Skip to content
Navigation Menu
Toggle navigation
Sign in
In this repository
All GitHub Enterprise
↵
Jump to
↵
No suggested jump to results
In this repository
All GitHub Enterprise
↵
Jump to
↵
In this organization
All GitHub Enterprise
↵
Jump to
↵
In this repository
All GitHub Enterprise
↵
Jump to
↵
Sign in
Reseting focus
You signed in with another tab or window.
Reload
to refresh your session.
You signed out in another tab or window.
Reload
to refresh your session.
You switched accounts on another tab or window.
Reload
to refresh your session.
Dismiss alert
{{ message }}
mariux64
/
linux
Public
Notifications
You must be signed in to change notification settings
Fork
0
Star
0
Code
Issues
2
Pull requests
0
Actions
Projects
0
Wiki
Security
Insights
Additional navigation options
Code
Issues
Pull requests
Actions
Projects
Wiki
Security
Insights
Files
fb02fbc
Documentation
arch
block
crypto
drivers
firmware
fs
include
init
ipc
kernel
irq
power
time
Kconfig
Makefile
clockevents.c
clocksource.c
jiffies.c
ntp.c
tick-broadcast.c
tick-common.c
tick-internal.h
tick-oneshot.c
tick-sched.c
timekeeping.c
timer_list.c
timer_stats.c
trace
.gitignore
Kconfig.hz
Kconfig.preempt
Makefile
acct.c
audit.c
audit.h
audit_tree.c
auditfilter.c
auditsc.c
backtracetest.c
bounds.c
capability.c
cgroup.c
cgroup_debug.c
compat.c
configs.c
cpu.c
cpuset.c
delayacct.c
dma-coherent.c
dma.c
exec_domain.c
exit.c
extable.c
fork.c
futex.c
futex_compat.c
hrtimer.c
itimer.c
kallsyms.c
kexec.c
kfifo.c
kgdb.c
kmod.c
kprobes.c
ksysfs.c
kthread.c
latencytop.c
lockdep.c
lockdep_internals.h
lockdep_proc.c
marker.c
module.c
mutex-debug.c
mutex-debug.h
mutex.c
mutex.h
notifier.c
ns_cgroup.c
nsproxy.c
panic.c
params.c
pid.c
pid_namespace.c
pm_qos_params.c
posix-cpu-timers.c
posix-timers.c
printk.c
profile.c
ptrace.c
rcuclassic.c
rcupdate.c
rcupreempt.c
rcupreempt_trace.c
rcutorture.c
relay.c
res_counter.c
resource.c
rtmutex-debug.c
rtmutex-debug.h
rtmutex-tester.c
rtmutex.c
rtmutex.h
rtmutex_common.h
rwsem.c
sched.c
sched_clock.c
sched_cpupri.c
sched_cpupri.h
sched_debug.c
sched_fair.c
sched_features.h
sched_idletask.c
sched_rt.c
sched_stats.h
seccomp.c
semaphore.c
signal.c
smp.c
softirq.c
softlockup.c
spinlock.c
srcu.c
stacktrace.c
stop_machine.c
sys.c
sys_ni.c
sysctl.c
sysctl_check.c
taskstats.c
test_kprobes.c
time.c
timeconst.pl
timer.c
tsacct.c
uid16.c
user.c
user_namespace.c
utsname.c
utsname_sysctl.c
wait.c
workqueue.c
lib
mm
net
samples
scripts
security
sound
usr
virt
.gitignore
.mailmap
COPYING
CREDITS
Kbuild
MAINTAINERS
Makefile
README
REPORTING-BUGS
Breadcrumbs
linux
/
kernel
/
time
/
tick-broadcast.c
Copy path
Blame
Blame
Latest commit
History
History
601 lines (512 loc) · 14.2 KB
Breadcrumbs
linux
/
kernel
/
time
/
tick-broadcast.c
Top
File metadata and controls
Code
Blame
601 lines (512 loc) · 14.2 KB
Raw
/* * linux/kernel/time/tick-broadcast.c * * This file contains functions which emulate a local clock-event * device via a broadcast event source. * * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner * * This code is licenced under the GPL version 2. For details see * kernel-base/COPYING. */ #include <linux/cpu.h> #include <linux/err.h> #include <linux/hrtimer.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/profile.h> #include <linux/sched.h> #include <linux/tick.h> #include "tick-internal.h" /* * Broadcast support for broken x86 hardware, where the local apic * timer stops in C3 state. */ struct tick_device tick_broadcast_device; static cpumask_t tick_broadcast_mask; static DEFINE_SPINLOCK(tick_broadcast_lock); static int tick_broadcast_force; #ifdef CONFIG_TICK_ONESHOT static void tick_broadcast_clear_oneshot(int cpu); #else static inline void tick_broadcast_clear_oneshot(int cpu) { } #endif /* * Debugging: see timer_list.c */ struct tick_device *tick_get_broadcast_device(void) { return &tick_broadcast_device; } cpumask_t *tick_get_broadcast_mask(void) { return &tick_broadcast_mask; } /* * Start the device in periodic mode */ static void tick_broadcast_start_periodic(struct clock_event_device *bc) { if (bc) tick_setup_periodic(bc, 1); } /* * Check, if the device can be utilized as broadcast device: */ int tick_check_broadcast_device(struct clock_event_device *dev) { if ((tick_broadcast_device.evtdev && tick_broadcast_device.evtdev->rating >= dev->rating) || (dev->features & CLOCK_EVT_FEAT_C3STOP)) return 0; clockevents_exchange_device(NULL, dev); tick_broadcast_device.evtdev = dev; if (!cpus_empty(tick_broadcast_mask)) tick_broadcast_start_periodic(dev); return 1; } /* * Check, if the device is the broadcast device */ int tick_is_broadcast_device(struct clock_event_device *dev) { return (dev && tick_broadcast_device.evtdev == dev); } /* * Check, if the device is disfunctional and a place holder, which * needs to be handled by the broadcast device. */ int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) { unsigned long flags; int ret = 0; spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Devices might be registered with both periodic and oneshot * mode disabled. This signals, that the device needs to be * operated from the broadcast device and is a placeholder for * the cpu local device. */ if (!tick_device_is_functional(dev)) { dev->event_handler = tick_handle_periodic; cpu_set(cpu, tick_broadcast_mask); tick_broadcast_start_periodic(tick_broadcast_device.evtdev); ret = 1; } else { /* * When the new device is not affected by the stop * feature and the cpu is marked in the broadcast mask * then clear the broadcast bit. */ if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) { int cpu = smp_processor_id(); cpu_clear(cpu, tick_broadcast_mask); tick_broadcast_clear_oneshot(cpu); } } spin_unlock_irqrestore(&tick_broadcast_lock, flags); return ret; } /* * Broadcast the event to the cpus, which are set in the mask */ static void tick_do_broadcast(cpumask_t mask) { int cpu = smp_processor_id(); struct tick_device *td; /* * Check, if the current cpu is in the mask */ if (cpu_isset(cpu, mask)) { cpu_clear(cpu, mask); td = &per_cpu(tick_cpu_device, cpu); td->evtdev->event_handler(td->evtdev); } if (!cpus_empty(mask)) { /* * It might be necessary to actually check whether the devices * have different broadcast functions. For now, just use the * one of the first device. This works as long as we have this * misfeature only on x86 (lapic) */ cpu = first_cpu(mask); td = &per_cpu(tick_cpu_device, cpu); td->evtdev->broadcast(mask); } } /* * Periodic broadcast: * - invoke the broadcast handlers */ static void tick_do_periodic_broadcast(void) { cpumask_t mask; spin_lock(&tick_broadcast_lock); cpus_and(mask, cpu_online_map, tick_broadcast_mask); tick_do_broadcast(mask); spin_unlock(&tick_broadcast_lock); } /* * Event handler for periodic broadcast ticks */ static void tick_handle_periodic_broadcast(struct clock_event_device *dev) { ktime_t next; tick_do_periodic_broadcast(); /* * The device is in periodic mode. No reprogramming necessary: */ if (dev->mode == CLOCK_EVT_MODE_PERIODIC) return; /* * Setup the next period for devices, which do not have * periodic mode. We read dev->next_event first and add to it * when the event alrady expired. clockevents_program_event() * sets dev->next_event only when the event is really * programmed to the device. */ for (next = dev->next_event; ;) { next = ktime_add(next, tick_period); if (!clockevents_program_event(dev, next, ktime_get())) return; tick_do_periodic_broadcast(); } } /* * Powerstate information: The system enters/leaves a state, where * affected devices might stop */ static void tick_do_broadcast_on_off(void *why) { struct clock_event_device *bc, *dev; struct tick_device *td; unsigned long flags, *reason = why; int cpu, bc_stopped; spin_lock_irqsave(&tick_broadcast_lock, flags); cpu = smp_processor_id(); td = &per_cpu(tick_cpu_device, cpu); dev = td->evtdev; bc = tick_broadcast_device.evtdev; /* * Is the device not affected by the powerstate ? */ if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP)) goto out; if (!tick_device_is_functional(dev)) goto out; bc_stopped = cpus_empty(tick_broadcast_mask); switch (*reason) { case CLOCK_EVT_NOTIFY_BROADCAST_ON: case CLOCK_EVT_NOTIFY_BROADCAST_FORCE: if (!cpu_isset(cpu, tick_broadcast_mask)) { cpu_set(cpu, tick_broadcast_mask); if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) clockevents_shutdown(dev); } if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE) tick_broadcast_force = 1; break; case CLOCK_EVT_NOTIFY_BROADCAST_OFF: if (!tick_broadcast_force && cpu_isset(cpu, tick_broadcast_mask)) { cpu_clear(cpu, tick_broadcast_mask); if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) tick_setup_periodic(dev, 0); } break; } if (cpus_empty(tick_broadcast_mask)) { if (!bc_stopped) clockevents_shutdown(bc); } else if (bc_stopped) { if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) tick_broadcast_start_periodic(bc); else tick_broadcast_setup_oneshot(bc); } out: spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Powerstate information: The system enters/leaves a state, where * affected devices might stop. */ void tick_broadcast_on_off(unsigned long reason, int *oncpu) { if (!cpu_isset(*oncpu, cpu_online_map)) printk(KERN_ERR "tick-broadcast: ignoring broadcast for " "offline CPU #%d\n", *oncpu); else smp_call_function_single(*oncpu, tick_do_broadcast_on_off, &reason, 1); } /* * Set the periodic handler depending on broadcast on/off */ void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) { if (!broadcast) dev->event_handler = tick_handle_periodic; else dev->event_handler = tick_handle_periodic_broadcast; } /* * Remove a CPU from broadcasting */ void tick_shutdown_broadcast(unsigned int *cpup) { struct clock_event_device *bc; unsigned long flags; unsigned int cpu = *cpup; spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; cpu_clear(cpu, tick_broadcast_mask); if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { if (bc && cpus_empty(tick_broadcast_mask)) clockevents_shutdown(bc); } spin_unlock_irqrestore(&tick_broadcast_lock, flags); } void tick_suspend_broadcast(void) { struct clock_event_device *bc; unsigned long flags; spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; if (bc) clockevents_shutdown(bc); spin_unlock_irqrestore(&tick_broadcast_lock, flags); } int tick_resume_broadcast(void) { struct clock_event_device *bc; unsigned long flags; int broadcast = 0; spin_lock_irqsave(&tick_broadcast_lock, flags); bc = tick_broadcast_device.evtdev; if (bc) { clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME); switch (tick_broadcast_device.mode) { case TICKDEV_MODE_PERIODIC: if(!cpus_empty(tick_broadcast_mask)) tick_broadcast_start_periodic(bc); broadcast = cpu_isset(smp_processor_id(), tick_broadcast_mask); break; case TICKDEV_MODE_ONESHOT: broadcast = tick_resume_broadcast_oneshot(bc); break; } } spin_unlock_irqrestore(&tick_broadcast_lock, flags); return broadcast; } #ifdef CONFIG_TICK_ONESHOT static cpumask_t tick_broadcast_oneshot_mask; /* * Debugging: see timer_list.c */ cpumask_t *tick_get_broadcast_oneshot_mask(void) { return &tick_broadcast_oneshot_mask; } static int tick_broadcast_set_event(ktime_t expires, int force) { struct clock_event_device *bc = tick_broadcast_device.evtdev; return tick_dev_program_event(bc, expires, force); } int tick_resume_broadcast_oneshot(struct clock_event_device *bc) { clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); return 0; } /* * Called from irq_enter() when idle was interrupted to reenable the * per cpu device. */ void tick_check_oneshot_broadcast(int cpu) { if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) { struct tick_device *td = &per_cpu(tick_cpu_device, cpu); clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT); } } /* * Handle oneshot mode broadcasting */ static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) { struct tick_device *td; cpumask_t mask; ktime_t now, next_event; int cpu; spin_lock(&tick_broadcast_lock); again: dev->next_event.tv64 = KTIME_MAX; next_event.tv64 = KTIME_MAX; mask = CPU_MASK_NONE; now = ktime_get(); /* Find all expired events */ for_each_cpu_mask_nr(cpu, tick_broadcast_oneshot_mask) { td = &per_cpu(tick_cpu_device, cpu); if (td->evtdev->next_event.tv64 <= now.tv64) cpu_set(cpu, mask); else if (td->evtdev->next_event.tv64 < next_event.tv64) next_event.tv64 = td->evtdev->next_event.tv64; } /* * Wakeup the cpus which have an expired event. */ tick_do_broadcast(mask); /* * Two reasons for reprogram: * * - The global event did not expire any CPU local * events. This happens in dyntick mode, as the maximum PIT * delta is quite small. * * - There are pending events on sleeping CPUs which were not * in the event mask */ if (next_event.tv64 != KTIME_MAX) { /* * Rearm the broadcast device. If event expired, * repeat the above */ if (tick_broadcast_set_event(next_event, 0)) goto again; } spin_unlock(&tick_broadcast_lock); } /* * Powerstate information: The system enters/leaves a state, where * affected devices might stop */ void tick_broadcast_oneshot_control(unsigned long reason) { struct clock_event_device *bc, *dev; struct tick_device *td; unsigned long flags; int cpu; spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Periodic mode does not care about the enter/exit of power * states */ if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) goto out; bc = tick_broadcast_device.evtdev; cpu = smp_processor_id(); td = &per_cpu(tick_cpu_device, cpu); dev = td->evtdev; if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) goto out; if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) { cpu_set(cpu, tick_broadcast_oneshot_mask); clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); if (dev->next_event.tv64 < bc->next_event.tv64) tick_broadcast_set_event(dev->next_event, 1); } } else { if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) { cpu_clear(cpu, tick_broadcast_oneshot_mask); clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); if (dev->next_event.tv64 != KTIME_MAX) tick_program_event(dev->next_event, 1); } } out: spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Reset the one shot broadcast for a cpu * * Called with tick_broadcast_lock held */ static void tick_broadcast_clear_oneshot(int cpu) { cpu_clear(cpu, tick_broadcast_oneshot_mask); } static void tick_broadcast_init_next_event(cpumask_t *mask, ktime_t expires) { struct tick_device *td; int cpu; for_each_cpu_mask_nr(cpu, *mask) { td = &per_cpu(tick_cpu_device, cpu); if (td->evtdev) td->evtdev->next_event = expires; } } /** * tick_broadcast_setup_oneshot - setup the broadcast device */ void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { /* Set it up only once ! */ if (bc->event_handler != tick_handle_oneshot_broadcast) { int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC; int cpu = smp_processor_id(); cpumask_t mask; bc->event_handler = tick_handle_oneshot_broadcast; clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); /* Take the do_timer update */ tick_do_timer_cpu = cpu; /* * We must be careful here. There might be other CPUs * waiting for periodic broadcast. We need to set the * oneshot_mask bits for those and program the * broadcast device to fire. */ mask = tick_broadcast_mask; cpu_clear(cpu, mask); cpus_or(tick_broadcast_oneshot_mask, tick_broadcast_oneshot_mask, mask); if (was_periodic && !cpus_empty(mask)) { tick_broadcast_init_next_event(&mask, tick_next_period); tick_broadcast_set_event(tick_next_period, 1); } else bc->next_event.tv64 = KTIME_MAX; } } /* * Select oneshot operating mode for the broadcast device */ void tick_broadcast_switch_to_oneshot(void) { struct clock_event_device *bc; unsigned long flags; spin_lock_irqsave(&tick_broadcast_lock, flags); tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; bc = tick_broadcast_device.evtdev; if (bc) tick_broadcast_setup_oneshot(bc); spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Remove a dead CPU from broadcasting */ void tick_shutdown_broadcast_oneshot(unsigned int *cpup) { unsigned long flags; unsigned int cpu = *cpup; spin_lock_irqsave(&tick_broadcast_lock, flags); /* * Clear the broadcast mask flag for the dead cpu, but do not * stop the broadcast device! */ cpu_clear(cpu, tick_broadcast_oneshot_mask); spin_unlock_irqrestore(&tick_broadcast_lock, flags); } /* * Check, whether the broadcast device is in one shot mode */ int tick_broadcast_oneshot_active(void) { return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT; } #endif
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
You can’t perform that action at this time.