Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
ipd_extended/ID_experiments.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
203 lines (179 sloc)
9.28 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cjs | |
import data_generator as dg | |
import pandas as pd | |
import math | |
import interaction_distance as id | |
import re | |
import matplotlib.pyplot as plt | |
import main | |
import ID_sm as idsm | |
from correlation_measures.binning import Binning | |
import numpy as np | |
import fractal_interaction_distance as fr | |
def ID_computation_improvements(): | |
cube_rows = 6000 | |
# data_gen = dg.CubesGenerator(8, 0, 2, 'bla') | |
# data_gen.add_cube_parameter(dg.CubeParameters(int(cube_rows/2))) | |
# data_gen.add_cube_parameter(dg.CubeParameters(int(cube_rows/2), | |
# { | |
# 0: [-0.5, 1], 1: [-0.5, 1], | |
# 2: [-0.6, 1], 3: [-0.7, 1], | |
# 4: [0.5, 1], 5: [-0.5, 1], | |
# 6: [0.3, 1], 7: [-0.3, 1] | |
# })) | |
data_gen = dg.produce_cube_generator(8, 0, 1, 'c', 1, 'bla', cube_rows) | |
# data_gen = dg.produce_xor_generator(3, 0, 'bla') | |
# data_gen = dg.XorGenerator(3, 0, 2, cube_rows, 0.1, 'bla') | |
data = pd.DataFrame(data_gen.build()[0]) | |
# data = pd.read_csv("/Users/tatyanadembelova/Documents/study/thesis/ipd_extended/new_cubes/cubes_08_01_c.csv", | |
# header=None, delimiter=";") | |
# data = data.loc[:, :7] | |
print(data.shape) | |
# data_gen = dg.XorGenerator(3, 0, 2, cube_rows * 3, 0.1, 'bla') | |
# data = pd.DataFrame(data_gen.build()[0]) | |
dim_maxes = data.max(0) | |
curr = 0 | |
init_bins_count = int(math.ceil(math.sqrt(data.shape[0]))) # ceil in original ipd... | |
print('init_bins_count', init_bins_count) | |
# init_bins_count = int(math.pow(cube_rows*2, 0.6)) * 2 # ceil in original ipd... | |
# init_bins_count = int(math.ceil(math.pow(data.shape[0], 0.4))) # ceil in original ipd... | |
binning = Binning(data, curr, init_bins_count) | |
bin_map = binning.equal_frequency_binning_by_rank() | |
dist_bins = bin_map.cat.categories | |
curr_points = [data.loc[binning.rank_data[binning.rank_data[curr] == math.floor( | |
float(re.search(', (-*\d+\.*\d*e*[+-]*\d*)', dist_bins[i]).group(1)))].index.tolist()[0], curr] for i in | |
range(len(dist_bins) - 1)] | |
bin_widths = [j - i for i, j in zip([-2] + curr_points, curr_points + [2])] | |
print('max bin width', max(bin_widths)) | |
min_width = min(bin_widths) | |
print('min bin width', min_width) | |
IDs = id.compute_IDs(bin_map, curr, data, dim_maxes) | |
# new_IDs = [iIDd * float(min_width / min(bin_widths[i], bin_widths[i+1])) for i, ID in enumerate(IDs)] | |
new_IDs = [ID * float(min_width / min(bin_widths[i], bin_widths[i + 1])) for i, ID in enumerate(IDs)] | |
# IDs = cjs.compute_CJSs(bin_map, curr, data, dim_maxes) | |
ax = plt.subplot(141) | |
# ax.set_ylim([0, 400]) | |
plt.plot(curr_points, IDs) | |
# plt.scatter(curr_points, IDs) | |
plt.plot(curr_points, [id.compute_ID_threshold(curr_points, IDs)] * len(curr_points), color='r') | |
ax = plt.subplot(142) | |
# ax.set_ylim([0, 400]) | |
plt.plot(curr_points, new_IDs) | |
# plt.scatter(curr_points, new_IDs) | |
plt.plot(curr_points, [id.compute_ID_threshold(curr_points, new_IDs)] * len(curr_points), color='r') | |
IDs = id.compute_IDs(bin_map, curr, data, dim_maxes, True) | |
new_IDs = [ID * float(min_width / min(bin_widths[i], bin_widths[i + 1])) | |
for i, ID in enumerate(IDs)] | |
plt.subplot(143) | |
plt.plot(curr_points, IDs) | |
# plt.scatter(curr_points, IDs) | |
plt.plot(curr_points, [id.compute_ID_threshold(curr_points, IDs)] * len(curr_points), color='r') | |
plt.subplot(144) | |
plt.plot(curr_points, new_IDs) | |
# plt.scatter(curr_points, IDs) | |
plt.plot(curr_points, [id.compute_ID_threshold(curr_points, new_IDs)] * len(curr_points), color='r') | |
plt.show() | |
plot_rows = 3 | |
plot_cols = 5 | |
plot_id = 1 | |
def plot(curr_points, IDs, scatter=False, scaled_x=True): | |
global plot_id | |
curr_points = [i for i in range(len(IDs))] if not scaled_x else curr_points | |
ax = plt.subplot(plot_rows, plot_cols, plot_id) | |
if scatter: | |
plt.scatter(curr_points, IDs, s=0.5) | |
# for p in curr_points: | |
# plt.vlines(p, -2, 2) | |
else: | |
# ax.set_ylim([-0.01, 0.12]) | |
plt.plot(curr_points, IDs) | |
# plt.scatter(curr_points, IDs) | |
plt.plot(curr_points, [id.compute_ID_threshold(curr_points, IDs)] * len(curr_points), color='r') | |
plot_id += 1 | |
def naive_IDs(): | |
cube_rows = 6000 | |
# data_gen = dg.produce_cube_generator(3, 3, 1, 'c', 1, 'bla', cube_rows) | |
data_gen = dg.produce_xor_generator(3, 3, 'bla', distribution='uniform', rows=10000) | |
subspaces = data_gen.subspaces | |
print(subspaces) | |
subspace_map = main.get_map_from_subspace_set(subspaces) | |
data = pd.DataFrame(data_gen.build()[0]) | |
dim_maxes = data.max(0) | |
# init_bins_count = int(math.pow(cube_rows*2, 0.6)) * 2 # ceil in original ipd... | |
# init_bins_count = int(math.ceil(math.pow(data.shape[0], 0.4))) # ceil in original ipd... | |
init_bins_count = int(math.ceil(math.sqrt(data.shape[0]))) # ceil in original ipd... | |
print('init_bins_count', init_bins_count) | |
curr = 0 | |
print('discretization', data_gen.perf_disc[curr]) | |
binning = Binning(data, curr, init_bins_count) | |
# bin_map = binning.equal_frequency_binning_by_rank() | |
def run_for_subspace(binning, curr_subspace, new_dim_maxes, new_data): | |
bin_map = binning.equal_frequency_binning_by_rank() | |
dist_bins = bin_map.cat.categories | |
curr_points = [data.loc[binning.rank_data[binning.rank_data[curr] == math.floor( | |
float(re.search(', (-*\d+\.*\d*e*[+-]*\d*)', dist_bins[i]).group(1)))].index.tolist()[0], curr] for i in | |
range(len(dist_bins) - 1)] | |
# curr_points = [float(re.search(', (-*\d+\.*\d*e*[+-]*\d*)', dist_bins[i]).group(1)) for i in | |
# range(len(dist_bins) - 1)] | |
data_wo_curr = new_data.copy() | |
if curr in data.columns: | |
data_wo_curr.pop(curr) | |
IDs = id.compute_IDs1(bin_map, data_wo_curr, new_dim_maxes) | |
# bin_widths = [j - i for i, j in zip([-2] + curr_points, curr_points + [2])] | |
# min_width = min(bin_widths) | |
# smoothed_IDs = id.compute_IDs(bin_map, curr, new_data, new_dim_maxes, curr_points, True) | |
scaled_x = True | |
plot(curr_points, IDs, scaled_x=scaled_x) | |
# plot(curr_points, smoothed_IDs, scaled_x=scaled_x) | |
# bin_map = binning.equal_width_binning() | |
# dist_bins = bin_map.cat.categories | |
# curr_points = [float(re.search(', (-*\d+\.*\d*e*[+-]*\d*)', dist_bins[i]).group(1)) for i in range(len(dist_bins) - 1)] | |
# smoothed_IDs = id.compute_IDs(bin_map, curr, new_data, new_dim_maxes, True) | |
fractal_IDs = fr.compute_fractalIDs1(bin_map, data_wo_curr, dim_maxes) | |
fractal_calibrated_IDs = fr.compute_fractal_calibratedIDs1(bin_map, data_wo_curr, dim_maxes) | |
# bin_width_IDs = [ID * float(min_width / min(bin_widths[i], bin_widths[i + 1])) for i, ID in enumerate(fractal_IDs)] | |
plot(curr_points, fractal_IDs, scaled_x=scaled_x) | |
plot(curr_points, fractal_calibrated_IDs, scaled_x=scaled_x) | |
plot(data[curr], data[curr_subspace[1]], True) | |
plot(binning.rank_data[curr], data[curr_subspace[1]], True) | |
print('balID score ID', idsm.compute_ID_subspace_set_score(curr_points, IDs)[0]) | |
print('balID score fractal_IDs', idsm.compute_ID_subspace_set_score(curr_points, fractal_IDs)[0]) | |
print('balID score fractal_calibrated_IDs', idsm.compute_ID_subspace_set_score(curr_points, fractal_calibrated_IDs)[0]) | |
def IDscoreID(IDs): | |
return sum([1 if ID < np.average(IDs) else 0 for ID in IDs]) / len(IDs) | |
print('ID score ID', IDscoreID(IDs)) | |
print('ID score fractal_IDs', IDscoreID(fractal_IDs)) | |
print('ID score fractal_calibrated_IDs', IDscoreID(fractal_calibrated_IDs)) | |
curr_subspace = list(subspace_map[curr]) | |
curr_subspace.append(curr) | |
print('curr_subspace', curr_subspace) | |
new_data = data.copy().loc[:, curr_subspace] | |
new_dim_maxes = dim_maxes[curr_subspace] | |
run_for_subspace(binning, curr_subspace, new_dim_maxes, new_data) | |
curr_subspace = [curr, subspace_map[curr].pop()] | |
print('curr_subspace', curr_subspace) | |
new_data = data.copy().loc[:, curr_subspace] | |
new_dim_maxes = dim_maxes[curr_subspace] | |
run_for_subspace(binning, curr_subspace, new_dim_maxes, new_data) | |
# # irrelevant feature from another interaction | |
# subspace = subspaces[0] | |
# if curr in subspace: | |
# subspace = subspaces[1] | |
# irrelevant = subspace_map[subspace[0]].pop() | |
# curr_subspace = [curr, irrelevant] | |
# print('curr_subspace', curr_subspace) | |
# new_data = data.copy().loc[:, curr_subspace] | |
# new_dim_maxes = dim_maxes[curr_subspace] | |
# run_for_subspace(binning, curr_subspace, new_dim_maxes, new_data) | |
# # plot(data[curr], data[curr_subspace[1]], True, False) | |
# completely irrelevant feature | |
curr_subspace = [curr, 5] | |
print('curr_subspace', curr_subspace) | |
new_data = data.copy().loc[:, curr_subspace] | |
new_dim_maxes = dim_maxes[curr_subspace] | |
run_for_subspace(binning, curr_subspace, new_dim_maxes, new_data) | |
# plot(data[curr], data[curr_subspace[1]], True, False) | |
plt.show() | |
if __name__ == '__main__': | |
# ID_computation_improvements() | |
naive_IDs() |