Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
ipd_extended/merging_experiments.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
73 lines (61 sloc)
2.19 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# import random | |
# | |
# import data_generator as dg | |
# import pandas as pd | |
# import math | |
import random | |
import matplotlib | |
import interaction_distance as id | |
# import re | |
import matplotlib.pyplot as plt | |
font = {'family' : 'normal', | |
'weight' : 'bold', | |
'size' : 22} | |
matplotlib.rc('font', **font) | |
# import main | |
# import ID_sm as idsm | |
# from correlation_measures.binning import Binning | |
import numpy as np | |
# import fractal_interaction_distance as fr | |
import merging as m | |
yvalue = [] | |
bpsvalue = [] | |
min_inbc = 20 | |
max_inbc = 81 | |
for init_bins_count in range(min_inbc, max_inbc, 20): | |
yv = [] | |
bps = [] | |
# for bp in [int(i * init_bins_count / 100) for i in range(70, 76)]: | |
for i in range(20, 90, 20): | |
bp = int(i * init_bins_count / 100) | |
# bp = int(0.7 * init_bins_count) | |
bin_width = int(init_bins_count / (bp + 1)) | |
full_bins = init_bins_count - bin_width * (bp + 1) | |
# IDs = [0 for i in range(1, init_bins_count)] | |
# | |
# for i in range(bp + 1): | |
# IDs.extend([0]*((1 if i < full_bins else 0) + bin_width - 1) + [1]) | |
# IDs = np.array(IDs[:-1]) | |
bp_ids = [i for i in range(1, init_bins_count)] | |
random.shuffle(bp_ids) | |
bp_ids = bp_ids[:bp] | |
IDs = np.array([1 if i in bp_ids else 0 for i in range(1, init_bins_count)]) | |
ID_threshold = id.compute_ID_threshold(IDs, 0.3) | |
F, discretizations = m.dynamic_merging(ID_threshold, IDs, init_bins_count) | |
bin = np.argmin(F[-1]) | |
print('init_bins_count:', init_bins_count, ', ibp:', bp, ', bp:', bin) | |
bps.append(i) | |
yv.append(bin) | |
plt.plot([i for i in range(20, 90, 20)], yv, label=str(init_bins_count) + " bins") | |
# diff.append(F[-1][1] - F[-1][0]) | |
yvalue.append(yv) | |
bpsvalue.append(bps) | |
plt.xlabel("% of break points") | |
plt.ylabel("Number of found bins") | |
plt.legend() | |
plt.show() | |
# init_bins_count = 100 | |
# IDs = np.array([0 for i in range(int(init_bins_count / 2))] + [1] + [0 for i in range(init_bins_count - int(init_bins_count / 2) - 1)]) | |
# ID_threshold = id.compute_ID_threshold(None, IDs, id.IDThresholdStrategy.AVG) | |
# F, discretizations = m.dynamic_merging(ID_threshold, IDs, init_bins_count) | |
# print(np.argmin(F[-1])) |