Skip to content
Permalink
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
##################################################
## Project: DexStim Mouse Brain
## Date: 04.10.2021
## Author: Nathalie
##################################################
# Save filtered treatment network
# Use beta cutoff and rsquared cutoff as for baseline and differential network
library(data.table)
library(dplyr)
library(ggplot2)
library(igraph)
library(eulerr)
library(org.Mm.eg.db)
basepath <- "~/Documents/ownCloud/DexStim_RNAseq_Mouse/"
region <- "AMY"
beta_cutoff <- 0.01
padj_cutoff <- 0.01
rsquared_cutoff <- 0.1
### FUNCTIONS -------------------------------------
# function to read all files from list
readFiles_concat <- function(file_list){
# initialize empty data frame
dataset <- data.frame()
# read each file from list and append to data frame
for (i in 1:length(file_list)){
temp_data <- fread(file_list[i])
dataset <- rbindlist(list(dataset, temp_data), use.names = T)
}
return(dataset)
}
### ANALYSIS ---------------------------------------
# 1. Read kimono treatment expression networks
dex1_files <- list.files(path = file.path(basepath, "tables/coExpression_kimono"),
pattern = paste0("04\\_singleRegion\\_",region,"\\_dex1\\_funcoup\\_SE\\_.*\\.csv"),
full.names = TRUE)
data_dex1 <- readFiles_concat(dex1_files)
# 2. Remove interactions with very low r squared values & intercept & SVs
data <- data_dex1 %>%
filter(overall_rsq >= rsquared_cutoff) %>%
filter(predictor != '(Intercept)')
data <- data[!startsWith(data$predictor, "SV"),]
# remove duplicated interactions (mistake made when separating nodes into chunks)
data <- data %>%
distinct(target, predictor, .keep_all = TRUE)
# 3. Keep only interactions that have a beta value > cutoff
data <- data %>%
mutate(betacut = (abs(beta_mean) > beta_cutoff))
data_cut <- data %>%
filter(betacut)
# 4. Create treatment network corresponding to beta cutoff
head(data_cut[,c("target", "predictor", "beta_mean", "beta_stderr")], 20)
# Save filtered network
fwrite(data_cut, file = paste0(basepath, "/tables/coExpression_kimono/03_AnalysisFuncoup/",
"04_singleRegion_",region,"_filtered_treatmentNetwork.csv"))
# Nodes in network
node_vec <- unique(c(data_cut$target, data_cut$predictor))
# Network properties
relations <- data.frame(from=data_cut$target,
to=data_cut$predictor)
g_treat <- graph_from_data_frame(relations, directed=FALSE, vertices=node_vec)
# does graph contain multiple edges with same start and endpoint or loop edges
is_simple(g_treat)
g_treat <- simplify(g_treat) # check the edge attribute parameter
# Calculate nodedegree
nodedegree <- igraph::degree(g_treat)
nodedegree <- sort(nodedegree, decreasing = TRUE)
# Calculate nodebetweenness
nodebetweenness <- betweenness(g_treat, directed = FALSE) # node betweenness: number of shortest paths going through a node
nodebetweenness <- sort(nodebetweenness, decreasing = TRUE) # same when values are included in g_diff or not
# 1. Prior network properties for normalization
funcoup_prior <- fread(file = paste0(basepath, "data/kimono_input/prior_expr_funcoup_mm.csv"))
nodes_prior <- unique(c(funcoup_prior$Gene_A, funcoup_prior$Gene_B))
relations_prior <- data.frame(from = funcoup_prior$Gene_A,
to = funcoup_prior$Gene_B)
g_prior <- graph_from_data_frame(relations_prior, directed=FALSE, vertices=nodes_prior)
# Calculate nodedegrees of prior
nodedegree_prior <- sort(igraph::degree(g_prior), decreasing = TRUE)
# Calculate nodebetweenness of prior
# nodebetweenness_prior <- betweenness(g_prior, directed = FALSE) # node betweenness: number of shortest paths going through a node
# saveRDS(nodebetweenness_prior, file = paste0(basepath, "data/workspaces/nodebetweenness_funcoup.rds"))
nodebetweenness_prior <- sort(readRDS(paste0(basepath, "data/workspaces/nodebetweenness_funcoup.rds")), decreasing = TRUE)
# 9. "Normalize" nodebetweenness by nodebetweenness in prior
nodebetweenness_norm <- nodebetweenness/nodebetweenness_prior[names(nodebetweenness)]
nodebetweenness_mat <- data.frame("nodebetweenness" = nodebetweenness,
"nodebetweenness_prior" = nodebetweenness_prior[names(nodebetweenness)],
"nodebetweenness_norm" = nodebetweenness_norm)
# set norm nodebetweenness to NA if nodebetweenness in prior < 10000
nodebetweenness_mat$nodebetweenness_norm[nodebetweenness_mat$nodebetweenness_prior < 10000] <- NA
nodebetweenness_mat <- arrange(nodebetweenness_mat, desc(nodebetweenness_norm))
# add column with gene symbol
nodebetweenness_mat$gene_symbol <- mapIds(org.Mm.eg.db, keys = rownames(nodebetweenness_mat),
keytype = "ENSEMBL", column="SYMBOL")
# write nodebetweenness table to file
nodebetweenness_mat <- tibble::rownames_to_column(nodebetweenness_mat, "ensembl_id")
fwrite(nodebetweenness_mat, file = paste0(basepath, "/tables/coExpression_kimono/03_AnalysisFuncoup/",
"03a_",region,"_funcoup_treatment_nodebetweennessNorm_betacutoff",beta_cutoff,".csv"),
quote = FALSE)
# 10. "Normalize" nodedegree by nodedegree in prior
nodedegree_norm <- nodedegree/nodedegree_prior[names(nodedegree)]
nodedegree_mat <- data.frame("nodedegree" = nodedegree, "nodedegree_prior" = nodedegree_prior[names(nodedegree)],
"nodedegree_norm" = nodedegree_norm) %>%
arrange(desc(nodedegree_norm))
# set norm nodebetweenness to NA if nodedegree in prior < 50
nodedegree_mat$nodedegree_norm[nodedegree_mat$nodedegree_prior < 50] <- NA
nodedegree_mat <- arrange(nodedegree_mat, desc(nodedegree_norm))
# add column with gene symbol
nodedegree_mat$gene_symbol <- mapIds(org.Mm.eg.db, keys = rownames(nodedegree_mat),
keytype = "ENSEMBL", column="SYMBOL")
# write nodedegree table to file
nodedegree_mat <- tibble::rownames_to_column(nodedegree_mat, "ensembl_id")
fwrite(nodedegree_mat, file = paste0(basepath, "/tables/coExpression_kimono/03_AnalysisFuncoup/",
"03a_",region,"_funcoup_treatment_nodedegreesNorm_betacutoff",beta_cutoff,".csv"),
quote = FALSE)