Skip to content
Permalink
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
##################################################
## Project: DexStim Mouse Brain
## Date: 15.02.2020
## Author: Nathalie
##################################################
# Make tables for Anthi with kimono results
setwd("~/Documents/ownCloud/DexStim_RNAseq_Mouse")
library(org.Mm.eg.db)
library(dplyr)
library(data.table)
library(anRichment)
library(anRichmentMethods)
regions <- c("AMY", "PFC", "PVN", "CER", "vDG", "dDG", "vCA1", "dCA1")
mode <- "differential"
# 1. read hub gene tables from all regions ----------
list_reg <- list()
for (reg in regions){
if (mode == "differential"){
res <- fread(file=paste0("tables/coExpression_kimono/03_AnalysisFuncoup/",
"04_", reg, "_funcoup_", mode, "_nodebetweennessNorm_betacutoff0.01.csv"))
} else {
res <- fread(file=paste0("tables/coExpression_kimono/03_AnalysisFuncoup/",
"03_", reg, "_funcoup_", mode, "_nodebetweennessNorm_betacutoff0.01.csv"))
}
res <- res %>%
filter(nodebetweenness_norm >= 1)
res$entrez <- mapIds(org.Mm.eg.db, keys = res$ensembl_id,
keytype = "ENSEMBL", column="ENTREZID")
list_reg[[reg]] <- res
}
# 2. check uniqueness of hub genes ---------------
for (reg in regions){
index_reg <- which(regions == reg)
df <- bind_rows(list_reg[-index_reg], .id="region")
# find regions where gene is also hub
list_reg[[reg]]$regions_hub <- sapply(list_reg[[reg]]$ensembl_id,
function(x) paste(df[df$ensembl_id == x,]$region, collapse = " "))
# boolean if gene is hub uniquely in this region
list_reg[[reg]]$unique_hub <- sapply(list_reg[[reg]]$regions_hub,
function(x) x == "")
}
# 3. GO enrichment for the genes of each region ------------------
go_enrichment_all <- function(df_reg, GOcoll, unique, background){
if (unique){
genes <- df_reg$entrez[df_reg$unique_hub]
} else {
genes <- df_reg$entrez
}
modules <- rep("not_significant", length(background))
modules[which(background %in% genes)] <- "significant"
# enrichment
GOenrichment <- enrichmentAnalysis(
classLabels = modules,
identifiers = background,
refCollection = GOcoll,
useBackground = "given",
nBestDataSets = length(GOcoll$dataSets),
# threshold = 0.1,
# thresholdType = "Bonferroni",
getOverlapEntrez = TRUE,
getOverlapSymbols = TRUE,
ignoreLabels = "not_significant",
maxReportedOverlapGenes = 500
)
enrichmentTable <- GOenrichment$enrichmentTable %>%
filter(nCommonGenes > 10, pValue <= 0.1)
return(enrichmentTable)
}
GOcollection <- buildGOcollection(organism = "mouse")
# GO.BPcollection = subsetCollection(GOcollection, tags = "GO.BP")
background <- fread(file = "data/kimono_input/prior_expr_funcoup_mm.csv")
background <- unique(c(background$Gene_A, background$Gene_B))
background <- mapIds(org.Mm.eg.db, keys = background,
keytype = "ENSEMBL", column="ENTREZID")
for (reg in regions){
go_enr_unique <- go_enrichment_all(list_reg[[reg]], GOcollection, TRUE, background)
fwrite(go_enr_unique, file = paste0("tables/coExpression_kimono/03_AnalysisFuncoup/",
"/09_", reg, "_GOterms_unique_", mode, ".csv"))
go_enr_all <- go_enrichment_all(list_reg[[reg]], GOcollection, FALSE, background)
fwrite(go_enr_all, file = paste0("tables/coExpression_kimono/03_AnalysisFuncoup/",
"/09_", reg, "_GOterms_all_", mode, ".csv"))
list_reg[[reg]]$GOterms_unique <- sapply(list_reg[[reg]]$entrez,
function(x) paste(go_enr_unique$dataSetName[which(str_detect(go_enr_unique$overlapGenes, x))], collapse="|"))
list_reg[[reg]]$GOterms_all <- sapply(list_reg[[reg]]$entrez,
function(x) paste(go_enr_all$dataSetName[which(str_detect(go_enr_all$overlapGenes, x))], collapse="|"))
}
# 4. Print df of each brain region to file -------------------
for (reg in regions){
# list_reg[[reg]]$ensembl_id <- NULL
fwrite(list_reg[[reg]], file = paste0("tables/coExpression_kimono/03_AnalysisFuncoup/",
"/09_", reg, "_hubGenes_unique_GOterms_", mode, ".csv"))
}