From c3fdd79d6161559b2b3dd111e593842e65ccbd8b Mon Sep 17 00:00:00 2001 From: Ian Rogers Date: Sun, 19 Feb 2023 01:28:24 -0800 Subject: [PATCH] perf vendor events intel: Refresh silvermont events Update the silvermont events from 14 to 15. Generation was done using https://github.com/intel/perfmon. The most notable change is in corrections to event descriptions. Signed-off-by: Ian Rogers Cc: Adrian Hunter Cc: Alexander Shishkin Cc: Alexandre Torgue Cc: Andrii Nakryiko Cc: Athira Rajeev Cc: Caleb Biggers Cc: Eduard Zingerman Cc: Florian Fischer Cc: Ingo Molnar Cc: James Clark Cc: Jing Zhang Cc: Jiri Olsa Cc: John Garry Cc: Kajol Jain Cc: Kan Liang Cc: Leo Yan Cc: Mark Rutland Cc: Maxime Coquelin Cc: Namhyung Kim Cc: Perry Taylor Cc: Peter Zijlstra Cc: Ravi Bangoria Cc: Sandipan Das Cc: Sean Christopherson Cc: Stephane Eranian Cc: Suzuki Poulouse Cc: Xing Zhengjun Cc: linux-arm-kernel@lists.infradead.org Cc: linux-stm32@st-md-mailman.stormreply.com Link: https://lore.kernel.org/r/20230219092848.639226-28-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo --- tools/perf/pmu-events/arch/x86/mapfile.csv | 2 +- tools/perf/pmu-events/arch/x86/silvermont/frontend.json | 2 +- tools/perf/pmu-events/arch/x86/silvermont/pipeline.json | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/tools/perf/pmu-events/arch/x86/mapfile.csv b/tools/perf/pmu-events/arch/x86/mapfile.csv index 1f611a7dbdda9..d1d40d0f2b2cd 100644 --- a/tools/perf/pmu-events/arch/x86/mapfile.csv +++ b/tools/perf/pmu-events/arch/x86/mapfile.csv @@ -23,7 +23,7 @@ GenuineIntel-6-1[AEF],v3,nehalemep,core GenuineIntel-6-2E,v3,nehalemex,core GenuineIntel-6-2A,v18,sandybridge,core GenuineIntel-6-(8F|CF),v1.11,sapphirerapids,core -GenuineIntel-6-(37|4A|4C|4D|5A),v14,silvermont,core +GenuineIntel-6-(37|4A|4C|4D|5A),v15,silvermont,core GenuineIntel-6-(4E|5E|8E|9E|A5|A6),v53,skylake,core GenuineIntel-6-55-[01234],v1.28,skylakex,core GenuineIntel-6-86,v1.20,snowridgex,core diff --git a/tools/perf/pmu-events/arch/x86/silvermont/frontend.json b/tools/perf/pmu-events/arch/x86/silvermont/frontend.json index c35da10f7133a..cd6ed3f59e268 100644 --- a/tools/perf/pmu-events/arch/x86/silvermont/frontend.json +++ b/tools/perf/pmu-events/arch/x86/silvermont/frontend.json @@ -11,7 +11,7 @@ "BriefDescription": "Counts the number of JCC baclears", "EventCode": "0xE6", "EventName": "BACLEARS.COND", - "PublicDescription": "The BACLEARS event counts the number of times the front end is resteered, mainly when the Branch Prediction Unit cannot provide a correct prediction and this is corrected by the Branch Address Calculator at the front end. The BACLEARS.COND event counts the number of JCC (Jump on Condtional Code) baclears.", + "PublicDescription": "The BACLEARS event counts the number of times the front end is resteered, mainly when the Branch Prediction Unit cannot provide a correct prediction and this is corrected by the Branch Address Calculator at the front end. The BACLEARS.COND event counts the number of JCC (Jump on Conditional Code) baclears.", "SampleAfterValue": "200003", "UMask": "0x10" }, diff --git a/tools/perf/pmu-events/arch/x86/silvermont/pipeline.json b/tools/perf/pmu-events/arch/x86/silvermont/pipeline.json index 59f6116a7eae4..2d4214bf9e396 100644 --- a/tools/perf/pmu-events/arch/x86/silvermont/pipeline.json +++ b/tools/perf/pmu-events/arch/x86/silvermont/pipeline.json @@ -228,7 +228,7 @@ "BriefDescription": "Counts the number of cycles when no uops are allocated, the IQ is empty, and no other condition is blocking allocation.", "EventCode": "0xCA", "EventName": "NO_ALLOC_CYCLES.NOT_DELIVERED", - "PublicDescription": "The NO_ALLOC_CYCLES.NOT_DELIVERED event is used to measure front-end inefficiencies, i.e. when front-end of the machine is not delivering micro-ops to the back-end and the back-end is not stalled. This event can be used to identify if the machine is truly front-end bound. When this event occurs, it is an indication that the front-end of the machine is operating at less than its theoretical peak performance. Background: We can think of the processor pipeline as being divided into 2 broader parts: Front-end and Back-end. Front-end is responsible for fetching the instruction, decoding into micro-ops (uops) in machine understandable format and putting them into a micro-op queue to be consumed by back end. The back-end then takes these micro-ops, allocates the required resources. When all resources are ready, micro-ops are executed. If the back-end is not ready to accept micro-ops from the front-end, then we do not want to count these as front-end bottlenecks. However, whenever we have bottlenecks in the back-end, we will have allocation unit stalls and eventually forcing the front-end to wait until the back-end is ready to receive more UOPS. This event counts the cycles only when back-end is requesting more uops and front-end is not able to provide them. Some examples of conditions that cause front-end efficiencies are: Icache misses, ITLB misses, and decoder restrictions that limit the the front-end bandwidth.", + "PublicDescription": "The NO_ALLOC_CYCLES.NOT_DELIVERED event is used to measure front-end inefficiencies, i.e. when front-end of the machine is not delivering micro-ops to the back-end and the back-end is not stalled. This event can be used to identify if the machine is truly front-end bound. When this event occurs, it is an indication that the front-end of the machine is operating at less than its theoretical peak performance. Background: We can think of the processor pipeline as being divided into 2 broader parts: Front-end and Back-end. Front-end is responsible for fetching the instruction, decoding into micro-ops (uops) in machine understandable format and putting them into a micro-op queue to be consumed by back end. The back-end then takes these micro-ops, allocates the required resources. When all resources are ready, micro-ops are executed. If the back-end is not ready to accept micro-ops from the front-end, then we do not want to count these as front-end bottlenecks. However, whenever we have bottlenecks in the back-end, we will have allocation unit stalls and eventually forcing the front-end to wait until the back-end is ready to receive more UOPS. This event counts the cycles only when back-end is requesting more uops and front-end is not able to provide them. Some examples of conditions that cause front-end efficiencies are: Icache misses, ITLB misses, and decoder restrictions that limit the front-end bandwidth.", "SampleAfterValue": "200003", "UMask": "0x50" },