diff --git a/app.R b/app.R
index 8c30842..86a41f3 100644
--- a/app.R
+++ b/app.R
@@ -290,7 +290,7 @@ tags$p(style="text-align:center;margin-bottom:0px;",
fluidRow(align="center",selectInput(inputId="variable",
- label=HTML('Measure','',as.character(icon("exclamation", class="exclamation")),' Death rates are presented as death rates per 100000 person-years. '),
+ label=HTML('Measure','',as.character(icon("exclamation", class="exclamation")),' Death rates are displayed on a scale of 100000 person-years. '),
choices=c("Deaths, Total" = "DTotal",
"Death Rate, Total" = "RTotal",
@@ -333,16 +333,17 @@ tags$p(style="text-align:center;margin-bottom:0px;",
Expected value of a linear trend fitted over years in the selected period.
Week-specific Lower Quartiles
The reference level for a given week equals to the lower quartile of the available data for that week in the years of the selected period.
- Yearly-average-week Trend
+ Yearly-average-week
The arithmetic mean of the week-specific averages over the period.
- Summer-average-week Trend
+ Summer-average-week
The arithmetic mean of the week-specific averages over the period excluding calendar weeks between 48 and 12.
'),
choices=c("Week-specific Averages",
"Week-specific Trends",
"Week-specific Lower Quartiles",
- "Yearly-average-week Trend",
- "Summer-average-week Trend"
+ "Yearly Average-week",
+ "Summer Average-week",
+ "Yearly Lower-quartile-week"
)
),
@@ -848,9 +849,15 @@ server=function(input,output,session){
}
- #### lower quartile
+ #### lower quartile weekly
q25data=data[CountryCode %in% input$country & Year %in% c(input$period[1]:input$period[2]), lapply(.SD,quantile,prob=0.25), .SDcols= cols, by = list(CountryCode,Week,Sex)]
dataset$q25data=q25data
+
+ #### lower quartile
+
+ q25y=data[CountryCode %in% input$country & Year %in% c(input$period[1]:input$period[2]), lapply(.SD, quantile, prob=0.25), .SDcols = cols, by = list(CountryCode,Sex)]
+
+
#### linear trend expectation
@@ -888,7 +895,9 @@ server=function(input,output,session){
q25data2=data[CountryCode %in% input$country2 & Year %in% c(input$period2[1]:input$period2[2]), lapply(.SD,quantile,prob=0.25), .SDcols= cols, by = list(CountryCode,Week,Sex)]
dataset$q25data2=q25data2
-
+ #### lower quartile
+
+ q25y2=data[CountryCode %in% input$country2 & Year %in% c(input$period2[1]:input$period2[2]), lapply(.SD, quantile, prob=0.25), .SDcols = cols, by = list(CountryCode,Sex)]
smalldata2=data[CountryCode == input$country2 & Year %in% c(input$period2[1]:input$period2[2]),c("Year",..myvar,"Week","CountryCode","Sex")]
linex2=rbindlist(by(smalldata2,smalldata2[,c("Week","Sex","CountryCode")],function(x){
@@ -945,21 +954,57 @@ server=function(input,output,session){
subdata2$ymaxvalue = subdata2[,..myvar]
compareline2 = meandata2[CountryCode == input$country2, c("Sex","Week",..myvar)]
}
- } else if (input$area %in% c("Yearly-average-week Trend","Summer-average-week Trend")){
+ } else if (input$area %in% c("Yearly Average-week","Summer Average-week","Yearly Lower-quartile-week")){
- if (input$area == "Yearly-average-week Trend"){
+ if (input$area == "Yearly Average-week"){
baseline = expectedlevel[CountryCode==input$country]
if (input$extracountry == TRUE){
baseline2 = expectedlevel2[CountryCode==input$country2]
}
- } else if (input$area == "Summer-average-week Trend") {
+ } else if (input$area == "Summer Average-week") {
baseline = expectedlevelsummer[CountryCode==input$country]
if (input$extracountry == TRUE){
baseline2 = expectedlevelsummer2[CountryCode==input$country2]
}
+ } else if (input$area == "Yearly Lower-quartile-week") {
+ Qf=as.numeric(q25y[CountryCode %in% input$country & Sex == "f", ..myvar])
+ Qm=as.numeric(q25y[CountryCode %in% input$country & Sex == "m", ..myvar])
+ Qb=as.numeric(q25y[CountryCode %in% input$country & Sex == "b", ..myvar])
+
+ q25allsel=rbind(
+ data[CountryCode %in% input$country & Year %in% c(input$period[1]:input$period[2]) & Sex == "m",c("CountryCode", "Year","Week","Sex",..myvar)][which(data[CountryCode %in% input$country & Year %in% c(input$period[1]:input$period[2]) & Sex == "m",..myvar]