diff --git a/scripts/7_normalization.Rmd b/scripts/7_normalization.Rmd index f9e8abf..52297e2 100644 --- a/scripts/7_normalization.Rmd +++ b/scripts/7_normalization.Rmd @@ -31,7 +31,7 @@ knitr::opts_knit$set(root.dir = paste0(user_choices$personal_path, "/")) knitr::opts_chunk$set(echo = FALSE) if (user_choices$array_type == "v2") { - if (!("jokergoo/IlluminaHumanMethylationEPICv2manifest" %in% rownames(installed.packages()))) { + if (!("IlluminaHumanMethylationEPICv2manifest" %in% rownames(installed.packages()))) { BiocManager::install("jokergoo/IlluminaHumanMethylationEPICv2manifest") } if (!("IlluminaHumanMethylationEPICv2anno.20a1.hg38" %in% rownames(installed.packages()))) { @@ -84,27 +84,22 @@ save(gRatioSet_clean_filtered_quantile, file = paste0(user_choices$project_name, Betas_clean_filtered_quantile <- getBeta(gRatioSet_clean_filtered_quantile) save(Betas_clean_filtered_quantile, file = paste0(user_choices$project_name, - "/processed_data/Betas_clean_filtered_quantile.Rdata")) -Ms_clean_filtered_qunatile <- getM(gRatioSet_clean_filtered_quantile) -save(Ms_clean_filtered_qunatile, file = paste0(user_choices$project_name, - "/processed_data/Ms_clean_filtered_qunatile.Rdata")) + "/processed_data/Betas_clean_filtered_quantile.Rdata")) +Ms_clean_filtered_quantile <- getM(gRatioSet_clean_filtered_quantile) +save(Ms_clean_filtered_quantile, file = paste0(user_choices$project_name, + "/processed_data/Ms_clean_filtered_quantile.Rdata")) # further normalization with BMIQ: -probeType <- as.data.frame(annotations_clean_filtered[rownames(Betas_clean_filtered_quantile),c("Name","Type")]) +probeType <- as.data.frame(subset(annotations_clean_filtered, Name %in% rownames(Betas_clean_filtered_quantile), select=c("Name","Type"))) probeType$probeType = ifelse(probeType$Type %in% "I", 1, 2) Betas_clean_filtered_quantile_bmiq <- apply(Betas_clean_filtered_quantile[,1:length(colnames(Betas_clean_filtered_quantile))],2, function(a) BMIQ(a,probeType$probeType,plots=FALSE)$nbeta) # sourced from script "BMIQ_1.6_Teschendorff.R" -save(Betas_clean_filtered_quantile_bmiq, file = paste0(user_choices$project_name, - "/processed_data/Betas_clean_filtered_quantile_bmiq.Rdata")) +save(Betas_clean_filtered_quantile_bmiq, file = paste0(user_choices$project_name, "/processed_data/Betas_clean_filtered_quantile_bmiq.Rdata")) ``` -```{r. normalize unfiltered probes, include=FALSE} +```{r normalize unfiltered probes, include=FALSE} # Normalization of unfiltered data - -# Functional normalization -# Note: sex is set to "F" for all samples since sex chromosomes were already removed in script 6 -# Note: This does not affect the normalization or the phenotype data, it simply stops preprocessQuantile() from producing an error -gRatioSet_clean_unfiltered_quantile <- preprocessQuantile(RGSet_clean, sex = "F") +gRatioSet_clean_unfiltered_quantile <- preprocessQuantile(RGSet_clean) save(gRatioSet_clean_unfiltered_quantile, file = paste0(user_choices$project_name, "/processed_data/gRatioSet_clean_unfiltered_quantile.Rdata")) # output: GenomicRatioSet