Skip to content
Permalink
bfa76e07ea
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
125 lines (100 sloc) 4.32 KB
##################################################
## Project: DexStim Mouse Brain
## Date: 07.01.2020
## Author: Nathalie
##################################################
# GO plots single regions (Network analysis - nodedegree)
library(org.Mm.eg.db)
library(dplyr)
library(data.table)
library(ggplot2)
library(stringr)
library(anRichment)
library(anRichmentMethods)
basepath <- "~/Documents/ownCloud/DexStim_RNAseq_Mouse/"
regions <- c("AMY", "CER", "dCA1", "dDG", "PFC", "PVN", "vCA1", "vDG")
beta_cutoff <- 0.01
folder_plots <- paste0("figures")
folder_tables <- paste0("tables")
# 1. Read data from all regions ----------
list_reg <- list()
for (reg in regions){
res <- fread(paste0(basepath, "tables/coExpression_kimono/03_AnalysisFuncoup/",
reg,"_funcoup_differential_nodedegreesNorm_betacutoff",beta_cutoff,".csv"))
res <- res[res$nodedegree_norm>=0.5 & ! is.na(res$nodedegree_norm)]
res$entrez <- mapIds(org.Mm.eg.db, keys = res$ensembl_id,
keytype = "ENSEMBL", column="ENTREZID")
list_reg[[reg]] <- res
}
# 2. check uniqueness of DE genes ---------------
for (reg in regions){
index_reg <- which(regions == reg)
df <- bind_rows(list_reg[-index_reg], .id="region")
list_reg[[reg]]$regions_top <- sapply(list_reg[[reg]]$ensembl_id,
function(x) paste(df[df$ensembl_id == x,]$region, collapse = " "))
list_reg[[reg]]$unique_top <- sapply(list_reg[[reg]]$regions_top,
function(x) x == "")
}
# 3. GO enrichment for the genes of each region ------------------
go_enrichment_all <- function(df_reg, GOcoll, unique){
if (unique){
genes <- df_reg$entrez[df_reg$unique_top]
} else {
genes <- df_reg$entrez
}
background <- read.table(file = paste0(basepath, folder_tables, "/06_background_entrezID.txt"),
header = FALSE)
modules <- rep("not_significant", nrow(background))
modules[which(background$V1 %in% genes)] <- "significant"
# enrichment
GOenrichment <- enrichmentAnalysis(
classLabels = modules,
identifiers = background$V1,
refCollection = GOcoll,
useBackground = "given",
nBestDataSets = length(GOcoll$dataSets),
# threshold = 0.1,
# thresholdType = "Bonferroni",
getOverlapEntrez = TRUE,
getOverlapSymbols = TRUE,
ignoreLabels = "not_significant",
maxReportedOverlapGenes = 500
)
enrichmentTable <- GOenrichment$enrichmentTable
return(enrichmentTable)
}
GOcollection <- buildGOcollection(organism = "mouse")
list_GO <- list()
# GO.BPcollection = subsetCollection(GOcollection, tags = "GO.BP")
for (reg in regions){
go_enr_unique <- go_enrichment_all(list_reg[[reg]], GOcollection, TRUE)
# go_enr_all <- go_enrichment_all(list_reg[[reg]], GOcollection, FALSE)
list_GO[[reg]] <- go_enr_unique
}
# 4. Plot GO terms
df_all <- bind_rows(list_GO, .id="region")
for (reg in regions){
df_reg <- list_GO[[reg]] %>%
filter(nCommonGenes >= 10, pValue <= 0.1) %>%
group_by(inGroups) %>% slice_min(order_by = pValue, n = 10)
df <- df_all[df_all$dataSetName %in% df_reg$dataSetName,]
df$dataSetName <- sapply(df$dataSetName, function(x) str_trunc(x, 45, "right"))
df$dataSetName <- factor(df$dataSetName, levels = rev(reorder(df$dataSetName[df$region==reg], df$pValue[df$region==reg])))
df$region <- factor(df$region, levels = c("AMY", "CER", "PFC", "PVN", "vDG", "dDG", "vCA1", "dCA1"))
df$inGroups <- factor(df$inGroups)
levels(df$inGroups) <- c("Biological Process", "Cellular Components", "Molecular Function")
# Plot results (plotted pvalues are not adjusted for multiple testing)
df <- df %>%
arrange(desc(dataSetName))
print(ggplot(df, aes(x=dataSetName, y = -log10(pValue), fill = region)) +
geom_bar(position = position_dodge2(reverse=TRUE), stat="identity") +
geom_hline(yintercept = -log10(0.1),linetype="dashed", color = "red") +
coord_flip() +
xlab("GOterm") +
ggtitle(paste0("GO terms enriched for diff. co-expressed genes only in ",reg, " (Top 10 each)")) +
facet_wrap(~inGroups, scales="free") +
theme(axis.text.y = element_text(size = 10)))
ggsave(filename = paste0(basepath, folder_plots, "/02_CoExp_Kimono/03_AnalysisFuncoup/comparisonRegions/",
"06_",reg,"_GOterms_unique_nodedegree0.5.png"),
width = 13, height = 7)
}