Skip to content

Commit

Permalink
cleanup
Browse files Browse the repository at this point in the history
  • Loading branch information
kbudhath committed Feb 21, 2017
1 parent 3132a04 commit 7dda70c
Show file tree
Hide file tree
Showing 51 changed files with 30,224 additions and 509,864 deletions.
10 changes: 8 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,2 +1,8 @@
# cisc
Causal Inference on Discrete Data Using Stochastic Complexity
# Causal Inference by Stochastic Complexity
The algorithmic Markov condition states that the most likely causal direction between two random variables `X` and `Y` can be identified as that direction with the lowest Kolmogorov complexity. Due to the halting problem, however, this notion is not computable.

We hence propose to do causal inference by stochastic complexity. That is, we propose to approximate Kolmogorov complexity via the Minimum Description Length (MDL) principle, using a score that is mini-max optimal with regard to the model class under consideration. This means that even in an adversarial setting, such as when the true distribution is not in this class, we still obtain the optimal encoding for the data relative to the class.

We instantiate this framework, which we call CISC, for pairs of univariate discrete variables, using the class of multinomial distributions.
Experiments show that CISC is highly accurate on synthetic, benchmark, as well as real-world data, outperforming the state of the art by a margin, and scales extremely well with regard to sample and domain sizes.

Loading

0 comments on commit 7dda70c

Please sign in to comment.