.c
inode.c
ioctl.c
locking.c
locking.h
lzo.c
misc.h
ordered-data.c
ordered-data.h
orphan.c
print-tree.c
print-tree.h
props.c
props.h
qgroup.c
qgroup.h
raid56.c
raid56.h
rcu-string.h
reada.c
ref-verify.c
ref-verify.h
reflink.c
reflink.h
relocation.c
root-tree.c
scrub.c
send.c
send.h
space-info.c
space-info.h
struct-funcs.c
subpage.c
subpage.h
super.c
sysfs.c
sysfs.h
transaction.c
transaction.h
tree-checker.c
tree-checker.h
tree-defrag.c
tree-log.c
tree-log.h
tree-mod-log.c
tree-mod-log.h
ulist.c
ulist.h
uuid-tree.c
verity.c
volumes.c
volumes.h
xattr.c
xattr.h
zlib.c
zoned.c
zoned.h
zstd.c
cachefiles
ceph
cifs
coda
configfs
cramfs
crypto
debugfs
devpts
dlm
ecryptfs
efivarfs
efs
erofs
exfat
exportfs
ext2
ext4
f2fs
fat
freevxfs
fscache
fuse
gfs2
hfs
hfsplus
hostfs
hpfs
hugetlbfs
iomap
isofs
jbd2
jffs2
jfs
kernfs
ksmbd
lockd
minix
netfs
nfs
nfs_common
nfsd
nilfs2
nls
notify
ntfs
ntfs3
ocfs2
omfs
openpromfs
orangefs
overlayfs
proc
pstore
qnx4
qnx6
quota
ramfs
reiserfs
romfs
smbfs_common
squashfs
sysfs
sysv
tracefs
ubifs
udf
ufs
unicode
vboxsf
verity
xfs
zonefs
Kconfig
Kconfig.binfmt
Makefile
aio.c
anon_inodes.c
attr.c
bad_inode.c
binfmt_aout.c
binfmt_elf.c
binfmt_elf_fdpic.c
binfmt_flat.c
binfmt_misc.c
binfmt_script.c
buffer.c
char_dev.c
compat_binfmt_elf.c
coredump.c
d_path.c
dax.c
dcache.c
direct-io.c
drop_caches.c
eventfd.c
eventpoll.c
exec.c
fcntl.c
fhandle.c
file.c
file_table.c
filesystems.c
fs-writeback.c
fs_context.c
fs_parser.c
fs_pin.c
fs_struct.c
fs_types.c
fsopen.c
init.c
inode.c
internal.h
ioctl.c
kernel_read_file.c
libfs.c
locks.c
mbcache.c
mount.h
mpage.c
namei.c
namespace.c
no-block.c
nsfs.c
open.c
pipe.c
pnode.c
pnode.h
posix_acl.c
proc_namespace.c
read_write.c
readdir.c
remap_range.c
select.c
seq_file.c
signalfd.c
splice.c
stack.c
stat.c
statfs.c
super.c
sync.c
timerfd.c
userfaultfd.c
utimes.c
xattr.c
include
init
io_uring
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.clang-format
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
fs
/
btrfs
/
discard.c
Copy path
Blame
Blame
Latest commit
History
History
771 lines (671 loc) · 24.6 KB
Breadcrumbs
linux
/
fs
/
btrfs
/
discard.c
Top
File metadata and controls
Code
Blame
771 lines (671 loc) · 24.6 KB
Raw
// SPDX-License-Identifier: GPL-2.0 #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/ktime.h> #include <linux/list.h> #include <linux/math64.h> #include <linux/sizes.h> #include <linux/workqueue.h> #include "ctree.h" #include "block-group.h" #include "discard.h" #include "free-space-cache.h" /* * This contains the logic to handle async discard. * * Async discard manages trimming of free space outside of transaction commit. * Discarding is done by managing the block_groups on a LRU list based on free * space recency. Two passes are used to first prioritize discarding extents * and then allow for trimming in the bitmap the best opportunity to coalesce. * The block_groups are maintained on multiple lists to allow for multiple * passes with different discard filter requirements. A delayed work item is * used to manage discarding with timeout determined by a max of the delay * incurred by the iops rate limit, the byte rate limit, and the max delay of * BTRFS_DISCARD_MAX_DELAY. * * Note, this only keeps track of block_groups that are explicitly for data. * Mixed block_groups are not supported. * * The first list is special to manage discarding of fully free block groups. * This is necessary because we issue a final trim for a full free block group * after forgetting it. When a block group becomes unused, instead of directly * being added to the unused_bgs list, we add it to this first list. Then * from there, if it becomes fully discarded, we place it onto the unused_bgs * list. * * The in-memory free space cache serves as the backing state for discard. * Consequently this means there is no persistence. We opt to load all the * block groups in as not discarded, so the mount case degenerates to the * crashing case. * * As the free space cache uses bitmaps, there exists a tradeoff between * ease/efficiency for find_free_extent() and the accuracy of discard state. * Here we opt to let untrimmed regions merge with everything while only letting * trimmed regions merge with other trimmed regions. This can cause * overtrimming, but the coalescing benefit seems to be worth it. Additionally, * bitmap state is tracked as a whole. If we're able to fully trim a bitmap, * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in, * this resets the state and we will retry trimming the whole bitmap. This is a * tradeoff between discard state accuracy and the cost of accounting. */ /* This is an initial delay to give some chance for block reuse */ #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC) #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC) /* Target completion latency of discarding all discardable extents */ #define BTRFS_DISCARD_TARGET_MSEC (6 * 60 * 60UL * MSEC_PER_SEC) #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL) #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL) #define BTRFS_DISCARD_MAX_IOPS (10U) /* Montonically decreasing minimum length filters after index 0 */ static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = { 0, BTRFS_ASYNC_DISCARD_MAX_FILTER, BTRFS_ASYNC_DISCARD_MIN_FILTER }; static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl, struct btrfs_block_group *block_group) { return &discard_ctl->discard_list[block_group->discard_index]; } static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, struct btrfs_block_group *block_group) { lockdep_assert_held(&discard_ctl->lock); if (list_empty(&block_group->discard_list) || block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) { if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) block_group->discard_index = BTRFS_DISCARD_INDEX_START; block_group->discard_eligible_time = (ktime_get_ns() + BTRFS_DISCARD_DELAY); block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; } if (list_empty(&block_group->discard_list)) btrfs_get_block_group(block_group); list_move_tail(&block_group->discard_list, get_discard_list(discard_ctl, block_group)); } static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, struct btrfs_block_group *block_group) { if (!btrfs_is_block_group_data_only(block_group)) return; if (!btrfs_run_discard_work(discard_ctl)) return; spin_lock(&discard_ctl->lock); __add_to_discard_list(discard_ctl, block_group); spin_unlock(&discard_ctl->lock); } static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl, struct btrfs_block_group *block_group) { bool queued; spin_lock(&discard_ctl->lock); queued = !list_empty(&block_group->discard_list); if (!btrfs_run_discard_work(discard_ctl)) { spin_unlock(&discard_ctl->lock); return; } list_del_init(&block_group->discard_list); block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED; block_group->discard_eligible_time = (ktime_get_ns() + BTRFS_DISCARD_UNUSED_DELAY); block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; if (!queued) btrfs_get_block_group(block_group); list_add_tail(&block_group->discard_list, &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]); spin_unlock(&discard_ctl->lock); } static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl, struct btrfs_block_group *block_group) { bool running = false; bool queued = false; spin_lock(&discard_ctl->lock); if (block_group == discard_ctl->block_group) { running = true; discard_ctl->block_group = NULL; } block_group->discard_eligible_time = 0; queued = !list_empty(&block_group->discard_list); list_del_init(&block_group->discard_list); /* * If the block group is currently running in the discard workfn, we * don't want to deref it, since it's still being used by the workfn. * The workfn will notice this case and deref the block group when it is * finished. */ if (queued && !running) btrfs_put_block_group(block_group); spin_unlock(&discard_ctl->lock); return running; } /** * find_next_block_group - find block_group that's up next for discarding * @discard_ctl: discard control * @now: current time * * Iterate over the discard lists to find the next block_group up for * discarding checking the discard_eligible_time of block_group. */ static struct btrfs_block_group *find_next_block_group( struct btrfs_discard_ctl *discard_ctl, u64 now) { struct btrfs_block_group *ret_block_group = NULL, *block_group; int i; for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { struct list_head *discard_list = &discard_ctl->discard_list[i]; if (!list_empty(discard_list)) { block_group = list_first_entry(discard_list, struct btrfs_block_group, discard_list); if (!ret_block_group) ret_block_group = block_group; if (ret_block_group->discard_eligible_time < now) break; if (ret_block_group->discard_eligible_time > block_group->discard_eligible_time) ret_block_group = block_group; } } return ret_block_group; } /** * Wrap find_next_block_group() * * @discard_ctl: discard control * @discard_state: the discard_state of the block_group after state management * @discard_index: the discard_index of the block_group after state management * @now: time when discard was invoked, in ns * * This wraps find_next_block_group() and sets the block_group to be in use. * discard_state's control flow is managed here. Variables related to * discard_state are reset here as needed (eg discard_cursor). @discard_state * and @discard_index are remembered as it may change while we're discarding, * but we want the discard to execute in the context determined here. */ static struct btrfs_block_group *peek_discard_list( struct btrfs_discard_ctl *discard_ctl, enum btrfs_discard_state *discard_state, int *discard_index, u64 now) { struct btrfs_block_group *block_group; spin_lock(&discard_ctl->lock); again: block_group = find_next_block_group(discard_ctl, now); if (block_group && now >= block_group->discard_eligible_time) { if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED && block_group->used != 0) { if (btrfs_is_block_group_data_only(block_group)) { __add_to_discard_list(discard_ctl, block_group); /* * The block group must have been moved to other * discard list even if discard was disabled in * the meantime or a transaction abort happened, * otherwise we can end up in an infinite loop, * always jumping into the 'again' label and * keep getting this block group over and over * in case there are no other block groups in * the discard lists. */ ASSERT(block_group->discard_index != BTRFS_DISCARD_INDEX_UNUSED); } else { list_del_init(&block_group->discard_list); btrfs_put_block_group(block_group); } goto again; } if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) { block_group->discard_cursor = block_group->start; block_group->discard_state = BTRFS_DISCARD_EXTENTS; } discard_ctl->block_group = block_group; } if (block_group) { *discard_state = block_group->discard_state; *discard_index = block_group->discard_index; } spin_unlock(&discard_ctl->lock); return block_group; } /** * btrfs_discard_check_filter - updates a block groups filters * @block_group: block group of interest * @bytes: recently freed region size after coalescing * * Async discard maintains multiple lists with progressively smaller filters * to prioritize discarding based on size. Should a free space that matches * a larger filter be returned to the free_space_cache, prioritize that discard * by moving @block_group to the proper filter. */ void btrfs_discard_check_filter(struct btrfs_block_group *block_group, u64 bytes) { struct btrfs_discard_ctl *discard_ctl; if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) return; discard_ctl = &block_group->fs_info->discard_ctl; if (block_group->discard_index > BTRFS_DISCARD_INDEX_START && bytes >= discard_minlen[block_group->discard_index - 1]) { int i; remove_from_discard_list(discard_ctl, block_group); for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS; i++) { if (bytes >= discard_minlen[i]) { block_group->discard_index = i; add_to_discard_list(discard_ctl, block_group); break; } } } } /** * btrfs_update_discard_index - moves a block group along the discard lists * @discard_ctl: discard control * @block_group: block_group of interest * * Increment @block_group's discard_index. If it falls of the list, let it be. * Otherwise add it back to the appropriate list. */ static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl, struct btrfs_block_group *block_group) { block_group->discard_index++; if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) { block_group->discard_index = 1; return; } add_to_discard_list(discard_ctl, block_group); } /** * btrfs_discard_cancel_work - remove a block_group from the discard lists * @discard_ctl: discard control * @block_group: block_group of interest * * This removes @block_group from the discard lists. If necessary, it waits on * the current work and then reschedules the delayed work. */ void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl, struct btrfs_block_group *block_group) { if (remove_from_discard_list(discard_ctl, block_group)) { cancel_delayed_work_sync(&discard_ctl->work); btrfs_discard_schedule_work(discard_ctl, true); } } /** * btrfs_discard_queue_work - handles queuing the block_groups * @discard_ctl: discard control * @block_group: block_group of interest * * This maintains the LRU order of the discard lists. */ void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl, struct btrfs_block_group *block_group) { if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) return; if (block_group->used == 0) add_to_discard_unused_list(discard_ctl, block_group); else add_to_discard_list(discard_ctl, block_group); if (!delayed_work_pending(&discard_ctl->work)) btrfs_discard_schedule_work(discard_ctl, false); } static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, u64 now, bool override) { struct btrfs_block_group *block_group; if (!btrfs_run_discard_work(discard_ctl)) return; if (!override && delayed_work_pending(&discard_ctl->work)) return; block_group = find_next_block_group(discard_ctl, now); if (block_group) { u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC; u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit); /* * A single delayed workqueue item is responsible for * discarding, so we can manage the bytes rate limit by keeping * track of the previous discard. */ if (kbps_limit && discard_ctl->prev_discard) { u64 bps_limit = ((u64)kbps_limit) * SZ_1K; u64 bps_delay = div64_u64(discard_ctl->prev_discard * NSEC_PER_SEC, bps_limit); delay = max(delay, bps_delay); } /* * This timeout is to hopefully prevent immediate discarding * in a recently allocated block group. */ if (now < block_group->discard_eligible_time) { u64 bg_timeout = block_group->discard_eligible_time - now; delay = max(delay, bg_timeout); } if (override && discard_ctl->prev_discard) { u64 elapsed = now - discard_ctl->prev_discard_time; if (delay > elapsed) delay -= elapsed; else delay = 0; } mod_delayed_work(discard_ctl->discard_workers, &discard_ctl->work, nsecs_to_jiffies(delay)); } } /* * btrfs_discard_schedule_work - responsible for scheduling the discard work * @discard_ctl: discard control * @override: override the current timer * * Discards are issued by a delayed workqueue item. @override is used to * update the current delay as the baseline delay interval is reevaluated on * transaction commit. This is also maxed with any other rate limit. */ void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, bool override) { const u64 now = ktime_get_ns(); spin_lock(&discard_ctl->lock); __btrfs_discard_schedule_work(discard_ctl, now, override); spin_unlock(&discard_ctl->lock); } /** * btrfs_finish_discard_pass - determine next step of a block_group * @discard_ctl: discard control * @block_group: block_group of interest * * This determines the next step for a block group after it's finished going * through a pass on a discard list. If it is unused and fully trimmed, we can * mark it unused and send it to the unused_bgs path. Otherwise, pass it onto * the appropriate filter list or let it fall off. */ static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl, struct btrfs_block_group *block_group) { remove_from_discard_list(discard_ctl, block_group); if (block_group->used == 0) { if (btrfs_is_free_space_trimmed(block_group)) btrfs_mark_bg_unused(block_group); else add_to_discard_unused_list(discard_ctl, block_group); } else { btrfs_update_discard_index(discard_ctl, block_group); } } /** * btrfs_discard_workfn - discard work function * @work: work * * This finds the next block_group to start discarding and then discards a * single region. It does this in a two-pass fashion: first extents and second * bitmaps. Completely discarded block groups are sent to the unused_bgs path. */ static void btrfs_discard_workfn(struct work_struct *work) { struct btrfs_discard_ctl *discard_ctl; struct btrfs_block_group *block_group; enum btrfs_discard_state discard_state; int discard_index = 0; u64 trimmed = 0; u64 minlen = 0; u64 now = ktime_get_ns(); discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work); block_group = peek_discard_list(discard_ctl, &discard_state, &discard_index, now); if (!block_group || !btrfs_run_discard_work(discard_ctl)) return; if (now < block_group->discard_eligible_time) { btrfs_discard_schedule_work(discard_ctl, false); return; } /* Perform discarding */ minlen = discard_minlen[discard_index]; if (discard_state == BTRFS_DISCARD_BITMAPS) { u64 maxlen = 0; /* * Use the previous levels minimum discard length as the max * length filter. In the case something is added to make a * region go beyond the max filter, the entire bitmap is set * back to BTRFS_TRIM_STATE_UNTRIMMED. */ if (discard_index != BTRFS_DISCARD_INDEX_UNUSED) maxlen = discard_minlen[discard_index - 1]; btrfs_trim_block_group_bitmaps(block_group, &trimmed, block_group->discard_cursor, btrfs_block_group_end(block_group), minlen, maxlen, true); discard_ctl->discard_bitmap_bytes += trimmed; } else { btrfs_trim_block_group_extents(block_group, &trimmed, block_group->discard_cursor, btrfs_block_group_end(block_group), minlen, true); discard_ctl->discard_extent_bytes += trimmed; } /* Determine next steps for a block_group */ if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) { if (discard_state == BTRFS_DISCARD_BITMAPS) { btrfs_finish_discard_pass(discard_ctl, block_group); } else { block_group->discard_cursor = block_group->start; spin_lock(&discard_ctl->lock); if (block_group->discard_state != BTRFS_DISCARD_RESET_CURSOR) block_group->discard_state = BTRFS_DISCARD_BITMAPS; spin_unlock(&discard_ctl->lock); } } now = ktime_get_ns(); spin_lock(&discard_ctl->lock); discard_ctl->prev_discard = trimmed; discard_ctl->prev_discard_time = now; /* * If the block group was removed from the discard list while it was * running in this workfn, then we didn't deref it, since this function * still owned that reference. But we set the discard_ctl->block_group * back to NULL, so we can use that condition to know that now we need * to deref the block_group. */ if (discard_ctl->block_group == NULL) btrfs_put_block_group(block_group); discard_ctl->block_group = NULL; __btrfs_discard_schedule_work(discard_ctl, now, false); spin_unlock(&discard_ctl->lock); } /** * btrfs_run_discard_work - determines if async discard should be running * @discard_ctl: discard control * * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set. */ bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl) { struct btrfs_fs_info *fs_info = container_of(discard_ctl, struct btrfs_fs_info, discard_ctl); return (!(fs_info->sb->s_flags & SB_RDONLY) && test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags)); } /** * btrfs_discard_calc_delay - recalculate the base delay * @discard_ctl: discard control * * Recalculate the base delay which is based off the total number of * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms) * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC). */ void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl) { s32 discardable_extents; s64 discardable_bytes; u32 iops_limit; unsigned long delay; discardable_extents = atomic_read(&discard_ctl->discardable_extents); if (!discardable_extents) return; spin_lock(&discard_ctl->lock); /* * The following is to fix a potential -1 discrepenancy that we're not * sure how to reproduce. But given that this is the only place that * utilizes these numbers and this is only called by from * btrfs_finish_extent_commit() which is synchronized, we can correct * here. */ if (discardable_extents < 0) atomic_add(-discardable_extents, &discard_ctl->discardable_extents); discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes); if (discardable_bytes < 0) atomic64_add(-discardable_bytes, &discard_ctl->discardable_bytes); if (discardable_extents <= 0) { spin_unlock(&discard_ctl->lock); return; } iops_limit = READ_ONCE(discard_ctl->iops_limit); if (iops_limit) delay = MSEC_PER_SEC / iops_limit; else delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents; delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC, BTRFS_DISCARD_MAX_DELAY_MSEC); discard_ctl->delay_ms = delay; spin_unlock(&discard_ctl->lock); } /** * btrfs_discard_update_discardable - propagate discard counters * @block_group: block_group of interest * * This propagates deltas of counters up to the discard_ctl. It maintains a * current counter and a previous counter passing the delta up to the global * stat. Then the current counter value becomes the previous counter value. */ void btrfs_discard_update_discardable(struct btrfs_block_group *block_group) { struct btrfs_free_space_ctl *ctl; struct btrfs_discard_ctl *discard_ctl; s32 extents_delta; s64 bytes_delta; if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) || !btrfs_is_block_group_data_only(block_group)) return; ctl = block_group->free_space_ctl; discard_ctl = &block_group->fs_info->discard_ctl; lockdep_assert_held(&ctl->tree_lock); extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] - ctl->discardable_extents[BTRFS_STAT_PREV]; if (extents_delta) { atomic_add(extents_delta, &discard_ctl->discardable_extents); ctl->discardable_extents[BTRFS_STAT_PREV] = ctl->discardable_extents[BTRFS_STAT_CURR]; } bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] - ctl->discardable_bytes[BTRFS_STAT_PREV]; if (bytes_delta) { atomic64_add(bytes_delta, &discard_ctl->discardable_bytes); ctl->discardable_bytes[BTRFS_STAT_PREV] = ctl->discardable_bytes[BTRFS_STAT_CURR]; } } /** * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists * @fs_info: fs_info of interest * * The unused_bgs list needs to be punted to the discard lists because the * order of operations is changed. In the normal synchronous discard path, the * block groups are trimmed via a single large trim in transaction commit. This * is ultimately what we are trying to avoid with asynchronous discard. Thus, * it must be done before going down the unused_bgs path. */ void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info) { struct btrfs_block_group *block_group, *next; spin_lock(&fs_info->unused_bgs_lock); /* We enabled async discard, so punt all to the queue */ list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs, bg_list) { list_del_init(&block_group->bg_list); btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); /* * This put is for the get done by btrfs_mark_bg_unused. * Queueing discard incremented it for discard's reference. */ btrfs_put_block_group(block_group); } spin_unlock(&fs_info->unused_bgs_lock); } /** * btrfs_discard_purge_list - purge discard lists * @discard_ctl: discard control * * If we are disabling async discard, we may have intercepted block groups that * are completely free and ready for the unused_bgs path. As discarding will * now happen in transaction commit or not at all, we can safely mark the * corresponding block groups as unused and they will be sent on their merry * way to the unused_bgs list. */ static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl) { struct btrfs_block_group *block_group, *next; int i; spin_lock(&discard_ctl->lock); for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { list_for_each_entry_safe(block_group, next, &discard_ctl->discard_list[i], discard_list) { list_del_init(&block_group->discard_list); spin_unlock(&discard_ctl->lock); if (block_group->used == 0) btrfs_mark_bg_unused(block_group); spin_lock(&discard_ctl->lock); btrfs_put_block_group(block_group); } } spin_unlock(&discard_ctl->lock); } void btrfs_discard_resume(struct btrfs_fs_info *fs_info) { if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) { btrfs_discard_cleanup(fs_info); return; } btrfs_discard_punt_unused_bgs_list(fs_info); set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); } void btrfs_discard_stop(struct btrfs_fs_info *fs_info) { clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); } void btrfs_discard_init(struct btrfs_fs_info *fs_info) { struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl; int i; spin_lock_init(&discard_ctl->lock); INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn); for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) INIT_LIST_HEAD(&discard_ctl->discard_list[i]); discard_ctl->prev_discard = 0; discard_ctl->prev_discard_time = 0; atomic_set(&discard_ctl->discardable_extents, 0); atomic64_set(&discard_ctl->discardable_bytes, 0); discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE; discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC; discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS; discard_ctl->kbps_limit = 0; discard_ctl->discard_extent_bytes = 0; discard_ctl->discard_bitmap_bytes = 0; atomic64_set(&discard_ctl->discard_bytes_saved, 0); } void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info) { btrfs_discard_stop(fs_info); cancel_delayed_work_sync(&fs_info->discard_ctl.work); btrfs_discard_purge_list(&fs_info->discard_ctl); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
You can’t perform that action at this time.