Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
e5bfcd3
Documentation
LICENSES
arch
block
certs
crypto
drivers
accessibility
acpi
amba
android
ata
atm
auxdisplay
base
bcma
block
bluetooth
bus
cdrom
char
clk
clocksource
comedi
connector
counter
cpufreq
cpuidle
crypto
cxl
dax
dca
devfreq
dio
dma-buf
dma
edac
eisa
extcon
firewire
firmware
fpga
fsi
gnss
gpio
gpu
greybus
hid
hsi
hv
hwmon
hwspinlock
hwtracing
i2c
i3c
idle
iio
infiniband
input
interconnect
iommu
ipack
irqchip
isdn
leds
macintosh
mailbox
mcb
md
media
memory
memstick
message
mfd
misc
mmc
most
mtd
mux
net
nfc
ntb
nubus
nvdimm
nvme
nvmem
of
opp
parisc
parport
pci
pcmcia
peci
perf
phy
pinctrl
platform
pnp
power
powercap
pps
ps3
ptp
pwm
rapidio
ras
regulator
remoteproc
reset
rpmsg
rtc
s390
sbus
scsi
sh
siox
slimbus
soc
soundwire
spi
spmi
ssb
staging
target
tc
tee
thermal
broadcom
intel
qcom
samsung
st
tegra
ti-soc-thermal
Kconfig
Makefile
amlogic_thermal.c
armada_thermal.c
cpufreq_cooling.c
cpuidle_cooling.c
da9062-thermal.c
db8500_thermal.c
devfreq_cooling.c
dove_thermal.c
gov_bang_bang.c
gov_fair_share.c
gov_power_allocator.c
gov_step_wise.c
gov_user_space.c
hisi_thermal.c
imx8mm_thermal.c
imx_sc_thermal.c
imx_thermal.c
k3_bandgap.c
k3_j72xx_bandgap.c
khadas_mcu_fan.c
kirkwood_thermal.c
max77620_thermal.c
mtk_thermal.c
qoriq_thermal.c
rcar_gen3_thermal.c
rcar_thermal.c
rockchip_thermal.c
rzg2l_thermal.c
spear_thermal.c
sprd_thermal.c
sun8i_thermal.c
thermal-generic-adc.c
thermal_core.c
thermal_core.h
thermal_helpers.c
thermal_hwmon.c
thermal_hwmon.h
thermal_mmio.c
thermal_netlink.c
thermal_netlink.h
thermal_of.c
thermal_sysfs.c
uniphier_thermal.c
thunderbolt
tty
uio
usb
vdpa
vfio
vhost
video
virt
virtio
visorbus
vlynq
vme
w1
watchdog
xen
zorro
Kconfig
Makefile
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.clang-format
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
drivers
/
thermal
/
gov_power_allocator.c
Blame
Blame
Latest commit
History
History
752 lines (633 loc) · 21.2 KB
Breadcrumbs
linux
/
drivers
/
thermal
/
gov_power_allocator.c
Top
File metadata and controls
Code
Blame
752 lines (633 loc) · 21.2 KB
Raw
// SPDX-License-Identifier: GPL-2.0 /* * A power allocator to manage temperature * * Copyright (C) 2014 ARM Ltd. * */ #define pr_fmt(fmt) "Power allocator: " fmt #include <linux/rculist.h> #include <linux/slab.h> #include <linux/thermal.h> #define CREATE_TRACE_POINTS #include <trace/events/thermal_power_allocator.h> #include "thermal_core.h" #define INVALID_TRIP -1 #define FRAC_BITS 10 #define int_to_frac(x) ((x) << FRAC_BITS) #define frac_to_int(x) ((x) >> FRAC_BITS) /** * mul_frac() - multiply two fixed-point numbers * @x: first multiplicand * @y: second multiplicand * * Return: the result of multiplying two fixed-point numbers. The * result is also a fixed-point number. */ static inline s64 mul_frac(s64 x, s64 y) { return (x * y) >> FRAC_BITS; } /** * div_frac() - divide two fixed-point numbers * @x: the dividend * @y: the divisor * * Return: the result of dividing two fixed-point numbers. The * result is also a fixed-point number. */ static inline s64 div_frac(s64 x, s64 y) { return div_s64(x << FRAC_BITS, y); } /** * struct power_allocator_params - parameters for the power allocator governor * @allocated_tzp: whether we have allocated tzp for this thermal zone and * it needs to be freed on unbind * @err_integral: accumulated error in the PID controller. * @prev_err: error in the previous iteration of the PID controller. * Used to calculate the derivative term. * @trip_switch_on: first passive trip point of the thermal zone. The * governor switches on when this trip point is crossed. * If the thermal zone only has one passive trip point, * @trip_switch_on should be INVALID_TRIP. * @trip_max_desired_temperature: last passive trip point of the thermal * zone. The temperature we are * controlling for. * @sustainable_power: Sustainable power (heat) that this thermal zone can * dissipate */ struct power_allocator_params { bool allocated_tzp; s64 err_integral; s32 prev_err; int trip_switch_on; int trip_max_desired_temperature; u32 sustainable_power; }; /** * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone * @tz: thermal zone we are operating in * * For thermal zones that don't provide a sustainable_power in their * thermal_zone_params, estimate one. Calculate it using the minimum * power of all the cooling devices as that gives a valid value that * can give some degree of functionality. For optimal performance of * this governor, provide a sustainable_power in the thermal zone's * thermal_zone_params. */ static u32 estimate_sustainable_power(struct thermal_zone_device *tz) { u32 sustainable_power = 0; struct thermal_instance *instance; struct power_allocator_params *params = tz->governor_data; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { struct thermal_cooling_device *cdev = instance->cdev; u32 min_power; if (instance->trip != params->trip_max_desired_temperature) continue; if (!cdev_is_power_actor(cdev)) continue; if (cdev->ops->state2power(cdev, instance->upper, &min_power)) continue; sustainable_power += min_power; } return sustainable_power; } /** * estimate_pid_constants() - Estimate the constants for the PID controller * @tz: thermal zone for which to estimate the constants * @sustainable_power: sustainable power for the thermal zone * @trip_switch_on: trip point number for the switch on temperature * @control_temp: target temperature for the power allocator governor * * This function is used to update the estimation of the PID * controller constants in struct thermal_zone_parameters. */ static void estimate_pid_constants(struct thermal_zone_device *tz, u32 sustainable_power, int trip_switch_on, int control_temp) { int ret; int switch_on_temp; u32 temperature_threshold; s32 k_i; ret = tz->ops->get_trip_temp(tz, trip_switch_on, &switch_on_temp); if (ret) switch_on_temp = 0; temperature_threshold = control_temp - switch_on_temp; /* * estimate_pid_constants() tries to find appropriate default * values for thermal zones that don't provide them. If a * system integrator has configured a thermal zone with two * passive trip points at the same temperature, that person * hasn't put any effort to set up the thermal zone properly * so just give up. */ if (!temperature_threshold) return; tz->tzp->k_po = int_to_frac(sustainable_power) / temperature_threshold; tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / temperature_threshold; k_i = tz->tzp->k_pu / 10; tz->tzp->k_i = k_i > 0 ? k_i : 1; /* * The default for k_d and integral_cutoff is 0, so we can * leave them as they are. */ } /** * get_sustainable_power() - Get the right sustainable power * @tz: thermal zone for which to estimate the constants * @params: parameters for the power allocator governor * @control_temp: target temperature for the power allocator governor * * This function is used for getting the proper sustainable power value based * on variables which might be updated by the user sysfs interface. If that * happen the new value is going to be estimated and updated. It is also used * after thermal zone binding, where the initial values where set to 0. */ static u32 get_sustainable_power(struct thermal_zone_device *tz, struct power_allocator_params *params, int control_temp) { u32 sustainable_power; if (!tz->tzp->sustainable_power) sustainable_power = estimate_sustainable_power(tz); else sustainable_power = tz->tzp->sustainable_power; /* Check if it's init value 0 or there was update via sysfs */ if (sustainable_power != params->sustainable_power) { estimate_pid_constants(tz, sustainable_power, params->trip_switch_on, control_temp); /* Do the estimation only once and make available in sysfs */ tz->tzp->sustainable_power = sustainable_power; params->sustainable_power = sustainable_power; } return sustainable_power; } /** * pid_controller() - PID controller * @tz: thermal zone we are operating in * @control_temp: the target temperature in millicelsius * @max_allocatable_power: maximum allocatable power for this thermal zone * * This PID controller increases the available power budget so that the * temperature of the thermal zone gets as close as possible to * @control_temp and limits the power if it exceeds it. k_po is the * proportional term when we are overshooting, k_pu is the * proportional term when we are undershooting. integral_cutoff is a * threshold below which we stop accumulating the error. The * accumulated error is only valid if the requested power will make * the system warmer. If the system is mostly idle, there's no point * in accumulating positive error. * * Return: The power budget for the next period. */ static u32 pid_controller(struct thermal_zone_device *tz, int control_temp, u32 max_allocatable_power) { s64 p, i, d, power_range; s32 err, max_power_frac; u32 sustainable_power; struct power_allocator_params *params = tz->governor_data; max_power_frac = int_to_frac(max_allocatable_power); sustainable_power = get_sustainable_power(tz, params, control_temp); err = control_temp - tz->temperature; err = int_to_frac(err); /* Calculate the proportional term */ p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); /* * Calculate the integral term * * if the error is less than cut off allow integration (but * the integral is limited to max power) */ i = mul_frac(tz->tzp->k_i, params->err_integral); if (err < int_to_frac(tz->tzp->integral_cutoff)) { s64 i_next = i + mul_frac(tz->tzp->k_i, err); if (abs(i_next) < max_power_frac) { i = i_next; params->err_integral += err; } } /* * Calculate the derivative term * * We do err - prev_err, so with a positive k_d, a decreasing * error (i.e. driving closer to the line) results in less * power being applied, slowing down the controller) */ d = mul_frac(tz->tzp->k_d, err - params->prev_err); d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies)); params->prev_err = err; power_range = p + i + d; /* feed-forward the known sustainable dissipatable power */ power_range = sustainable_power + frac_to_int(power_range); power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); trace_thermal_power_allocator_pid(tz, frac_to_int(err), frac_to_int(params->err_integral), frac_to_int(p), frac_to_int(i), frac_to_int(d), power_range); return power_range; } /** * power_actor_set_power() - limit the maximum power a cooling device consumes * @cdev: pointer to &thermal_cooling_device * @instance: thermal instance to update * @power: the power in milliwatts * * Set the cooling device to consume at most @power milliwatts. The limit is * expected to be a cap at the maximum power consumption. * * Return: 0 on success, -EINVAL if the cooling device does not * implement the power actor API or -E* for other failures. */ static int power_actor_set_power(struct thermal_cooling_device *cdev, struct thermal_instance *instance, u32 power) { unsigned long state; int ret; ret = cdev->ops->power2state(cdev, power, &state); if (ret) return ret; instance->target = clamp_val(state, instance->lower, instance->upper); mutex_lock(&cdev->lock); __thermal_cdev_update(cdev); mutex_unlock(&cdev->lock); return 0; } /** * divvy_up_power() - divvy the allocated power between the actors * @req_power: each actor's requested power * @max_power: each actor's maximum available power * @num_actors: size of the @req_power, @max_power and @granted_power's array * @total_req_power: sum of @req_power * @power_range: total allocated power * @granted_power: output array: each actor's granted power * @extra_actor_power: an appropriately sized array to be used in the * function as temporary storage of the extra power given * to the actors * * This function divides the total allocated power (@power_range) * fairly between the actors. It first tries to give each actor a * share of the @power_range according to how much power it requested * compared to the rest of the actors. For example, if only one actor * requests power, then it receives all the @power_range. If * three actors each requests 1mW, each receives a third of the * @power_range. * * If any actor received more than their maximum power, then that * surplus is re-divvied among the actors based on how far they are * from their respective maximums. * * Granted power for each actor is written to @granted_power, which * should've been allocated by the calling function. */ static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors, u32 total_req_power, u32 power_range, u32 *granted_power, u32 *extra_actor_power) { u32 extra_power, capped_extra_power; int i; /* * Prevent division by 0 if none of the actors request power. */ if (!total_req_power) total_req_power = 1; capped_extra_power = 0; extra_power = 0; for (i = 0; i < num_actors; i++) { u64 req_range = (u64)req_power[i] * power_range; granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range, total_req_power); if (granted_power[i] > max_power[i]) { extra_power += granted_power[i] - max_power[i]; granted_power[i] = max_power[i]; } extra_actor_power[i] = max_power[i] - granted_power[i]; capped_extra_power += extra_actor_power[i]; } if (!extra_power) return; /* * Re-divvy the reclaimed extra among actors based on * how far they are from the max */ extra_power = min(extra_power, capped_extra_power); if (capped_extra_power > 0) for (i = 0; i < num_actors; i++) { u64 extra_range = (u64)extra_actor_power[i] * extra_power; granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range, capped_extra_power); } } static int allocate_power(struct thermal_zone_device *tz, int control_temp) { struct thermal_instance *instance; struct power_allocator_params *params = tz->governor_data; u32 *req_power, *max_power, *granted_power, *extra_actor_power; u32 *weighted_req_power; u32 total_req_power, max_allocatable_power, total_weighted_req_power; u32 total_granted_power, power_range; int i, num_actors, total_weight, ret = 0; int trip_max_desired_temperature = params->trip_max_desired_temperature; mutex_lock(&tz->lock); num_actors = 0; total_weight = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { if ((instance->trip == trip_max_desired_temperature) && cdev_is_power_actor(instance->cdev)) { num_actors++; total_weight += instance->weight; } } if (!num_actors) { ret = -ENODEV; goto unlock; } /* * We need to allocate five arrays of the same size: * req_power, max_power, granted_power, extra_actor_power and * weighted_req_power. They are going to be needed until this * function returns. Allocate them all in one go to simplify * the allocation and deallocation logic. */ BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power)); BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power)); BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power)); BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power)); req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL); if (!req_power) { ret = -ENOMEM; goto unlock; } max_power = &req_power[num_actors]; granted_power = &req_power[2 * num_actors]; extra_actor_power = &req_power[3 * num_actors]; weighted_req_power = &req_power[4 * num_actors]; i = 0; total_weighted_req_power = 0; total_req_power = 0; max_allocatable_power = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { int weight; struct thermal_cooling_device *cdev = instance->cdev; if (instance->trip != trip_max_desired_temperature) continue; if (!cdev_is_power_actor(cdev)) continue; if (cdev->ops->get_requested_power(cdev, &req_power[i])) continue; if (!total_weight) weight = 1 << FRAC_BITS; else weight = instance->weight; weighted_req_power[i] = frac_to_int(weight * req_power[i]); if (cdev->ops->state2power(cdev, instance->lower, &max_power[i])) continue; total_req_power += req_power[i]; max_allocatable_power += max_power[i]; total_weighted_req_power += weighted_req_power[i]; i++; } power_range = pid_controller(tz, control_temp, max_allocatable_power); divvy_up_power(weighted_req_power, max_power, num_actors, total_weighted_req_power, power_range, granted_power, extra_actor_power); total_granted_power = 0; i = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { if (instance->trip != trip_max_desired_temperature) continue; if (!cdev_is_power_actor(instance->cdev)) continue; power_actor_set_power(instance->cdev, instance, granted_power[i]); total_granted_power += granted_power[i]; i++; } trace_thermal_power_allocator(tz, req_power, total_req_power, granted_power, total_granted_power, num_actors, power_range, max_allocatable_power, tz->temperature, control_temp - tz->temperature); kfree(req_power); unlock: mutex_unlock(&tz->lock); return ret; } /** * get_governor_trips() - get the number of the two trip points that are key for this governor * @tz: thermal zone to operate on * @params: pointer to private data for this governor * * The power allocator governor works optimally with two trips points: * a "switch on" trip point and a "maximum desired temperature". These * are defined as the first and last passive trip points. * * If there is only one trip point, then that's considered to be the * "maximum desired temperature" trip point and the governor is always * on. If there are no passive or active trip points, then the * governor won't do anything. In fact, its throttle function * won't be called at all. */ static void get_governor_trips(struct thermal_zone_device *tz, struct power_allocator_params *params) { int i, last_active, last_passive; bool found_first_passive; found_first_passive = false; last_active = INVALID_TRIP; last_passive = INVALID_TRIP; for (i = 0; i < tz->num_trips; i++) { enum thermal_trip_type type; int ret; ret = tz->ops->get_trip_type(tz, i, &type); if (ret) { dev_warn(&tz->device, "Failed to get trip point %d type: %d\n", i, ret); continue; } if (type == THERMAL_TRIP_PASSIVE) { if (!found_first_passive) { params->trip_switch_on = i; found_first_passive = true; } else { last_passive = i; } } else if (type == THERMAL_TRIP_ACTIVE) { last_active = i; } else { break; } } if (last_passive != INVALID_TRIP) { params->trip_max_desired_temperature = last_passive; } else if (found_first_passive) { params->trip_max_desired_temperature = params->trip_switch_on; params->trip_switch_on = INVALID_TRIP; } else { params->trip_switch_on = INVALID_TRIP; params->trip_max_desired_temperature = last_active; } } static void reset_pid_controller(struct power_allocator_params *params) { params->err_integral = 0; params->prev_err = 0; } static void allow_maximum_power(struct thermal_zone_device *tz, bool update) { struct thermal_instance *instance; struct power_allocator_params *params = tz->governor_data; u32 req_power; mutex_lock(&tz->lock); list_for_each_entry(instance, &tz->thermal_instances, tz_node) { struct thermal_cooling_device *cdev = instance->cdev; if ((instance->trip != params->trip_max_desired_temperature) || (!cdev_is_power_actor(instance->cdev))) continue; instance->target = 0; mutex_lock(&instance->cdev->lock); /* * Call for updating the cooling devices local stats and avoid * periods of dozen of seconds when those have not been * maintained. */ cdev->ops->get_requested_power(cdev, &req_power); if (update) __thermal_cdev_update(instance->cdev); mutex_unlock(&instance->cdev->lock); } mutex_unlock(&tz->lock); } /** * check_power_actors() - Check all cooling devices and warn when they are * not power actors * @tz: thermal zone to operate on * * Check all cooling devices in the @tz and warn every time they are missing * power actor API. The warning should help to investigate the issue, which * could be e.g. lack of Energy Model for a given device. * * Return: 0 on success, -EINVAL if any cooling device does not implement * the power actor API. */ static int check_power_actors(struct thermal_zone_device *tz) { struct thermal_instance *instance; int ret = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { if (!cdev_is_power_actor(instance->cdev)) { dev_warn(&tz->device, "power_allocator: %s is not a power actor\n", instance->cdev->type); ret = -EINVAL; } } return ret; } /** * power_allocator_bind() - bind the power_allocator governor to a thermal zone * @tz: thermal zone to bind it to * * Initialize the PID controller parameters and bind it to the thermal * zone. * * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL * when there are unsupported cooling devices in the @tz. */ static int power_allocator_bind(struct thermal_zone_device *tz) { int ret; struct power_allocator_params *params; int control_temp; ret = check_power_actors(tz); if (ret) return ret; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; if (!tz->tzp) { tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); if (!tz->tzp) { ret = -ENOMEM; goto free_params; } params->allocated_tzp = true; } if (!tz->tzp->sustainable_power) dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); get_governor_trips(tz, params); if (tz->num_trips > 0) { ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature, &control_temp); if (!ret) estimate_pid_constants(tz, tz->tzp->sustainable_power, params->trip_switch_on, control_temp); } reset_pid_controller(params); tz->governor_data = params; return 0; free_params: kfree(params); return ret; } static void power_allocator_unbind(struct thermal_zone_device *tz) { struct power_allocator_params *params = tz->governor_data; dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); if (params->allocated_tzp) { kfree(tz->tzp); tz->tzp = NULL; } kfree(tz->governor_data); tz->governor_data = NULL; } static int power_allocator_throttle(struct thermal_zone_device *tz, int trip) { int ret; int switch_on_temp, control_temp; struct power_allocator_params *params = tz->governor_data; bool update; /* * We get called for every trip point but we only need to do * our calculations once */ if (trip != params->trip_max_desired_temperature) return 0; ret = tz->ops->get_trip_temp(tz, params->trip_switch_on, &switch_on_temp); if (!ret && (tz->temperature < switch_on_temp)) { update = (tz->last_temperature >= switch_on_temp); tz->passive = 0; reset_pid_controller(params); allow_maximum_power(tz, update); return 0; } tz->passive = 1; ret = tz->ops->get_trip_temp(tz, params->trip_max_desired_temperature, &control_temp); if (ret) { dev_warn(&tz->device, "Failed to get the maximum desired temperature: %d\n", ret); return ret; } return allocate_power(tz, control_temp); } static struct thermal_governor thermal_gov_power_allocator = { .name = "power_allocator", .bind_to_tz = power_allocator_bind, .unbind_from_tz = power_allocator_unbind, .throttle = power_allocator_throttle, }; THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
You can’t perform that action at this time.