Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
e6eb33d
Breadcrumbs
linux
/
fs
/
xfs
/
libxfs
/
xfs_alloc_btree.c
Blame
Blame
Latest commit
History
History
602 lines (519 loc) · 14.4 KB
Breadcrumbs
linux
/
fs
/
xfs
/
libxfs
/
xfs_alloc_btree.c
Top
File metadata and controls
Code
Blame
602 lines (519 loc) · 14.4 KB
Raw
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. * All Rights Reserved. */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_alloc_btree.h" #include "xfs_alloc.h" #include "xfs_extent_busy.h" #include "xfs_error.h" #include "xfs_trace.h" #include "xfs_trans.h" STATIC struct xfs_btree_cur * xfs_allocbt_dup_cursor( struct xfs_btree_cur *cur) { return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp, cur->bc_ag.agno, cur->bc_btnum); } STATIC void xfs_allocbt_set_root( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, int inc) { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agf *agf = agbp->b_addr; xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno); int btnum = cur->bc_btnum; struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno); ASSERT(ptr->s != 0); agf->agf_roots[btnum] = ptr->s; be32_add_cpu(&agf->agf_levels[btnum], inc); pag->pagf_levels[btnum] += inc; xfs_perag_put(pag); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); } STATIC int xfs_allocbt_alloc_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { int error; xfs_agblock_t bno; /* Allocate the new block from the freelist. If we can't, give up. */ error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp, &bno, 1); if (error) return error; if (bno == NULLAGBLOCK) { *stat = 0; return 0; } xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agno, bno, 1, false); xfs_trans_agbtree_delta(cur->bc_tp, 1); new->s = cpu_to_be32(bno); *stat = 1; return 0; } STATIC int xfs_allocbt_free_block( struct xfs_btree_cur *cur, struct xfs_buf *bp) { struct xfs_buf *agbp = cur->bc_ag.agbp; struct xfs_agf *agf = agbp->b_addr; xfs_agblock_t bno; int error; bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp)); error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1); if (error) return error; xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1, XFS_EXTENT_BUSY_SKIP_DISCARD); xfs_trans_agbtree_delta(cur->bc_tp, -1); return 0; } /* * Update the longest extent in the AGF */ STATIC void xfs_allocbt_update_lastrec( struct xfs_btree_cur *cur, struct xfs_btree_block *block, union xfs_btree_rec *rec, int ptr, int reason) { struct xfs_agf *agf = cur->bc_ag.agbp->b_addr; xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno); struct xfs_perag *pag; __be32 len; int numrecs; ASSERT(cur->bc_btnum == XFS_BTNUM_CNT); switch (reason) { case LASTREC_UPDATE: /* * If this is the last leaf block and it's the last record, * then update the size of the longest extent in the AG. */ if (ptr != xfs_btree_get_numrecs(block)) return; len = rec->alloc.ar_blockcount; break; case LASTREC_INSREC: if (be32_to_cpu(rec->alloc.ar_blockcount) <= be32_to_cpu(agf->agf_longest)) return; len = rec->alloc.ar_blockcount; break; case LASTREC_DELREC: numrecs = xfs_btree_get_numrecs(block); if (ptr <= numrecs) return; ASSERT(ptr == numrecs + 1); if (numrecs) { xfs_alloc_rec_t *rrp; rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs); len = rrp->ar_blockcount; } else { len = 0; } break; default: ASSERT(0); return; } agf->agf_longest = len; pag = xfs_perag_get(cur->bc_mp, seqno); pag->pagf_longest = be32_to_cpu(len); xfs_perag_put(pag); xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST); } STATIC int xfs_allocbt_get_minrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_alloc_mnr[level != 0]; } STATIC int xfs_allocbt_get_maxrecs( struct xfs_btree_cur *cur, int level) { return cur->bc_mp->m_alloc_mxr[level != 0]; } STATIC void xfs_allocbt_init_key_from_rec( union xfs_btree_key *key, union xfs_btree_rec *rec) { key->alloc.ar_startblock = rec->alloc.ar_startblock; key->alloc.ar_blockcount = rec->alloc.ar_blockcount; } STATIC void xfs_bnobt_init_high_key_from_rec( union xfs_btree_key *key, union xfs_btree_rec *rec) { __u32 x; x = be32_to_cpu(rec->alloc.ar_startblock); x += be32_to_cpu(rec->alloc.ar_blockcount) - 1; key->alloc.ar_startblock = cpu_to_be32(x); key->alloc.ar_blockcount = 0; } STATIC void xfs_cntbt_init_high_key_from_rec( union xfs_btree_key *key, union xfs_btree_rec *rec) { key->alloc.ar_blockcount = rec->alloc.ar_blockcount; key->alloc.ar_startblock = 0; } STATIC void xfs_allocbt_init_rec_from_cur( struct xfs_btree_cur *cur, union xfs_btree_rec *rec) { rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock); rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount); } STATIC void xfs_allocbt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { struct xfs_agf *agf = cur->bc_ag.agbp->b_addr; ASSERT(cur->bc_ag.agno == be32_to_cpu(agf->agf_seqno)); ptr->s = agf->agf_roots[cur->bc_btnum]; } STATIC int64_t xfs_bnobt_key_diff( struct xfs_btree_cur *cur, union xfs_btree_key *key) { xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a; xfs_alloc_key_t *kp = &key->alloc; return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock; } STATIC int64_t xfs_cntbt_key_diff( struct xfs_btree_cur *cur, union xfs_btree_key *key) { xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a; xfs_alloc_key_t *kp = &key->alloc; int64_t diff; diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount; if (diff) return diff; return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock; } STATIC int64_t xfs_bnobt_diff_two_keys( struct xfs_btree_cur *cur, union xfs_btree_key *k1, union xfs_btree_key *k2) { return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) - be32_to_cpu(k2->alloc.ar_startblock); } STATIC int64_t xfs_cntbt_diff_two_keys( struct xfs_btree_cur *cur, union xfs_btree_key *k1, union xfs_btree_key *k2) { int64_t diff; diff = be32_to_cpu(k1->alloc.ar_blockcount) - be32_to_cpu(k2->alloc.ar_blockcount); if (diff) return diff; return be32_to_cpu(k1->alloc.ar_startblock) - be32_to_cpu(k2->alloc.ar_startblock); } static xfs_failaddr_t xfs_allocbt_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_mount; struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); struct xfs_perag *pag = bp->b_pag; xfs_failaddr_t fa; unsigned int level; xfs_btnum_t btnum = XFS_BTNUM_BNOi; if (!xfs_verify_magic(bp, block->bb_magic)) return __this_address; if (xfs_sb_version_hascrc(&mp->m_sb)) { fa = xfs_btree_sblock_v5hdr_verify(bp); if (fa) return fa; } /* * The perag may not be attached during grow operations or fully * initialized from the AGF during log recovery. Therefore we can only * check against maximum tree depth from those contexts. * * Otherwise check against the per-tree limit. Peek at one of the * verifier magic values to determine the type of tree we're verifying * against. */ level = be16_to_cpu(block->bb_level); if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) btnum = XFS_BTNUM_CNTi; if (pag && pag->pagf_init) { if (level >= pag->pagf_levels[btnum]) return __this_address; } else if (level >= mp->m_ag_maxlevels) return __this_address; return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]); } static void xfs_allocbt_read_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; if (!xfs_btree_sblock_verify_crc(bp)) xfs_verifier_error(bp, -EFSBADCRC, __this_address); else { fa = xfs_allocbt_verify(bp); if (fa) xfs_verifier_error(bp, -EFSCORRUPTED, fa); } if (bp->b_error) trace_xfs_btree_corrupt(bp, _RET_IP_); } static void xfs_allocbt_write_verify( struct xfs_buf *bp) { xfs_failaddr_t fa; fa = xfs_allocbt_verify(bp); if (fa) { trace_xfs_btree_corrupt(bp, _RET_IP_); xfs_verifier_error(bp, -EFSCORRUPTED, fa); return; } xfs_btree_sblock_calc_crc(bp); } const struct xfs_buf_ops xfs_bnobt_buf_ops = { .name = "xfs_bnobt", .magic = { cpu_to_be32(XFS_ABTB_MAGIC), cpu_to_be32(XFS_ABTB_CRC_MAGIC) }, .verify_read = xfs_allocbt_read_verify, .verify_write = xfs_allocbt_write_verify, .verify_struct = xfs_allocbt_verify, }; const struct xfs_buf_ops xfs_cntbt_buf_ops = { .name = "xfs_cntbt", .magic = { cpu_to_be32(XFS_ABTC_MAGIC), cpu_to_be32(XFS_ABTC_CRC_MAGIC) }, .verify_read = xfs_allocbt_read_verify, .verify_write = xfs_allocbt_write_verify, .verify_struct = xfs_allocbt_verify, }; STATIC int xfs_bnobt_keys_inorder( struct xfs_btree_cur *cur, union xfs_btree_key *k1, union xfs_btree_key *k2) { return be32_to_cpu(k1->alloc.ar_startblock) < be32_to_cpu(k2->alloc.ar_startblock); } STATIC int xfs_bnobt_recs_inorder( struct xfs_btree_cur *cur, union xfs_btree_rec *r1, union xfs_btree_rec *r2) { return be32_to_cpu(r1->alloc.ar_startblock) + be32_to_cpu(r1->alloc.ar_blockcount) <= be32_to_cpu(r2->alloc.ar_startblock); } STATIC int xfs_cntbt_keys_inorder( struct xfs_btree_cur *cur, union xfs_btree_key *k1, union xfs_btree_key *k2) { return be32_to_cpu(k1->alloc.ar_blockcount) < be32_to_cpu(k2->alloc.ar_blockcount) || (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount && be32_to_cpu(k1->alloc.ar_startblock) < be32_to_cpu(k2->alloc.ar_startblock)); } STATIC int xfs_cntbt_recs_inorder( struct xfs_btree_cur *cur, union xfs_btree_rec *r1, union xfs_btree_rec *r2) { return be32_to_cpu(r1->alloc.ar_blockcount) < be32_to_cpu(r2->alloc.ar_blockcount) || (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount && be32_to_cpu(r1->alloc.ar_startblock) < be32_to_cpu(r2->alloc.ar_startblock)); } static const struct xfs_btree_ops xfs_bnobt_ops = { .rec_len = sizeof(xfs_alloc_rec_t), .key_len = sizeof(xfs_alloc_key_t), .dup_cursor = xfs_allocbt_dup_cursor, .set_root = xfs_allocbt_set_root, .alloc_block = xfs_allocbt_alloc_block, .free_block = xfs_allocbt_free_block, .update_lastrec = xfs_allocbt_update_lastrec, .get_minrecs = xfs_allocbt_get_minrecs, .get_maxrecs = xfs_allocbt_get_maxrecs, .init_key_from_rec = xfs_allocbt_init_key_from_rec, .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec, .init_rec_from_cur = xfs_allocbt_init_rec_from_cur, .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur, .key_diff = xfs_bnobt_key_diff, .buf_ops = &xfs_bnobt_buf_ops, .diff_two_keys = xfs_bnobt_diff_two_keys, .keys_inorder = xfs_bnobt_keys_inorder, .recs_inorder = xfs_bnobt_recs_inorder, }; static const struct xfs_btree_ops xfs_cntbt_ops = { .rec_len = sizeof(xfs_alloc_rec_t), .key_len = sizeof(xfs_alloc_key_t), .dup_cursor = xfs_allocbt_dup_cursor, .set_root = xfs_allocbt_set_root, .alloc_block = xfs_allocbt_alloc_block, .free_block = xfs_allocbt_free_block, .update_lastrec = xfs_allocbt_update_lastrec, .get_minrecs = xfs_allocbt_get_minrecs, .get_maxrecs = xfs_allocbt_get_maxrecs, .init_key_from_rec = xfs_allocbt_init_key_from_rec, .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec, .init_rec_from_cur = xfs_allocbt_init_rec_from_cur, .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur, .key_diff = xfs_cntbt_key_diff, .buf_ops = &xfs_cntbt_buf_ops, .diff_two_keys = xfs_cntbt_diff_two_keys, .keys_inorder = xfs_cntbt_keys_inorder, .recs_inorder = xfs_cntbt_recs_inorder, }; /* Allocate most of a new allocation btree cursor. */ STATIC struct xfs_btree_cur * xfs_allocbt_init_common( struct xfs_mount *mp, struct xfs_trans *tp, xfs_agnumber_t agno, xfs_btnum_t btnum) { struct xfs_btree_cur *cur; ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT); cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS); cur->bc_tp = tp; cur->bc_mp = mp; cur->bc_btnum = btnum; cur->bc_blocklog = mp->m_sb.sb_blocklog; if (btnum == XFS_BTNUM_CNT) { cur->bc_ops = &xfs_cntbt_ops; cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2); cur->bc_flags = XFS_BTREE_LASTREC_UPDATE; } else { cur->bc_ops = &xfs_bnobt_ops; cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2); } cur->bc_ag.agno = agno; cur->bc_ag.abt.active = false; if (xfs_sb_version_hascrc(&mp->m_sb)) cur->bc_flags |= XFS_BTREE_CRC_BLOCKS; return cur; } /* * Allocate a new allocation btree cursor. */ struct xfs_btree_cur * /* new alloc btree cursor */ xfs_allocbt_init_cursor( struct xfs_mount *mp, /* file system mount point */ struct xfs_trans *tp, /* transaction pointer */ struct xfs_buf *agbp, /* buffer for agf structure */ xfs_agnumber_t agno, /* allocation group number */ xfs_btnum_t btnum) /* btree identifier */ { struct xfs_agf *agf = agbp->b_addr; struct xfs_btree_cur *cur; cur = xfs_allocbt_init_common(mp, tp, agno, btnum); if (btnum == XFS_BTNUM_CNT) cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]); else cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]); cur->bc_ag.agbp = agbp; return cur; } /* Create a free space btree cursor with a fake root for staging. */ struct xfs_btree_cur * xfs_allocbt_stage_cursor( struct xfs_mount *mp, struct xbtree_afakeroot *afake, xfs_agnumber_t agno, xfs_btnum_t btnum) { struct xfs_btree_cur *cur; cur = xfs_allocbt_init_common(mp, NULL, agno, btnum); xfs_btree_stage_afakeroot(cur, afake); return cur; } /* * Install a new free space btree root. Caller is responsible for invalidating * and freeing the old btree blocks. */ void xfs_allocbt_commit_staged_btree( struct xfs_btree_cur *cur, struct xfs_trans *tp, struct xfs_buf *agbp) { struct xfs_agf *agf = agbp->b_addr; struct xbtree_afakeroot *afake = cur->bc_ag.afake; ASSERT(cur->bc_flags & XFS_BTREE_STAGING); agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root); agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels); xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); if (cur->bc_btnum == XFS_BTNUM_BNO) { xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops); } else { cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE; xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops); } } /* * Calculate number of records in an alloc btree block. */ int xfs_allocbt_maxrecs( struct xfs_mount *mp, int blocklen, int leaf) { blocklen -= XFS_ALLOC_BLOCK_LEN(mp); if (leaf) return blocklen / sizeof(xfs_alloc_rec_t); return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t)); } /* Calculate the freespace btree size for some records. */ xfs_extlen_t xfs_allocbt_calc_size( struct xfs_mount *mp, unsigned long long len) { return xfs_btree_calc_size(mp->m_alloc_mnr, len); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
You can’t perform that action at this time.