Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
db68ce1
Documentation
arch
alpha
arc
arm
arm64
avr32
blackfin
c6x
cris
frv
h8300
hexagon
ia64
m32r
m68k
metag
microblaze
mips
mn10300
nios2
openrisc
parisc
configs
include
kernel
lib
Makefile
bitops.c
checksum.c
delay.c
fixup.S
io.c
iomap.c
lusercopy.S
memcpy.c
memset.c
ucmpdi2.c
math-emu
mm
oprofile
Kconfig
Kconfig.debug
Makefile
defpalo.conf
install.sh
nm
powerpc
s390
score
sh
sparc
tile
um
unicore32
x86
xtensa
.gitignore
Kconfig
block
certs
crypto
drivers
firmware
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
arch
/
parisc
/
lib
/
memcpy.c
Blame
Blame
Latest commit
History
History
541 lines (468 loc) · 15.8 KB
Breadcrumbs
linux
/
arch
/
parisc
/
lib
/
memcpy.c
Top
File metadata and controls
Code
Blame
541 lines (468 loc) · 15.8 KB
Raw
/* * Optimized memory copy routines. * * Copyright (C) 2004 Randolph Chung <tausq@debian.org> * Copyright (C) 2013 Helge Deller <deller@gmx.de> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Portions derived from the GNU C Library * Copyright (C) 1991, 1997, 2003 Free Software Foundation, Inc. * * Several strategies are tried to try to get the best performance for various * conditions. In the optimal case, we copy 64-bytes in an unrolled loop using * fp regs. This is followed by loops that copy 32- or 16-bytes at a time using * general registers. Unaligned copies are handled either by aligning the * destination and then using shift-and-write method, or in a few cases by * falling back to a byte-at-a-time copy. * * I chose to implement this in C because it is easier to maintain and debug, * and in my experiments it appears that the C code generated by gcc (3.3/3.4 * at the time of writing) is fairly optimal. Unfortunately some of the * semantics of the copy routine (exception handling) is difficult to express * in C, so we have to play some tricks to get it to work. * * All the loads and stores are done via explicit asm() code in order to use * the right space registers. * * Testing with various alignments and buffer sizes shows that this code is * often >10x faster than a simple byte-at-a-time copy, even for strangely * aligned operands. It is interesting to note that the glibc version * of memcpy (written in C) is actually quite fast already. This routine is * able to beat it by 30-40% for aligned copies because of the loop unrolling, * but in some cases the glibc version is still slightly faster. This lends * more credibility that gcc can generate very good code as long as we are * careful. * * TODO: * - cache prefetching needs more experimentation to get optimal settings * - try not to use the post-increment address modifiers; they create additional * interlocks * - replace byte-copy loops with stybs sequences */ #ifdef __KERNEL__ #include <linux/module.h> #include <linux/compiler.h> #include <linux/uaccess.h> #define s_space "%%sr1" #define d_space "%%sr2" #else #include "memcpy.h" #define s_space "%%sr0" #define d_space "%%sr0" #define pa_memcpy new2_copy #endif DECLARE_PER_CPU(struct exception_data, exception_data); #define preserve_branch(label) do { \ volatile int dummy = 0; \ /* The following branch is never taken, it's just here to */ \ /* prevent gcc from optimizing away our exception code. */ \ if (unlikely(dummy != dummy)) \ goto label; \ } while (0) #define get_user_space() (uaccess_kernel() ? 0 : mfsp(3)) #define get_kernel_space() (0) #define MERGE(w0, sh_1, w1, sh_2) ({ \ unsigned int _r; \ asm volatile ( \ "mtsar %3\n" \ "shrpw %1, %2, %%sar, %0\n" \ : "=r"(_r) \ : "r"(w0), "r"(w1), "r"(sh_2) \ ); \ _r; \ }) #define THRESHOLD 16 #ifdef DEBUG_MEMCPY #define DPRINTF(fmt, args...) do { printk(KERN_DEBUG "%s:%d:%s ", __FILE__, __LINE__, __func__ ); printk(KERN_DEBUG fmt, ##args ); } while (0) #else #define DPRINTF(fmt, args...) #endif #define def_load_ai_insn(_insn,_sz,_tt,_s,_a,_t,_e) \ __asm__ __volatile__ ( \ "1:\t" #_insn ",ma " #_sz "(" _s ",%1), %0\n\t" \ ASM_EXCEPTIONTABLE_ENTRY(1b,_e) \ : _tt(_t), "+r"(_a) \ : \ : "r8") #define def_store_ai_insn(_insn,_sz,_tt,_s,_a,_t,_e) \ __asm__ __volatile__ ( \ "1:\t" #_insn ",ma %1, " #_sz "(" _s ",%0)\n\t" \ ASM_EXCEPTIONTABLE_ENTRY(1b,_e) \ : "+r"(_a) \ : _tt(_t) \ : "r8") #define ldbma(_s, _a, _t, _e) def_load_ai_insn(ldbs,1,"=r",_s,_a,_t,_e) #define stbma(_s, _t, _a, _e) def_store_ai_insn(stbs,1,"r",_s,_a,_t,_e) #define ldwma(_s, _a, _t, _e) def_load_ai_insn(ldw,4,"=r",_s,_a,_t,_e) #define stwma(_s, _t, _a, _e) def_store_ai_insn(stw,4,"r",_s,_a,_t,_e) #define flddma(_s, _a, _t, _e) def_load_ai_insn(fldd,8,"=f",_s,_a,_t,_e) #define fstdma(_s, _t, _a, _e) def_store_ai_insn(fstd,8,"f",_s,_a,_t,_e) #define def_load_insn(_insn,_tt,_s,_o,_a,_t,_e) \ __asm__ __volatile__ ( \ "1:\t" #_insn " " #_o "(" _s ",%1), %0\n\t" \ ASM_EXCEPTIONTABLE_ENTRY(1b,_e) \ : _tt(_t) \ : "r"(_a) \ : "r8") #define def_store_insn(_insn,_tt,_s,_t,_o,_a,_e) \ __asm__ __volatile__ ( \ "1:\t" #_insn " %0, " #_o "(" _s ",%1)\n\t" \ ASM_EXCEPTIONTABLE_ENTRY(1b,_e) \ : \ : _tt(_t), "r"(_a) \ : "r8") #define ldw(_s,_o,_a,_t,_e) def_load_insn(ldw,"=r",_s,_o,_a,_t,_e) #define stw(_s,_t,_o,_a,_e) def_store_insn(stw,"r",_s,_t,_o,_a,_e) #ifdef CONFIG_PREFETCH static inline void prefetch_src(const void *addr) { __asm__("ldw 0(" s_space ",%0), %%r0" : : "r" (addr)); } static inline void prefetch_dst(const void *addr) { __asm__("ldd 0(" d_space ",%0), %%r0" : : "r" (addr)); } #else #define prefetch_src(addr) do { } while(0) #define prefetch_dst(addr) do { } while(0) #endif #define PA_MEMCPY_OK 0 #define PA_MEMCPY_LOAD_ERROR 1 #define PA_MEMCPY_STORE_ERROR 2 /* Copy from a not-aligned src to an aligned dst, using shifts. Handles 4 words * per loop. This code is derived from glibc. */ static noinline unsigned long copy_dstaligned(unsigned long dst, unsigned long src, unsigned long len) { /* gcc complains that a2 and a3 may be uninitialized, but actually * they cannot be. Initialize a2/a3 to shut gcc up. */ register unsigned int a0, a1, a2 = 0, a3 = 0; int sh_1, sh_2; /* prefetch_src((const void *)src); */ /* Calculate how to shift a word read at the memory operation aligned srcp to make it aligned for copy. */ sh_1 = 8 * (src % sizeof(unsigned int)); sh_2 = 8 * sizeof(unsigned int) - sh_1; /* Make src aligned by rounding it down. */ src &= -sizeof(unsigned int); switch (len % 4) { case 2: /* a1 = ((unsigned int *) src)[0]; a2 = ((unsigned int *) src)[1]; */ ldw(s_space, 0, src, a1, cda_ldw_exc); ldw(s_space, 4, src, a2, cda_ldw_exc); src -= 1 * sizeof(unsigned int); dst -= 3 * sizeof(unsigned int); len += 2; goto do1; case 3: /* a0 = ((unsigned int *) src)[0]; a1 = ((unsigned int *) src)[1]; */ ldw(s_space, 0, src, a0, cda_ldw_exc); ldw(s_space, 4, src, a1, cda_ldw_exc); src -= 0 * sizeof(unsigned int); dst -= 2 * sizeof(unsigned int); len += 1; goto do2; case 0: if (len == 0) return PA_MEMCPY_OK; /* a3 = ((unsigned int *) src)[0]; a0 = ((unsigned int *) src)[1]; */ ldw(s_space, 0, src, a3, cda_ldw_exc); ldw(s_space, 4, src, a0, cda_ldw_exc); src -=-1 * sizeof(unsigned int); dst -= 1 * sizeof(unsigned int); len += 0; goto do3; case 1: /* a2 = ((unsigned int *) src)[0]; a3 = ((unsigned int *) src)[1]; */ ldw(s_space, 0, src, a2, cda_ldw_exc); ldw(s_space, 4, src, a3, cda_ldw_exc); src -=-2 * sizeof(unsigned int); dst -= 0 * sizeof(unsigned int); len -= 1; if (len == 0) goto do0; goto do4; /* No-op. */ } do { /* prefetch_src((const void *)(src + 4 * sizeof(unsigned int))); */ do4: /* a0 = ((unsigned int *) src)[0]; */ ldw(s_space, 0, src, a0, cda_ldw_exc); /* ((unsigned int *) dst)[0] = MERGE (a2, sh_1, a3, sh_2); */ stw(d_space, MERGE (a2, sh_1, a3, sh_2), 0, dst, cda_stw_exc); do3: /* a1 = ((unsigned int *) src)[1]; */ ldw(s_space, 4, src, a1, cda_ldw_exc); /* ((unsigned int *) dst)[1] = MERGE (a3, sh_1, a0, sh_2); */ stw(d_space, MERGE (a3, sh_1, a0, sh_2), 4, dst, cda_stw_exc); do2: /* a2 = ((unsigned int *) src)[2]; */ ldw(s_space, 8, src, a2, cda_ldw_exc); /* ((unsigned int *) dst)[2] = MERGE (a0, sh_1, a1, sh_2); */ stw(d_space, MERGE (a0, sh_1, a1, sh_2), 8, dst, cda_stw_exc); do1: /* a3 = ((unsigned int *) src)[3]; */ ldw(s_space, 12, src, a3, cda_ldw_exc); /* ((unsigned int *) dst)[3] = MERGE (a1, sh_1, a2, sh_2); */ stw(d_space, MERGE (a1, sh_1, a2, sh_2), 12, dst, cda_stw_exc); src += 4 * sizeof(unsigned int); dst += 4 * sizeof(unsigned int); len -= 4; } while (len != 0); do0: /* ((unsigned int *) dst)[0] = MERGE (a2, sh_1, a3, sh_2); */ stw(d_space, MERGE (a2, sh_1, a3, sh_2), 0, dst, cda_stw_exc); preserve_branch(handle_load_error); preserve_branch(handle_store_error); return PA_MEMCPY_OK; handle_load_error: __asm__ __volatile__ ("cda_ldw_exc:\n"); return PA_MEMCPY_LOAD_ERROR; handle_store_error: __asm__ __volatile__ ("cda_stw_exc:\n"); return PA_MEMCPY_STORE_ERROR; } /* Returns PA_MEMCPY_OK, PA_MEMCPY_LOAD_ERROR or PA_MEMCPY_STORE_ERROR. * In case of an access fault the faulty address can be read from the per_cpu * exception data struct. */ static noinline unsigned long pa_memcpy_internal(void *dstp, const void *srcp, unsigned long len) { register unsigned long src, dst, t1, t2, t3; register unsigned char *pcs, *pcd; register unsigned int *pws, *pwd; register double *pds, *pdd; unsigned long ret; src = (unsigned long)srcp; dst = (unsigned long)dstp; pcs = (unsigned char *)srcp; pcd = (unsigned char *)dstp; /* prefetch_src((const void *)srcp); */ if (len < THRESHOLD) goto byte_copy; /* Check alignment */ t1 = (src ^ dst); if (unlikely(t1 & (sizeof(double)-1))) goto unaligned_copy; /* src and dst have same alignment. */ /* Copy bytes till we are double-aligned. */ t2 = src & (sizeof(double) - 1); if (unlikely(t2 != 0)) { t2 = sizeof(double) - t2; while (t2 && len) { /* *pcd++ = *pcs++; */ ldbma(s_space, pcs, t3, pmc_load_exc); len--; stbma(d_space, t3, pcd, pmc_store_exc); t2--; } } pds = (double *)pcs; pdd = (double *)pcd; #if 0 /* Copy 8 doubles at a time */ while (len >= 8*sizeof(double)) { register double r1, r2, r3, r4, r5, r6, r7, r8; /* prefetch_src((char *)pds + L1_CACHE_BYTES); */ flddma(s_space, pds, r1, pmc_load_exc); flddma(s_space, pds, r2, pmc_load_exc); flddma(s_space, pds, r3, pmc_load_exc); flddma(s_space, pds, r4, pmc_load_exc); fstdma(d_space, r1, pdd, pmc_store_exc); fstdma(d_space, r2, pdd, pmc_store_exc); fstdma(d_space, r3, pdd, pmc_store_exc); fstdma(d_space, r4, pdd, pmc_store_exc); #if 0 if (L1_CACHE_BYTES <= 32) prefetch_src((char *)pds + L1_CACHE_BYTES); #endif flddma(s_space, pds, r5, pmc_load_exc); flddma(s_space, pds, r6, pmc_load_exc); flddma(s_space, pds, r7, pmc_load_exc); flddma(s_space, pds, r8, pmc_load_exc); fstdma(d_space, r5, pdd, pmc_store_exc); fstdma(d_space, r6, pdd, pmc_store_exc); fstdma(d_space, r7, pdd, pmc_store_exc); fstdma(d_space, r8, pdd, pmc_store_exc); len -= 8*sizeof(double); } #endif pws = (unsigned int *)pds; pwd = (unsigned int *)pdd; word_copy: while (len >= 8*sizeof(unsigned int)) { register unsigned int r1,r2,r3,r4,r5,r6,r7,r8; /* prefetch_src((char *)pws + L1_CACHE_BYTES); */ ldwma(s_space, pws, r1, pmc_load_exc); ldwma(s_space, pws, r2, pmc_load_exc); ldwma(s_space, pws, r3, pmc_load_exc); ldwma(s_space, pws, r4, pmc_load_exc); stwma(d_space, r1, pwd, pmc_store_exc); stwma(d_space, r2, pwd, pmc_store_exc); stwma(d_space, r3, pwd, pmc_store_exc); stwma(d_space, r4, pwd, pmc_store_exc); ldwma(s_space, pws, r5, pmc_load_exc); ldwma(s_space, pws, r6, pmc_load_exc); ldwma(s_space, pws, r7, pmc_load_exc); ldwma(s_space, pws, r8, pmc_load_exc); stwma(d_space, r5, pwd, pmc_store_exc); stwma(d_space, r6, pwd, pmc_store_exc); stwma(d_space, r7, pwd, pmc_store_exc); stwma(d_space, r8, pwd, pmc_store_exc); len -= 8*sizeof(unsigned int); } while (len >= 4*sizeof(unsigned int)) { register unsigned int r1,r2,r3,r4; ldwma(s_space, pws, r1, pmc_load_exc); ldwma(s_space, pws, r2, pmc_load_exc); ldwma(s_space, pws, r3, pmc_load_exc); ldwma(s_space, pws, r4, pmc_load_exc); stwma(d_space, r1, pwd, pmc_store_exc); stwma(d_space, r2, pwd, pmc_store_exc); stwma(d_space, r3, pwd, pmc_store_exc); stwma(d_space, r4, pwd, pmc_store_exc); len -= 4*sizeof(unsigned int); } pcs = (unsigned char *)pws; pcd = (unsigned char *)pwd; byte_copy: while (len) { /* *pcd++ = *pcs++; */ ldbma(s_space, pcs, t3, pmc_load_exc); stbma(d_space, t3, pcd, pmc_store_exc); len--; } return PA_MEMCPY_OK; unaligned_copy: /* possibly we are aligned on a word, but not on a double... */ if (likely((t1 & (sizeof(unsigned int)-1)) == 0)) { t2 = src & (sizeof(unsigned int) - 1); if (unlikely(t2 != 0)) { t2 = sizeof(unsigned int) - t2; while (t2) { /* *pcd++ = *pcs++; */ ldbma(s_space, pcs, t3, pmc_load_exc); stbma(d_space, t3, pcd, pmc_store_exc); len--; t2--; } } pws = (unsigned int *)pcs; pwd = (unsigned int *)pcd; goto word_copy; } /* Align the destination. */ if (unlikely((dst & (sizeof(unsigned int) - 1)) != 0)) { t2 = sizeof(unsigned int) - (dst & (sizeof(unsigned int) - 1)); while (t2) { /* *pcd++ = *pcs++; */ ldbma(s_space, pcs, t3, pmc_load_exc); stbma(d_space, t3, pcd, pmc_store_exc); len--; t2--; } dst = (unsigned long)pcd; src = (unsigned long)pcs; } ret = copy_dstaligned(dst, src, len / sizeof(unsigned int)); if (ret) return ret; pcs += (len & -sizeof(unsigned int)); pcd += (len & -sizeof(unsigned int)); len %= sizeof(unsigned int); preserve_branch(handle_load_error); preserve_branch(handle_store_error); goto byte_copy; handle_load_error: __asm__ __volatile__ ("pmc_load_exc:\n"); return PA_MEMCPY_LOAD_ERROR; handle_store_error: __asm__ __volatile__ ("pmc_store_exc:\n"); return PA_MEMCPY_STORE_ERROR; } /* Returns 0 for success, otherwise, returns number of bytes not transferred. */ static unsigned long pa_memcpy(void *dstp, const void *srcp, unsigned long len) { unsigned long ret, fault_addr, reference; struct exception_data *d; ret = pa_memcpy_internal(dstp, srcp, len); if (likely(ret == PA_MEMCPY_OK)) return 0; /* if a load or store fault occured we can get the faulty addr */ d = this_cpu_ptr(&exception_data); fault_addr = d->fault_addr; /* error in load or store? */ if (ret == PA_MEMCPY_LOAD_ERROR) reference = (unsigned long) srcp; else reference = (unsigned long) dstp; DPRINTF("pa_memcpy: fault type = %lu, len=%lu fault_addr=%lu ref=%lu\n", ret, len, fault_addr, reference); if (fault_addr >= reference) return len - (fault_addr - reference); else return len; } #ifdef __KERNEL__ unsigned long __copy_to_user(void __user *dst, const void *src, unsigned long len) { mtsp(get_kernel_space(), 1); mtsp(get_user_space(), 2); return pa_memcpy((void __force *)dst, src, len); } EXPORT_SYMBOL(__copy_to_user); unsigned long __copy_from_user(void *dst, const void __user *src, unsigned long len) { mtsp(get_user_space(), 1); mtsp(get_kernel_space(), 2); return pa_memcpy(dst, (void __force *)src, len); } EXPORT_SYMBOL(__copy_from_user); unsigned long copy_in_user(void __user *dst, const void __user *src, unsigned long len) { mtsp(get_user_space(), 1); mtsp(get_user_space(), 2); return pa_memcpy((void __force *)dst, (void __force *)src, len); } void * memcpy(void * dst,const void *src, size_t count) { mtsp(get_kernel_space(), 1); mtsp(get_kernel_space(), 2); pa_memcpy(dst, src, count); return dst; } EXPORT_SYMBOL(copy_in_user); EXPORT_SYMBOL(memcpy); long probe_kernel_read(void *dst, const void *src, size_t size) { unsigned long addr = (unsigned long)src; if (addr < PAGE_SIZE) return -EFAULT; /* check for I/O space F_EXTEND(0xfff00000) access as well? */ return __probe_kernel_read(dst, src, size); } #endif
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
You can’t perform that action at this time.