Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
ipd_extended/fractal_interaction_distance.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
307 lines (257 sloc)
15.8 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import interaction_distance as id | |
import correlation_measures.binning as bn | |
import data_generator as dg | |
import main | |
import math | |
import re | |
def compute_fractalIDs1(bin_map, data, dim_maxes): | |
dist_bins = bin_map.cat.categories | |
if data.empty: | |
return np.zeros(len(dist_bins) - 1) | |
inner_bin_measures = [[] for i in range(len(dist_bins))] | |
inter_bin_measures = [[] for i in range((len(dist_bins) - 1))] | |
subdim = data.columns[0] | |
if len(data.columns) > 1: | |
subbins_count = 2 | |
new_subdims = data.columns.delete(0) | |
else: | |
subbins_count = 1 | |
new_subdims = data.columns | |
# new_subdims = data.columns | |
flipped_inner_bin_measures = [[[] for i in range(len(dist_bins))] for j in new_subdims] | |
flipped_inter_bin_measures = [[[] for i in range((len(dist_bins) - 1))] for j in new_subdims] | |
prev_bin_data = [None] * subbins_count | |
for bin_id, binn in enumerate(dist_bins): | |
bin_data = data.loc[bin_map == binn] | |
# create sub-bins (default 2) | |
subbinning = bn.Binning(bin_data, subdim, subbins_count) | |
subbin_map = subbinning.equal_frequency_binning_by_rank() | |
dist_subbins = subbin_map.cat.categories | |
for subbin_id, subbinn in enumerate(dist_subbins): | |
subbin_data = bin_data.loc[subbin_map == subbinn, new_subdims] | |
points_count = subbin_data.shape[0] | |
inner_prod_matrix = np.ones([points_count, points_count]) | |
flipped_inner_prod_matrices = [np.ones([points_count, points_count]) for j in new_subdims] | |
inter_prod_matrix = None | |
flipped_inter_prod_matrices = None | |
prev_points_count = None | |
if prev_bin_data[subbin_id] is not None: | |
prev_points_count = prev_bin_data[subbin_id].shape[0] | |
inter_prod_matrix = np.ones([points_count, prev_points_count]) | |
flipped_inter_prod_matrices = [np.ones([points_count, prev_points_count]) for j in new_subdims] | |
# product elements for each dimension | |
for dim_id, dim in enumerate(subbin_data): | |
subbin_data_dim = subbin_data[dim] | |
inner_elem = id.compute_ID_elem(subbin_data_dim, subbin_data_dim, dim_maxes[dim]) | |
inner_prod_matrix = np.multiply(inner_prod_matrix, inner_elem) | |
flipped_inner_elem = id.compute_ID_elem(-subbin_data_dim, -subbin_data_dim, dim_maxes[dim]) | |
for flip_col_id, flip_col in enumerate(new_subdims): | |
flipped_inner_prod_matrices[flip_col_id] = np.multiply(flipped_inner_prod_matrices[flip_col_id], | |
flipped_inner_elem if dim == flip_col else inner_elem) | |
if inter_prod_matrix is not None: | |
prev_bin_data_dim = prev_bin_data[subbin_id][dim] | |
inter_elem = id.compute_ID_elem(subbin_data_dim, prev_bin_data_dim, dim_maxes[dim]) | |
inter_prod_matrix = np.multiply(inter_prod_matrix, inter_elem) | |
flipped_inter_elem = id.compute_ID_elem(-subbin_data_dim, -prev_bin_data_dim, dim_maxes[dim]) | |
for flip_col_id, flip_col in enumerate(new_subdims): | |
flipped_inter_prod_matrices[flip_col_id] = np.multiply(flipped_inter_prod_matrices[flip_col_id], | |
flipped_inter_elem if dim == flip_col else inter_elem) | |
inner_bin_measures[bin_id].append(np.sum(inner_prod_matrix) / points_count ** 2) | |
for flip_col_id in range(len(new_subdims)): | |
flipped_inner_bin_measures[flip_col_id][bin_id].append( | |
np.sum(flipped_inner_prod_matrices[flip_col_id]) / points_count ** 2) | |
if inter_prod_matrix is not None: | |
inter_bin_measures[bin_id - 1].append( | |
2 * np.sum(inter_prod_matrix) / (points_count * prev_points_count)) | |
for flip_col_id in range(len(new_subdims)): | |
flipped_inter_bin_measures[flip_col_id][bin_id - 1].append( | |
2 * np.sum(flipped_inter_prod_matrices[flip_col_id]) / (points_count * prev_points_count)) | |
prev_bin_data[subbin_id] = subbin_data | |
IDs = [] | |
for bin_id, inter_measures in enumerate(inter_bin_measures): | |
measures = [[inner_bin_measures[bin_id][subbin_id] - sub + inner_bin_measures[bin_id + 1][subbin_id]] | |
# + [ | |
# flipped_inner_bin_measures[flip_col_id][bin_id][subbin_id] - | |
# flipped_inter_bin_measures[flip_col_id][bin_id][subbin_id] + | |
# flipped_inner_bin_measures[flip_col_id][bin_id + 1][subbin_id] for flip_col_id in range(len(new_subdims))] | |
for subbin_id, sub in enumerate(inter_measures)] | |
IDs.append(pow(np.average(measures), 0.5)) | |
# IDs.append(np.average([inner_bin_measures[bin_id][subbin_id] - sub + inner_bin_measures[bin_id + 1][subbin_id] | |
# for subbin_id, sub in enumerate(inter_measures)])) | |
IDs = np.array(IDs) | |
return IDs | |
def compute_avg_fractalIDs1(bin_map, data, dim_maxes): | |
dist_bins = bin_map.cat.categories | |
if data.empty: | |
return np.zeros(len(dist_bins) - 1) | |
inner_bin_measures = [[] for i in range(len(dist_bins))] | |
inter_bin_measures = [[] for i in range((len(dist_bins) - 1))] | |
subdim = data.columns[0] | |
if len(data.columns) > 1: | |
subbins_count = 2 | |
new_subdims = data.columns.delete(0) | |
else: | |
subbins_count = 1 | |
new_subdims = data.columns | |
# new_subdims = data.columns | |
flipped_inner_bin_measures = [[[] for i in range(len(dist_bins))] for j in new_subdims] | |
flipped_inter_bin_measures = [[[] for i in range((len(dist_bins) - 1))] for j in new_subdims] | |
prev_bin_data = [None] * subbins_count | |
for bin_id, binn in enumerate(dist_bins): | |
bin_data = data.loc[bin_map == binn] | |
# create sub-bins (default 2) | |
subbinning = bn.Binning(bin_data, subdim, subbins_count) | |
subbin_map = subbinning.equal_frequency_binning_by_rank() | |
dist_subbins = subbin_map.cat.categories | |
for subbin_id, subbinn in enumerate(dist_subbins): | |
subbin_data = bin_data.loc[subbin_map == subbinn, new_subdims] | |
points_count = subbin_data.shape[0] | |
inner_prod_matrix = np.ones([points_count, points_count]) | |
flipped_inner_prod_matrices = [np.ones([points_count, points_count]) for j in new_subdims] | |
inter_prod_matrix = None | |
flipped_inter_prod_matrices = None | |
prev_points_count = None | |
if prev_bin_data[subbin_id] is not None: | |
prev_points_count = prev_bin_data[subbin_id].shape[0] | |
inter_prod_matrix = np.ones([points_count, prev_points_count]) | |
flipped_inter_prod_matrices = [np.ones([points_count, prev_points_count]) for j in new_subdims] | |
# product elements for each dimension | |
for dim_id, dim in enumerate(subbin_data): | |
subbin_data_dim = subbin_data[dim] | |
inner_elem = id.compute_ID_elem(subbin_data_dim, subbin_data_dim, dim_maxes[dim]) | |
inner_prod_matrix = np.multiply(inner_prod_matrix, inner_elem) | |
flipped_inner_elem = id.compute_ID_elem(-subbin_data_dim, -subbin_data_dim, dim_maxes[dim]) | |
for flip_col_id, flip_col in enumerate(new_subdims): | |
flipped_inner_prod_matrices[flip_col_id] = np.multiply(flipped_inner_prod_matrices[flip_col_id], | |
flipped_inner_elem if dim == flip_col else inner_elem) | |
if inter_prod_matrix is not None: | |
prev_bin_data_dim = prev_bin_data[subbin_id][dim] | |
inter_elem = id.compute_ID_elem(subbin_data_dim, prev_bin_data_dim, dim_maxes[dim]) | |
inter_prod_matrix = np.multiply(inter_prod_matrix, inter_elem) | |
flipped_inter_elem = id.compute_ID_elem(-subbin_data_dim, -prev_bin_data_dim, dim_maxes[dim]) | |
for flip_col_id, flip_col in enumerate(new_subdims): | |
flipped_inter_prod_matrices[flip_col_id] = np.multiply(flipped_inter_prod_matrices[flip_col_id], | |
flipped_inter_elem if dim == flip_col else inter_elem) | |
inner_bin_measures[bin_id].append(np.sum(inner_prod_matrix) / points_count ** 2) | |
for flip_col_id in range(len(new_subdims)): | |
flipped_inner_bin_measures[flip_col_id][bin_id].append( | |
np.sum(flipped_inner_prod_matrices[flip_col_id]) / points_count ** 2) | |
if inter_prod_matrix is not None: | |
inter_bin_measures[bin_id - 1].append( | |
2 * np.sum(inter_prod_matrix) / (points_count * prev_points_count)) | |
for flip_col_id in range(len(new_subdims)): | |
flipped_inter_bin_measures[flip_col_id][bin_id - 1].append( | |
2 * np.sum(flipped_inter_prod_matrices[flip_col_id]) / (points_count * prev_points_count)) | |
prev_bin_data[subbin_id] = subbin_data | |
IDs = [] | |
for bin_id, inter_measures in enumerate(inter_bin_measures): | |
measures = [[inner_bin_measures[bin_id][subbin_id] - sub + inner_bin_measures[bin_id + 1][subbin_id]] | |
# + [ | |
# flipped_inner_bin_measures[flip_col_id][bin_id][subbin_id] - | |
# flipped_inter_bin_measures[flip_col_id][bin_id][subbin_id] + | |
# flipped_inner_bin_measures[flip_col_id][bin_id + 1][subbin_id] for flip_col_id in range(len(new_subdims))] | |
for subbin_id, sub in enumerate(inter_measures)] | |
IDs.append(np.average(measures)) | |
# IDs.append(np.average([inner_bin_measures[bin_id][subbin_id] - sub + inner_bin_measures[bin_id + 1][subbin_id] | |
# for subbin_id, sub in enumerate(inter_measures)])) | |
IDs = np.array(IDs) | |
return IDs | |
def compute_fractal_calibratedIDs1(bin_map, data, dim_maxes): | |
dist_bins = bin_map.cat.categories | |
if data.empty: | |
return np.zeros(len(dist_bins) - 1) | |
subdim = data.columns[0] | |
if len(data.columns) > 1: | |
subbins_count = 4 | |
new_subdims = data.columns.delete(0) | |
else: | |
subbins_count = 1 | |
new_subdims = data.columns | |
calibrated_inner_bin_measures = [[] for i in range(len(dist_bins) - 1)] | |
calibrated_prev_inner_bin_measures = [[] for i in range(len(dist_bins) - 1)] | |
calibrated_inter_bin_measures = [[] for i in range((len(dist_bins) - 1))] | |
# prepare previous bin data | |
bin_data = data.loc[bin_map == dist_bins[0]] | |
subbinning = bn.Binning(bin_data, subdim, subbins_count) | |
subbin_map = subbinning.equal_frequency_binning_by_rank() | |
dist_subbins = subbin_map.cat.categories | |
prev_bin_data = [] | |
for subbin_id, subbinn in enumerate(dist_subbins): | |
subbin_data = bin_data.loc[subbin_map == subbinn, new_subdims] | |
prev_bin_data.append(subbin_data) | |
for bin_id, binn in enumerate(dist_bins[1:], start=0): | |
bin_data = data.loc[bin_map == binn] | |
# create sub-bins (default 2) | |
subbinning = bn.Binning(bin_data, subdim, subbins_count) | |
subbin_map = subbinning.equal_frequency_binning_by_rank() | |
dist_subbins = subbin_map.cat.categories | |
for subbin_id, subbinn in enumerate(dist_subbins): | |
subbin_data = bin_data.loc[subbin_map == subbinn, new_subdims] | |
points_count = subbin_data.shape[0] | |
calibrated_inner_prod_matrix = np.ones([points_count, points_count]) | |
prev_points_count = prev_bin_data[subbin_id].shape[0] | |
calibrated_prev_inner_prod_matrix = np.ones([prev_points_count, prev_points_count]) | |
calibrated_inter_prod_matrix = np.ones([points_count, prev_points_count]) | |
# product elements for each dimension | |
for dim_id, dim in enumerate(subbin_data): | |
subbin_data_dim = subbin_data[dim] | |
prev_bin_data_dim = prev_bin_data[subbin_id][dim] | |
diff = dim_maxes[dim] - max(max(subbin_data_dim), max(prev_bin_data_dim)) | |
calibrated_inner_elem = id.compute_ID_elem(subbin_data_dim + diff, subbin_data_dim + diff, | |
dim_maxes[dim]) | |
calibrated_inner_prod_matrix = np.multiply(calibrated_inner_prod_matrix, calibrated_inner_elem) | |
calibrated_prev_inner_elem = id.compute_ID_elem(prev_bin_data_dim + diff, prev_bin_data_dim + diff, | |
dim_maxes[dim]) | |
calibrated_prev_inner_prod_matrix = np.multiply(calibrated_prev_inner_prod_matrix, | |
calibrated_prev_inner_elem) | |
calibrated_inter_elem = id.compute_ID_elem(subbin_data_dim + diff, prev_bin_data_dim + diff, | |
dim_maxes[dim]) | |
calibrated_inter_prod_matrix = np.multiply(calibrated_inter_prod_matrix, | |
calibrated_inter_elem) | |
calibrated_inner_bin_measures[bin_id].append(np.sum(calibrated_inner_prod_matrix) / points_count ** 2) | |
calibrated_prev_inner_bin_measures[bin_id].append( | |
np.sum(calibrated_prev_inner_prod_matrix) / prev_points_count ** 2) | |
calibrated_inter_bin_measures[bin_id].append(2 * np.sum(calibrated_inter_prod_matrix) / | |
(points_count * prev_points_count)) | |
prev_bin_data[subbin_id] = subbin_data | |
IDs = [] | |
for bin_id, inter_measures in enumerate(calibrated_inter_bin_measures): | |
measures = [calibrated_prev_inner_bin_measures[bin_id][subbin_id] - | |
calibrated_inter_bin_measures[bin_id][subbin_id] + | |
calibrated_inner_bin_measures[bin_id][subbin_id] | |
for subbin_id, sub in enumerate(inter_measures)] | |
IDs.append(np.average(measures)) | |
# IDs.append(np.average([inner_bin_measures[bin_id][subbin_id] - sub + inner_bin_measures[bin_id + 1][subbin_id] | |
# for subbin_id, sub in enumerate(inter_measures)])) | |
IDs = np.array(IDs) | |
return IDs | |
if __name__ == '__main__': | |
data_gen = dg.produce_xor_generator(4, 3, 'bla', distribution='uniform', rows=6000) | |
subspaces = data_gen.subspaces | |
print(subspaces) | |
subspace_map = main.get_map_from_subspace_set(subspaces) | |
data = pd.DataFrame(data_gen.build()[0]) | |
dim_maxes = data.max(0) | |
# init_bins_count = int(math.pow(cube_rows*2, 0.6)) * 2 # ceil in original ipd... | |
# init_bins_count = int(math.ceil(math.pow(data.shape[0], 0.4))) # ceil in original ipd... | |
init_bins_count = int(math.ceil(math.sqrt(data.shape[0]))) # ceil in original ipd... | |
print('init_bins_count', init_bins_count) | |
curr = 0 | |
print('discretization', data_gen.perf_disc[curr]) | |
binning = bn.Binning(data, curr, init_bins_count) | |
bin_map = binning.equal_frequency_binning_by_rank() | |
dist_bins = bin_map.cat.categories | |
curr_points = [data.loc[binning.rank_data[binning.rank_data[curr] == math.floor( | |
float(re.search(', (-*\d+\.*\d*e*[+-]*\d*)', dist_bins[i]).group(1)))].index.tolist()[0], curr] for i in | |
range(len(dist_bins) - 1)] | |
# curr_points = [float(re.search(', (-*\d+\.*\d*e*[+-]*\d*)', dist_bins[i]).group(1)) for i in | |
# range(len(dist_bins) - 1)] | |
curr_subspace = list(subspace_map[curr]) | |
# curr_subspace.append(curr) | |
print('curr_subspace', curr_subspace) | |
new_data = data.copy().loc[:, curr_subspace] | |
new_dim_maxes = dim_maxes[curr_subspace] | |
IDs = compute_fractal_calibratedIDs1(bin_map, new_data, new_dim_maxes) | |
print(IDs) |