Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
f50efd2
Documentation
arch
block
crypto
drivers
accessibility
acpi
amba
ata
atm
auxdisplay
base
bcma
block
bluetooth
bus
cdrom
char
clk
clocksource
connector
cpufreq
cpuidle
crypto
dca
devfreq
dio
dma
edac
eisa
extcon
firewire
firmware
gpio
gpu
hid
hsi
hv
hwmon
hwspinlock
i2c
ide
idle
iio
infiniband
input
iommu
ipack
irqchip
isdn
leds
lguest
macintosh
mailbox
md
bcache
Kconfig
Makefile
alloc.c
bcache.h
bset.c
bset.h
btree.c
btree.h
closure.c
closure.h
debug.c
debug.h
io.c
journal.c
journal.h
movinggc.c
request.c
request.h
stats.c
stats.h
super.c
sysfs.c
sysfs.h
trace.c
util.c
util.h
writeback.c
persistent-data
Kconfig
Makefile
bitmap.c
bitmap.h
dm-bio-prison.c
dm-bio-prison.h
dm-bio-record.h
dm-bufio.c
dm-bufio.h
dm-cache-block-types.h
dm-cache-metadata.c
dm-cache-metadata.h
dm-cache-policy-cleaner.c
dm-cache-policy-internal.h
dm-cache-policy-mq.c
dm-cache-policy.c
dm-cache-policy.h
dm-cache-target.c
dm-crypt.c
dm-delay.c
dm-exception-store.c
dm-exception-store.h
dm-flakey.c
dm-io.c
dm-ioctl.c
dm-kcopyd.c
dm-linear.c
dm-log-userspace-base.c
dm-log-userspace-transfer.c
dm-log-userspace-transfer.h
dm-log.c
dm-mpath.c
dm-mpath.h
dm-path-selector.c
dm-path-selector.h
dm-queue-length.c
dm-raid.c
dm-raid1.c
dm-region-hash.c
dm-round-robin.c
dm-service-time.c
dm-snap-persistent.c
dm-snap-transient.c
dm-snap.c
dm-stripe.c
dm-sysfs.c
dm-table.c
dm-target.c
dm-thin-metadata.c
dm-thin-metadata.h
dm-thin.c
dm-uevent.c
dm-uevent.h
dm-verity.c
dm-zero.c
dm.c
dm.h
faulty.c
linear.c
linear.h
md.c
md.h
multipath.c
multipath.h
raid0.c
raid0.h
raid1.c
raid1.h
raid10.c
raid10.h
raid5.c
raid5.h
media
memory
memstick
message
mfd
misc
mmc
mtd
net
nfc
ntb
nubus
of
oprofile
parisc
parport
pci
pcmcia
pinctrl
platform
pnp
power
pps
ps3
ptp
pwm
rapidio
regulator
remoteproc
rpmsg
rtc
s390
sbus
scsi
sfi
sh
sn
spi
ssb
staging
target
tc
thermal
tty
uio
usb
uwb
vfio
vhost
video
virt
virtio
vlynq
vme
w1
watchdog
xen
zorro
Kconfig
Makefile
firmware
fs
include
init
ipc
kernel
lib
mm
net
samples
scripts
security
sound
tools
usr
virt
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
Kconfig
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
drivers
/
md
/
bcache
/
alloc.c
Copy path
Blame
Blame
Latest commit
History
History
599 lines (486 loc) · 14.7 KB
Breadcrumbs
linux
/
drivers
/
md
/
bcache
/
alloc.c
Top
File metadata and controls
Code
Blame
599 lines (486 loc) · 14.7 KB
Raw
/* * Primary bucket allocation code * * Copyright 2012 Google, Inc. * * Allocation in bcache is done in terms of buckets: * * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in * btree pointers - they must match for the pointer to be considered valid. * * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a * bucket simply by incrementing its gen. * * The gens (along with the priorities; it's really the gens are important but * the code is named as if it's the priorities) are written in an arbitrary list * of buckets on disk, with a pointer to them in the journal header. * * When we invalidate a bucket, we have to write its new gen to disk and wait * for that write to complete before we use it - otherwise after a crash we * could have pointers that appeared to be good but pointed to data that had * been overwritten. * * Since the gens and priorities are all stored contiguously on disk, we can * batch this up: We fill up the free_inc list with freshly invalidated buckets, * call prio_write(), and when prio_write() finishes we pull buckets off the * free_inc list and optionally discard them. * * free_inc isn't the only freelist - if it was, we'd often to sleep while * priorities and gens were being written before we could allocate. c->free is a * smaller freelist, and buckets on that list are always ready to be used. * * If we've got discards enabled, that happens when a bucket moves from the * free_inc list to the free list. * * There is another freelist, because sometimes we have buckets that we know * have nothing pointing into them - these we can reuse without waiting for * priorities to be rewritten. These come from freed btree nodes and buckets * that garbage collection discovered no longer had valid keys pointing into * them (because they were overwritten). That's the unused list - buckets on the * unused list move to the free list, optionally being discarded in the process. * * It's also important to ensure that gens don't wrap around - with respect to * either the oldest gen in the btree or the gen on disk. This is quite * difficult to do in practice, but we explicitly guard against it anyways - if * a bucket is in danger of wrapping around we simply skip invalidating it that * time around, and we garbage collect or rewrite the priorities sooner than we * would have otherwise. * * bch_bucket_alloc() allocates a single bucket from a specific cache. * * bch_bucket_alloc_set() allocates one or more buckets from different caches * out of a cache set. * * free_some_buckets() drives all the processes described above. It's called * from bch_bucket_alloc() and a few other places that need to make sure free * buckets are ready. * * invalidate_buckets_(lru|fifo)() find buckets that are available to be * invalidated, and then invalidate them and stick them on the free_inc list - * in either lru or fifo order. */ #include "bcache.h" #include "btree.h" #include <linux/random.h> #define MAX_IN_FLIGHT_DISCARDS 8U /* Bucket heap / gen */ uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) { uint8_t ret = ++b->gen; ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); if (CACHE_SYNC(&ca->set->sb)) { ca->need_save_prio = max(ca->need_save_prio, bucket_disk_gen(b)); WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX); } return ret; } void bch_rescale_priorities(struct cache_set *c, int sectors) { struct cache *ca; struct bucket *b; unsigned next = c->nbuckets * c->sb.bucket_size / 1024; unsigned i; int r; atomic_sub(sectors, &c->rescale); do { r = atomic_read(&c->rescale); if (r >= 0) return; } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); mutex_lock(&c->bucket_lock); c->min_prio = USHRT_MAX; for_each_cache(ca, c, i) for_each_bucket(b, ca) if (b->prio && b->prio != BTREE_PRIO && !atomic_read(&b->pin)) { b->prio--; c->min_prio = min(c->min_prio, b->prio); } mutex_unlock(&c->bucket_lock); } /* Discard/TRIM */ struct discard { struct list_head list; struct work_struct work; struct cache *ca; long bucket; struct bio bio; struct bio_vec bv; }; static void discard_finish(struct work_struct *w) { struct discard *d = container_of(w, struct discard, work); struct cache *ca = d->ca; char buf[BDEVNAME_SIZE]; if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) { pr_notice("discard error on %s, disabling", bdevname(ca->bdev, buf)); d->ca->discard = 0; } mutex_lock(&ca->set->bucket_lock); fifo_push(&ca->free, d->bucket); list_add(&d->list, &ca->discards); atomic_dec(&ca->discards_in_flight); mutex_unlock(&ca->set->bucket_lock); closure_wake_up(&ca->set->bucket_wait); wake_up(&ca->set->alloc_wait); closure_put(&ca->set->cl); } static void discard_endio(struct bio *bio, int error) { struct discard *d = container_of(bio, struct discard, bio); schedule_work(&d->work); } static void do_discard(struct cache *ca, long bucket) { struct discard *d = list_first_entry(&ca->discards, struct discard, list); list_del(&d->list); d->bucket = bucket; atomic_inc(&ca->discards_in_flight); closure_get(&ca->set->cl); bio_init(&d->bio); d->bio.bi_sector = bucket_to_sector(ca->set, d->bucket); d->bio.bi_bdev = ca->bdev; d->bio.bi_rw = REQ_WRITE|REQ_DISCARD; d->bio.bi_max_vecs = 1; d->bio.bi_io_vec = d->bio.bi_inline_vecs; d->bio.bi_size = bucket_bytes(ca); d->bio.bi_end_io = discard_endio; bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); submit_bio(0, &d->bio); } /* Allocation */ static inline bool can_inc_bucket_gen(struct bucket *b) { return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX && bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX; } bool bch_bucket_add_unused(struct cache *ca, struct bucket *b) { BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b)); if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] && CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO) return false; b->prio = 0; if (can_inc_bucket_gen(b) && fifo_push(&ca->unused, b - ca->buckets)) { atomic_inc(&b->pin); return true; } return false; } static bool can_invalidate_bucket(struct cache *ca, struct bucket *b) { return GC_MARK(b) == GC_MARK_RECLAIMABLE && !atomic_read(&b->pin) && can_inc_bucket_gen(b); } static void invalidate_one_bucket(struct cache *ca, struct bucket *b) { bch_inc_gen(ca, b); b->prio = INITIAL_PRIO; atomic_inc(&b->pin); fifo_push(&ca->free_inc, b - ca->buckets); } #define bucket_prio(b) \ (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b)) #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) static void invalidate_buckets_lru(struct cache *ca) { struct bucket *b; ssize_t i; ca->heap.used = 0; for_each_bucket(b, ca) { /* * If we fill up the unused list, if we then return before * adding anything to the free_inc list we'll skip writing * prios/gens and just go back to allocating from the unused * list: */ if (fifo_full(&ca->unused)) return; if (!can_invalidate_bucket(ca, b)) continue; if (!GC_SECTORS_USED(b) && bch_bucket_add_unused(ca, b)) continue; if (!heap_full(&ca->heap)) heap_add(&ca->heap, b, bucket_max_cmp); else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { ca->heap.data[0] = b; heap_sift(&ca->heap, 0, bucket_max_cmp); } } for (i = ca->heap.used / 2 - 1; i >= 0; --i) heap_sift(&ca->heap, i, bucket_min_cmp); while (!fifo_full(&ca->free_inc)) { if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { /* * We don't want to be calling invalidate_buckets() * multiple times when it can't do anything */ ca->invalidate_needs_gc = 1; bch_queue_gc(ca->set); return; } invalidate_one_bucket(ca, b); } } static void invalidate_buckets_fifo(struct cache *ca) { struct bucket *b; size_t checked = 0; while (!fifo_full(&ca->free_inc)) { if (ca->fifo_last_bucket < ca->sb.first_bucket || ca->fifo_last_bucket >= ca->sb.nbuckets) ca->fifo_last_bucket = ca->sb.first_bucket; b = ca->buckets + ca->fifo_last_bucket++; if (can_invalidate_bucket(ca, b)) invalidate_one_bucket(ca, b); if (++checked >= ca->sb.nbuckets) { ca->invalidate_needs_gc = 1; bch_queue_gc(ca->set); return; } } } static void invalidate_buckets_random(struct cache *ca) { struct bucket *b; size_t checked = 0; while (!fifo_full(&ca->free_inc)) { size_t n; get_random_bytes(&n, sizeof(n)); n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); n += ca->sb.first_bucket; b = ca->buckets + n; if (can_invalidate_bucket(ca, b)) invalidate_one_bucket(ca, b); if (++checked >= ca->sb.nbuckets / 2) { ca->invalidate_needs_gc = 1; bch_queue_gc(ca->set); return; } } } static void invalidate_buckets(struct cache *ca) { if (ca->invalidate_needs_gc) return; switch (CACHE_REPLACEMENT(&ca->sb)) { case CACHE_REPLACEMENT_LRU: invalidate_buckets_lru(ca); break; case CACHE_REPLACEMENT_FIFO: invalidate_buckets_fifo(ca); break; case CACHE_REPLACEMENT_RANDOM: invalidate_buckets_random(ca); break; } pr_debug("free %zu/%zu free_inc %zu/%zu unused %zu/%zu", fifo_used(&ca->free), ca->free.size, fifo_used(&ca->free_inc), ca->free_inc.size, fifo_used(&ca->unused), ca->unused.size); } #define allocator_wait(ca, cond) \ do { \ DEFINE_WAIT(__wait); \ \ while (1) { \ prepare_to_wait(&ca->set->alloc_wait, \ &__wait, TASK_INTERRUPTIBLE); \ if (cond) \ break; \ \ mutex_unlock(&(ca)->set->bucket_lock); \ if (test_bit(CACHE_SET_STOPPING_2, &ca->set->flags)) { \ finish_wait(&ca->set->alloc_wait, &__wait); \ closure_return(cl); \ } \ \ schedule(); \ mutex_lock(&(ca)->set->bucket_lock); \ } \ \ finish_wait(&ca->set->alloc_wait, &__wait); \ } while (0) void bch_allocator_thread(struct closure *cl) { struct cache *ca = container_of(cl, struct cache, alloc); mutex_lock(&ca->set->bucket_lock); while (1) { /* * First, we pull buckets off of the unused and free_inc lists, * possibly issue discards to them, then we add the bucket to * the free list: */ while (1) { long bucket; if ((!atomic_read(&ca->set->prio_blocked) || !CACHE_SYNC(&ca->set->sb)) && !fifo_empty(&ca->unused)) fifo_pop(&ca->unused, bucket); else if (!fifo_empty(&ca->free_inc)) fifo_pop(&ca->free_inc, bucket); else break; allocator_wait(ca, (int) fifo_free(&ca->free) > atomic_read(&ca->discards_in_flight)); if (ca->discard) { allocator_wait(ca, !list_empty(&ca->discards)); do_discard(ca, bucket); } else { fifo_push(&ca->free, bucket); closure_wake_up(&ca->set->bucket_wait); } } /* * We've run out of free buckets, we need to find some buckets * we can invalidate. First, invalidate them in memory and add * them to the free_inc list: */ allocator_wait(ca, ca->set->gc_mark_valid && (ca->need_save_prio > 64 || !ca->invalidate_needs_gc)); invalidate_buckets(ca); /* * Now, we write their new gens to disk so we can start writing * new stuff to them: */ allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); if (CACHE_SYNC(&ca->set->sb) && (!fifo_empty(&ca->free_inc) || ca->need_save_prio > 64)) bch_prio_write(ca); } } long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl) { long r = -1; again: wake_up(&ca->set->alloc_wait); if (fifo_used(&ca->free) > ca->watermark[watermark] && fifo_pop(&ca->free, r)) { struct bucket *b = ca->buckets + r; #ifdef CONFIG_BCACHE_EDEBUG size_t iter; long i; for (iter = 0; iter < prio_buckets(ca) * 2; iter++) BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); fifo_for_each(i, &ca->free, iter) BUG_ON(i == r); fifo_for_each(i, &ca->free_inc, iter) BUG_ON(i == r); fifo_for_each(i, &ca->unused, iter) BUG_ON(i == r); #endif BUG_ON(atomic_read(&b->pin) != 1); SET_GC_SECTORS_USED(b, ca->sb.bucket_size); if (watermark <= WATERMARK_METADATA) { SET_GC_MARK(b, GC_MARK_METADATA); b->prio = BTREE_PRIO; } else { SET_GC_MARK(b, GC_MARK_RECLAIMABLE); b->prio = INITIAL_PRIO; } return r; } pr_debug("alloc failure: blocked %i free %zu free_inc %zu unused %zu", atomic_read(&ca->set->prio_blocked), fifo_used(&ca->free), fifo_used(&ca->free_inc), fifo_used(&ca->unused)); if (cl) { closure_wait(&ca->set->bucket_wait, cl); if (closure_blocking(cl)) { mutex_unlock(&ca->set->bucket_lock); closure_sync(cl); mutex_lock(&ca->set->bucket_lock); goto again; } } return -1; } void bch_bucket_free(struct cache_set *c, struct bkey *k) { unsigned i; for (i = 0; i < KEY_PTRS(k); i++) { struct bucket *b = PTR_BUCKET(c, k, i); SET_GC_MARK(b, GC_MARK_RECLAIMABLE); SET_GC_SECTORS_USED(b, 0); bch_bucket_add_unused(PTR_CACHE(c, k, i), b); } } int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark, struct bkey *k, int n, struct closure *cl) { int i; lockdep_assert_held(&c->bucket_lock); BUG_ON(!n || n > c->caches_loaded || n > 8); bkey_init(k); /* sort by free space/prio of oldest data in caches */ for (i = 0; i < n; i++) { struct cache *ca = c->cache_by_alloc[i]; long b = bch_bucket_alloc(ca, watermark, cl); if (b == -1) goto err; k->ptr[i] = PTR(ca->buckets[b].gen, bucket_to_sector(c, b), ca->sb.nr_this_dev); SET_KEY_PTRS(k, i + 1); } return 0; err: bch_bucket_free(c, k); __bkey_put(c, k); return -1; } int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark, struct bkey *k, int n, struct closure *cl) { int ret; mutex_lock(&c->bucket_lock); ret = __bch_bucket_alloc_set(c, watermark, k, n, cl); mutex_unlock(&c->bucket_lock); return ret; } /* Init */ void bch_cache_allocator_exit(struct cache *ca) { struct discard *d; while (!list_empty(&ca->discards)) { d = list_first_entry(&ca->discards, struct discard, list); cancel_work_sync(&d->work); list_del(&d->list); kfree(d); } } int bch_cache_allocator_init(struct cache *ca) { unsigned i; /* * Reserve: * Prio/gen writes first * Then 8 for btree allocations * Then half for the moving garbage collector */ ca->watermark[WATERMARK_PRIO] = 0; ca->watermark[WATERMARK_METADATA] = prio_buckets(ca); ca->watermark[WATERMARK_MOVINGGC] = 8 + ca->watermark[WATERMARK_METADATA]; ca->watermark[WATERMARK_NONE] = ca->free.size / 2 + ca->watermark[WATERMARK_MOVINGGC]; for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) { struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; d->ca = ca; INIT_WORK(&d->work, discard_finish); list_add(&d->list, &ca->discards); } return 0; }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
You can’t perform that action at this time.