Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
ea435e1
Documentation
arch
block
certs
crypto
drivers
firmware
fs
include
init
ipc
kernel
lib
mm
kasan
Kconfig
Kconfig.debug
Makefile
backing-dev.c
balloon_compaction.c
bootmem.c
cleancache.c
cma.c
cma.h
cma_debug.c
compaction.c
debug.c
debug_page_ref.c
dmapool.c
early_ioremap.c
fadvise.c
failslab.c
filemap.c
frame_vector.c
frontswap.c
gup.c
highmem.c
hmm.c
huge_memory.c
hugetlb.c
hugetlb_cgroup.c
hwpoison-inject.c
init-mm.c
internal.h
interval_tree.c
khugepaged.c
kmemcheck.c
kmemleak-test.c
kmemleak.c
ksm.c
list_lru.c
maccess.c
madvise.c
memblock.c
memcontrol.c
memory-failure.c
memory.c
memory_hotplug.c
mempolicy.c
mempool.c
memtest.c
migrate.c
mincore.c
mlock.c
mm_init.c
mmap.c
mmu_context.c
mmu_notifier.c
mmzone.c
mprotect.c
mremap.c
msync.c
nobootmem.c
nommu.c
oom_kill.c
page-writeback.c
page_alloc.c
page_counter.c
page_ext.c
page_idle.c
page_io.c
page_isolation.c
page_owner.c
page_poison.c
page_vma_mapped.c
pagewalk.c
percpu-internal.h
percpu-km.c
percpu-stats.c
percpu-vm.c
percpu.c
pgtable-generic.c
process_vm_access.c
quicklist.c
readahead.c
rmap.c
rodata_test.c
shmem.c
slab.c
slab.h
slab_common.c
slob.c
slub.c
sparse-vmemmap.c
sparse.c
swap.c
swap_cgroup.c
swap_slots.c
swap_state.c
swapfile.c
truncate.c
usercopy.c
userfaultfd.c
util.c
vmacache.c
vmalloc.c
vmpressure.c
vmscan.c
vmstat.c
workingset.c
z3fold.c
zbud.c
zpool.c
zsmalloc.c
zswap.c
net
samples
scripts
security
sound
tools
usr
virt
.cocciconfig
.get_maintainer.ignore
.gitattributes
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
Breadcrumbs
linux
/
mm
/
page_io.c
Blame
Blame
Latest commit
History
History
432 lines (384 loc) · 10.4 KB
Breadcrumbs
linux
/
mm
/
page_io.c
Top
File metadata and controls
Code
Blame
432 lines (384 loc) · 10.4 KB
Raw
/* * linux/mm/page_io.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Swap reorganised 29.12.95, * Asynchronous swapping added 30.12.95. Stephen Tweedie * Removed race in async swapping. 14.4.1996. Bruno Haible * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman */ #include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/gfp.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/bio.h> #include <linux/swapops.h> #include <linux/buffer_head.h> #include <linux/writeback.h> #include <linux/frontswap.h> #include <linux/blkdev.h> #include <linux/uio.h> #include <linux/sched/task.h> #include <asm/pgtable.h> static struct bio *get_swap_bio(gfp_t gfp_flags, struct page *page, bio_end_io_t end_io) { int i, nr = hpage_nr_pages(page); struct bio *bio; bio = bio_alloc(gfp_flags, nr); if (bio) { struct block_device *bdev; bio->bi_iter.bi_sector = map_swap_page(page, &bdev); bio_set_dev(bio, bdev); bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9; bio->bi_end_io = end_io; for (i = 0; i < nr; i++) bio_add_page(bio, page + i, PAGE_SIZE, 0); VM_BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE * nr); } return bio; } void end_swap_bio_write(struct bio *bio) { struct page *page = bio->bi_io_vec[0].bv_page; if (bio->bi_status) { SetPageError(page); /* * We failed to write the page out to swap-space. * Re-dirty the page in order to avoid it being reclaimed. * Also print a dire warning that things will go BAD (tm) * very quickly. * * Also clear PG_reclaim to avoid rotate_reclaimable_page() */ set_page_dirty(page); pr_alert("Write-error on swap-device (%u:%u:%llu)\n", MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), (unsigned long long)bio->bi_iter.bi_sector); ClearPageReclaim(page); } end_page_writeback(page); bio_put(bio); } static void swap_slot_free_notify(struct page *page) { struct swap_info_struct *sis; struct gendisk *disk; /* * There is no guarantee that the page is in swap cache - the software * suspend code (at least) uses end_swap_bio_read() against a non- * swapcache page. So we must check PG_swapcache before proceeding with * this optimization. */ if (unlikely(!PageSwapCache(page))) return; sis = page_swap_info(page); if (!(sis->flags & SWP_BLKDEV)) return; /* * The swap subsystem performs lazy swap slot freeing, * expecting that the page will be swapped out again. * So we can avoid an unnecessary write if the page * isn't redirtied. * This is good for real swap storage because we can * reduce unnecessary I/O and enhance wear-leveling * if an SSD is used as the as swap device. * But if in-memory swap device (eg zram) is used, * this causes a duplicated copy between uncompressed * data in VM-owned memory and compressed data in * zram-owned memory. So let's free zram-owned memory * and make the VM-owned decompressed page *dirty*, * so the page should be swapped out somewhere again if * we again wish to reclaim it. */ disk = sis->bdev->bd_disk; if (disk->fops->swap_slot_free_notify) { swp_entry_t entry; unsigned long offset; entry.val = page_private(page); offset = swp_offset(entry); SetPageDirty(page); disk->fops->swap_slot_free_notify(sis->bdev, offset); } } static void end_swap_bio_read(struct bio *bio) { struct page *page = bio->bi_io_vec[0].bv_page; struct task_struct *waiter = bio->bi_private; if (bio->bi_status) { SetPageError(page); ClearPageUptodate(page); pr_alert("Read-error on swap-device (%u:%u:%llu)\n", MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), (unsigned long long)bio->bi_iter.bi_sector); goto out; } SetPageUptodate(page); swap_slot_free_notify(page); out: unlock_page(page); WRITE_ONCE(bio->bi_private, NULL); bio_put(bio); wake_up_process(waiter); put_task_struct(waiter); } int generic_swapfile_activate(struct swap_info_struct *sis, struct file *swap_file, sector_t *span) { struct address_space *mapping = swap_file->f_mapping; struct inode *inode = mapping->host; unsigned blocks_per_page; unsigned long page_no; unsigned blkbits; sector_t probe_block; sector_t last_block; sector_t lowest_block = -1; sector_t highest_block = 0; int nr_extents = 0; int ret; blkbits = inode->i_blkbits; blocks_per_page = PAGE_SIZE >> blkbits; /* * Map all the blocks into the extent list. This code doesn't try * to be very smart. */ probe_block = 0; page_no = 0; last_block = i_size_read(inode) >> blkbits; while ((probe_block + blocks_per_page) <= last_block && page_no < sis->max) { unsigned block_in_page; sector_t first_block; cond_resched(); first_block = bmap(inode, probe_block); if (first_block == 0) goto bad_bmap; /* * It must be PAGE_SIZE aligned on-disk */ if (first_block & (blocks_per_page - 1)) { probe_block++; goto reprobe; } for (block_in_page = 1; block_in_page < blocks_per_page; block_in_page++) { sector_t block; block = bmap(inode, probe_block + block_in_page); if (block == 0) goto bad_bmap; if (block != first_block + block_in_page) { /* Discontiguity */ probe_block++; goto reprobe; } } first_block >>= (PAGE_SHIFT - blkbits); if (page_no) { /* exclude the header page */ if (first_block < lowest_block) lowest_block = first_block; if (first_block > highest_block) highest_block = first_block; } /* * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks */ ret = add_swap_extent(sis, page_no, 1, first_block); if (ret < 0) goto out; nr_extents += ret; page_no++; probe_block += blocks_per_page; reprobe: continue; } ret = nr_extents; *span = 1 + highest_block - lowest_block; if (page_no == 0) page_no = 1; /* force Empty message */ sis->max = page_no; sis->pages = page_no - 1; sis->highest_bit = page_no - 1; out: return ret; bad_bmap: pr_err("swapon: swapfile has holes\n"); ret = -EINVAL; goto out; } /* * We may have stale swap cache pages in memory: notice * them here and get rid of the unnecessary final write. */ int swap_writepage(struct page *page, struct writeback_control *wbc) { int ret = 0; if (try_to_free_swap(page)) { unlock_page(page); goto out; } if (frontswap_store(page) == 0) { set_page_writeback(page); unlock_page(page); end_page_writeback(page); goto out; } ret = __swap_writepage(page, wbc, end_swap_bio_write); out: return ret; } static sector_t swap_page_sector(struct page *page) { return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9); } static inline void count_swpout_vm_event(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE if (unlikely(PageTransHuge(page))) count_vm_event(THP_SWPOUT); #endif count_vm_events(PSWPOUT, hpage_nr_pages(page)); } int __swap_writepage(struct page *page, struct writeback_control *wbc, bio_end_io_t end_write_func) { struct bio *bio; int ret; struct swap_info_struct *sis = page_swap_info(page); VM_BUG_ON_PAGE(!PageSwapCache(page), page); if (sis->flags & SWP_FILE) { struct kiocb kiocb; struct file *swap_file = sis->swap_file; struct address_space *mapping = swap_file->f_mapping; struct bio_vec bv = { .bv_page = page, .bv_len = PAGE_SIZE, .bv_offset = 0 }; struct iov_iter from; iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE); init_sync_kiocb(&kiocb, swap_file); kiocb.ki_pos = page_file_offset(page); set_page_writeback(page); unlock_page(page); ret = mapping->a_ops->direct_IO(&kiocb, &from); if (ret == PAGE_SIZE) { count_vm_event(PSWPOUT); ret = 0; } else { /* * In the case of swap-over-nfs, this can be a * temporary failure if the system has limited * memory for allocating transmit buffers. * Mark the page dirty and avoid * rotate_reclaimable_page but rate-limit the * messages but do not flag PageError like * the normal direct-to-bio case as it could * be temporary. */ set_page_dirty(page); ClearPageReclaim(page); pr_err_ratelimited("Write error on dio swapfile (%llu)\n", page_file_offset(page)); } end_page_writeback(page); return ret; } ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc); if (!ret) { count_swpout_vm_event(page); return 0; } ret = 0; bio = get_swap_bio(GFP_NOIO, page, end_write_func); if (bio == NULL) { set_page_dirty(page); unlock_page(page); ret = -ENOMEM; goto out; } bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); count_swpout_vm_event(page); set_page_writeback(page); unlock_page(page); submit_bio(bio); out: return ret; } int swap_readpage(struct page *page, bool do_poll) { struct bio *bio; int ret = 0; struct swap_info_struct *sis = page_swap_info(page); blk_qc_t qc; struct gendisk *disk; VM_BUG_ON_PAGE(!PageSwapCache(page), page); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageUptodate(page), page); if (frontswap_load(page) == 0) { SetPageUptodate(page); unlock_page(page); goto out; } if (sis->flags & SWP_FILE) { struct file *swap_file = sis->swap_file; struct address_space *mapping = swap_file->f_mapping; ret = mapping->a_ops->readpage(swap_file, page); if (!ret) count_vm_event(PSWPIN); return ret; } ret = bdev_read_page(sis->bdev, swap_page_sector(page), page); if (!ret) { if (trylock_page(page)) { swap_slot_free_notify(page); unlock_page(page); } count_vm_event(PSWPIN); return 0; } ret = 0; bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read); if (bio == NULL) { unlock_page(page); ret = -ENOMEM; goto out; } disk = bio->bi_disk; /* * Keep this task valid during swap readpage because the oom killer may * attempt to access it in the page fault retry time check. */ get_task_struct(current); bio->bi_private = current; bio_set_op_attrs(bio, REQ_OP_READ, 0); count_vm_event(PSWPIN); bio_get(bio); qc = submit_bio(bio); while (do_poll) { set_current_state(TASK_UNINTERRUPTIBLE); if (!READ_ONCE(bio->bi_private)) break; if (!blk_poll(disk->queue, qc)) break; } __set_current_state(TASK_RUNNING); bio_put(bio); out: return ret; } int swap_set_page_dirty(struct page *page) { struct swap_info_struct *sis = page_swap_info(page); if (sis->flags & SWP_FILE) { struct address_space *mapping = sis->swap_file->f_mapping; VM_BUG_ON_PAGE(!PageSwapCache(page), page); return mapping->a_ops->set_page_dirty(page); } else { return __set_page_dirty_no_writeback(page); } }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
You can’t perform that action at this time.