Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
wilson/R/function.R
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
1325 lines (1155 sloc)
52.1 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#' Method for scatter plot creation | |
#' | |
#' @param data data.table containing plot data | |
#' column 1: id | |
#' column 2, 3(, 4): x, y(, z) | |
#' @param data.labels Vector of labels used for data. Length has to be equal to nrow(data). | |
#' @param data.hovertext Character vector with additional hovertext. Length has to be equal to nrow(data). | |
#' @param transparency Set point transparency. See \code{\link[ggplot2]{geom_point}}. | |
#' @param pointsize Set point size. See \code{\link[ggplot2]{geom_point}}. | |
#' @param labelsize Set label size. See \code{\link[ggplot2]{geom_text}}. | |
#' @param color Vector of colors used for color palette. | |
#' @param x_label Label x-Axis | |
#' @param y_label Label Y-Axis | |
#' @param z_label Label Z-Axis | |
#' @param density Boolean value, perform 2d density estimate. | |
#' @param line Boolean value, add reference line. | |
#' @param categorized Z-Axis (if exists) as categories. | |
#' @param highlight.data data.table containing data to highlight. Same structure as data. | |
#' @param highlight.labels Vector of labels used for highlighted data. Length has to be equal to nrow(highlight.data). | |
#' @param highlight.hovertext Character vector with additional hovertext. Length has to be equal to nrow(highlight.data). | |
#' @param highlight.color String with hexadecimal color-code. | |
#' @param xlim Numeric vector of two setting min and max limit of x-axis. See \code{\link[ggplot2]{lims}}. | |
#' @param ylim Numeric vector of two setting min and max limit of y-axis. See \code{\link[ggplot2]{lims}}. | |
#' @param colorbar.limits Vector with min, max values for colorbar (Default = NULL). | |
#' @param width Set plot width in cm (Default = "auto"). | |
#' @param height Set plot height in cm (Default = "auto"). | |
#' @param ppi Pixel per inch (default = 72). | |
#' @param plot.method Whether the plot should be 'interactive' or 'static' (Default = 'static'). | |
#' @param scale Modify plot size while preserving aspect ratio (Default = 1). | |
#' | |
#' @details Width/ height limit = 500. If exceeded default to 500 and issue exceed_size = TRUE. | |
#' | |
#' @import data.table | |
#' | |
#' @return Returns list(plot = ggplotly/ ggplot, width, height, ppi, exceed_size). | |
#' | |
#' @export | |
create_scatterplot <- function(data, data.labels = NULL, data.hovertext = NULL, transparency = 1, pointsize = 1, labelsize = 3, color = NULL, x_label = "", y_label = "", z_label = "", density = TRUE, line = TRUE, categorized = FALSE, highlight.data = NULL, highlight.labels = NULL, highlight.hovertext = NULL, highlight.color = "#FF0000", xlim = NULL, ylim = NULL, colorbar.limits = NULL, width = "auto", height = "auto", ppi = 72, plot.method = "static", scale = 1){ | |
# force evaluation of all arguments | |
# no promises in plot object | |
forceArgs() | |
########## prepare data ########## | |
# set labelnames if needed | |
x_label <- ifelse(nchar(x_label), x_label, names(data)[2]) | |
y_label <- ifelse(nchar(y_label), y_label, names(data)[3]) | |
if (ncol(data) >= 4) z_label <- ifelse(nchar(z_label), z_label, names(data)[4]) | |
# make column names unique to prevent overwrite | |
columnnames <- names(data) | |
names(data) <- make.unique(columnnames) | |
if (!is.null(highlight.data)) { | |
columnnames.highlight <- names(highlight.data) | |
names(highlight.data) <- make.unique(columnnames.highlight) | |
} | |
# get internal columnnames | |
x_head <- names(data)[2] | |
y_head <- names(data)[3] | |
if (ncol(data) >= 4) z_head <- names(data)[4] | |
# delete rows where both 0 or at least one NA | |
rows_to_keep_data <- which(as.logical( (data[, 2] != 0) + (data[, 3] != 0))) | |
data <- data[rows_to_keep_data] | |
if (!is.null(highlight.data)) { | |
rows_to_keep_high <- which(as.logical( (highlight.data[, 2] != 0) + (highlight.data[, 3 != 0]))) | |
highlight.data <- highlight.data[rows_to_keep_high] | |
} | |
# delete labels & hovertext accordingly | |
data.labels <- data.labels[rows_to_keep_data] | |
data.hovertext <- data.hovertext[rows_to_keep_data] | |
if (!is.null(highlight.data)) { | |
highlight.labels <- highlight.labels[rows_to_keep_high] | |
highlight.hovertext <- highlight.hovertext[rows_to_keep_high] | |
} | |
########## assemble plot ########## | |
theme1 <- ggplot2::theme( # no gray background or helper lines | |
plot.background = ggplot2::element_blank(), | |
panel.grid.major = ggplot2::element_blank(), | |
panel.grid.minor = ggplot2::element_blank(), | |
panel.border = ggplot2::element_blank(), | |
panel.background = ggplot2::element_blank(), | |
axis.line.x = ggplot2::element_line(size = .3), | |
axis.line.y = ggplot2::element_line(size = .3), | |
axis.title.x = ggplot2::element_text(face = "bold", color = "black", size = 10 * scale), | |
axis.title.y = ggplot2::element_text(face = "bold", color = "black", size = 10 * scale), | |
plot.title = ggplot2::element_text(face = "bold", color = "black", size = 12 * scale), | |
text = ggplot2::element_text(size = 10 * scale) | |
# legend.background = element_rect(color = "red") # border color | |
# legend.key = element_rect("green") # not working! | |
) | |
### z-axis exists? | |
if (ncol(data) >= 4) { | |
plot <- ggplot2::ggplot(data = data) | |
### scatter with color axis | |
if (!categorized) { | |
plot <- plot + | |
### color_gradient | |
ggplot2::scale_color_gradientn(colors = color, name = z_label, limits = colorbar.limits, oob = scales::squish) | |
### scatter with categories | |
} else if (categorized == TRUE) { | |
# change categorized column to factor | |
data <- data[, (z_head) := as.factor(data[[z_head]])] | |
### categorized plot | |
plot <- plot + | |
ggplot2::scale_color_manual( | |
# labels = data[, z_head], | |
values = grDevices::colorRampPalette(color)(length(unique(data[[z_head]]))), # get color for each value | |
# breaks = , | |
drop = FALSE, # to avoid dropping empty factors | |
name = z_label | |
# guide=guide_legend(title="sdsds") # legend for points | |
) | |
} | |
# set names | |
plot <- plot + ggplot2::aes_(x = as.name(x_head), y = as.name(y_head), color = as.name(z_head)) | |
} else { | |
plot <- ggplot2::ggplot(data = data, ggplot2::aes_(x = as.name(x_head), y = as.name(y_head))) | |
} | |
if (density) { | |
### kernel density | |
# plot$layers <- c(stat_density2d(geom = "tile", aes(fill = ..density..^0.25), n=200, contour=FALSE) + aes_(fill = as.name(var)), plot$layers) # n = resolution; density less sparse | |
plot <- plot + ggplot2::stat_density2d(geom = "tile", ggplot2::aes_(fill = ~ ..density.. ^ 0.25, color = NULL), n = 200, contour = FALSE) | |
plot <- plot + ggplot2::scale_fill_gradient(low = "white", high = "black") + | |
# guides(fill=FALSE) + # remove density legend | |
ggplot2::labs(fill = "Density") | |
} | |
if (line) { | |
### diagonal line | |
plot <- plot + ggplot2::geom_abline(intercept = 0, slope = 1) | |
} | |
plot <- plot + | |
ggplot2::xlab(x_label) + # axis labels | |
ggplot2::ylab(y_label) | |
# interactive points with hovertexts | |
if (plot.method == "interactive") { | |
# set hovertext | |
# list of arguments for paste0 | |
args <- list( | |
"</br>", data[[1]], | |
"</br>", x_label, ": ", data[[x_head]], | |
"</br>", y_label, ": ", data[[y_head]] | |
) | |
# append z-axis | |
if (ncol(data) >= 4) { | |
args <- append(args, list("</br>", z_label, ": ", data[[z_head]])) | |
} | |
# append additional hovertext | |
if (!is.null(data.hovertext)) { | |
args <- append(args, list("</br>", data.hovertext), after = 2) | |
} | |
# eval arguments with paste0 | |
hovertext <- do.call(paste0, args) | |
# set points | |
plot <- plot + ggplot2::geom_point(size = pointsize * scale, alpha = transparency, ggplot2::aes(text = hovertext)) | |
if (!is.null(highlight.data)) { | |
# set highlighted hovertext | |
# list of arguments for paste0 | |
highlight.args <- list( | |
"</br>", highlight.data[[1]], | |
"</br>", x_label, ": ", highlight.data[[x_head]], | |
"</br>", y_label, ": ", highlight.data[[y_head]] | |
) | |
# append z-axis | |
if (ncol(data) >= 4) { | |
highlight.args <- append(highlight.args, list("</br>", z_label, ": ", highlight.data[[z_head]])) | |
} | |
# append additional hovertext | |
if (!is.null(highlight.hovertext)) { | |
highlight.args <- append(highlight.args, list("</br>", highlight.hovertext), after = 2) | |
} | |
# eval arguments with paste0 | |
highlight.hovertext <- do.call(paste0, highlight.args) | |
# set highlighted points | |
plot <- plot + ggplot2::geom_point(size = pointsize * scale, alpha = transparency, inherit.aes = TRUE, data = highlight.data, color = highlight.color, show.legend = FALSE, ggplot2::aes(text = highlight.hovertext)) | |
} | |
# static points without hovertexts | |
} else if (plot.method == "static") { | |
seed <- Sys.getpid() + Sys.time() | |
# set points | |
plot <- plot + ggplot2::geom_point(size = pointsize * scale, alpha = transparency) | |
# set highlighted points | |
if (!is.null(highlight.data)) { | |
plot <- plot + ggplot2::geom_point(size = pointsize * scale, alpha = transparency, inherit.aes = TRUE, data = highlight.data, color = highlight.color, show.legend = FALSE) | |
# set repelling point labels | |
if (!is.null(highlight.labels)) { | |
plot <- plot + ggrepel::geom_label_repel(data = highlight.data, mapping = ggplot2::aes(label = highlight.labels), size = labelsize * scale, color = "black", segment.color = "gray65", force = 2, max.iter = 1000, point.padding = grid::unit(0.1, "lines"), label.size = NA, alpha = 0.5, seed = seed) | |
plot <- plot + ggrepel::geom_label_repel(data = highlight.data, mapping = ggplot2::aes(label = highlight.labels), size = labelsize * scale, color = "black", segment.color = "gray65", force = 2, max.iter = 1000, point.padding = grid::unit(0.1, "lines"), label.size = NA, fill = NA, seed = seed) | |
} | |
# set repelling labels (for data) | |
} else if (!is.null(data.labels)) { | |
plot <- plot + ggrepel::geom_label_repel(mapping = ggplot2::aes(label = data.labels), size = labelsize * scale, color = "black", segment.color = "gray65", force = 2, max.iter = 1000, point.padding = grid::unit(0.1, "lines"), label.size = NA, alpha = 0.5, seed = seed) | |
plot <- plot + ggrepel::geom_label_repel(mapping = ggplot2::aes(label = data.labels), size = labelsize * scale, color = "black", segment.color = "gray65", force = 2, max.iter = 1000, point.padding = grid::unit(0.1, "lines"), label.size = NA, fill = NA, seed = seed) | |
} | |
} | |
# set axis limits | |
if (!is.null(xlim)) { | |
plot <- plot + ggplot2::xlim(xlim) | |
} | |
if (!is.null(ylim)) { | |
plot <- plot + ggplot2::ylim(ylim) | |
} | |
plot <- plot + theme1 | |
# estimate legend width | |
legend.width <- 0 | |
legend.padding <- 20 # 10 on both sides | |
legend.thickness <- 30 | |
if (density) { | |
legend.width <- nchar("Density") | |
} | |
if (ncol(data) > 3) { | |
legend.width <- ifelse(legend.width > nchar(z_label), legend.width, nchar(z_label)) | |
} | |
if (density | ncol(data) > 3) { | |
# estimate tickwidth | |
min.tick <- nchar(as.character(min(data[[3]], na.rm = TRUE))) * 8.75 | |
max.tick <- nchar(as.character(max(data[[3]], na.rm = TRUE))) * 8.75 | |
legend.thickness <- legend.thickness + ifelse(min.tick < max.tick, max.tick, min.tick) | |
legend.width <- legend.width * 8.75 | |
legend.width <- ifelse(legend.width > legend.thickness, legend.width, legend.thickness) + legend.padding | |
} | |
# set width/ height | |
if (width == "auto") { | |
# cm to px | |
width <- 28 * (ppi / 2.54) + legend.width | |
} else { | |
width <- width * (ppi / 2.54) | |
} | |
if (height == "auto") { | |
# cm to px | |
height <- 28 * (ppi / 2.54) | |
} else { | |
height <- height * (ppi / 2.54) | |
} | |
# apply scale factor | |
width <- width * scale | |
height <- height * scale | |
# size exceeded? | |
exceed_size <- FALSE | |
limit <- 500 * (ppi / 2.54) | |
if (width > limit) { | |
exceed_size <- TRUE | |
width <- limit | |
} | |
if (height > limit) { | |
exceed_size <- TRUE | |
height <- limit | |
} | |
if (plot.method == "interactive") { | |
plot <- plotly::ggplotly(plot, width = width + legend.width, height = height, tooltip = "text") | |
# add labels with arrows | |
if (!is.null(highlight.labels) && !is.null(highlight.data)) { | |
plot <- plotly::add_annotations(p = plot, x = highlight.data[[x_head]], y = highlight.data[[y_head]], text = highlight.labels, standoff = pointsize * scale, font = list(size = labelsize * scale), bgcolor = "rgba(255, 255, 255, 0.5)") | |
} | |
if (!is.null(data.labels)) { | |
plot <- plotly::add_annotations(p = plot, x = data[[x_head]], y = data[[y_head]], text = data.labels, standoff = pointsize * scale, font = list(size = labelsize * scale), bgcolor = "rgba(255, 255, 255, 0.5)") | |
} | |
} | |
# pixel to cm | |
width <- width / (ppi / 2.54) | |
height <- height / (ppi / 2.54) | |
return(list(plot = plot, width = width, height = height, ppi = ppi, exceed_size = exceed_size)) | |
} | |
#' Method for pca creation. | |
#' | |
#' @param data data.table from which the plot is created (First column will be handled as rownames if not numeric). | |
#' @param color.group Vector of groups according to samples (= column names). | |
#' @param color.title Title of the color legend. | |
#' @param palette Vector of colors used for color palette. | |
#' @param shape.group Vector of groups according to samples (= column names). | |
#' @param shape.title Title of the shape legend. | |
#' @param shapes Vector of shapes see \code{\link[graphics]{points}}. Will recycle/ cut off shapes if needed. Default = c(15:25) | |
#' @param dimension.a Number of dimension displayed on X-Axis. | |
#' @param dimension.b Number of dimension displayed on Y-Axis. | |
#' @param dimensions Number of dimensions to create. | |
#' @param on.columns Boolean perform pca on columns or rows. | |
#' @param labels Boolean show labels. | |
#' @param custom.labels Vector of custom labels. Will replace columnnames. | |
#' @param pointsize Size of the data points. | |
#' @param labelsize Size of texts inside plot (default = 3). | |
#' @param width Set the width of the plot in cm (default = 28). | |
#' @param height Set the height of the plot in cm (default = 28). | |
#' @param ppi Pixel per inch (default = 72). | |
#' @param scale Modify plot size while preserving aspect ratio (Default = 1). | |
#' | |
#' @details If width and height are the same axis ratio will be set to one (quadratic plot). | |
#' @details Width/ height limit = 500. If exceeded default to 500 and issue exceed_size = TRUE. | |
#' | |
#' @import data.table | |
#' | |
#' @return A named list(plot = ggplot object, data = pca.data, width = width of plot (cm), height = height of plot (cm), ppi = pixel per inch, exceed_size = Boolean whether width/ height exceeded max). | |
#' | |
#' @export | |
create_pca <- function(data, color.group = NULL, color.title = NULL, palette = NULL, shape.group = NULL, shape.title = NULL, shapes = c(15:25), dimension.a = 1, dimension.b = 2, dimensions = 6, on.columns = TRUE, labels = FALSE, custom.labels = NULL, pointsize = 2, labelsize = 3, width = 28, height = 28, ppi = 72, scale = 1) { | |
# force evaluation of all arguments | |
# no promises in plot object | |
forceArgs() | |
requireNamespace("FactoMineR", quietly = TRUE) | |
requireNamespace("factoextra", quietly = TRUE) | |
# prepare data ------------------------------------------------------------ | |
# set custom labels | |
if (!is.null(custom.labels)) { | |
if (!is.numeric(data[[1]])) { | |
colnames(data)[-1] <- custom.labels | |
} else { | |
colnames(data) <- custom.labels | |
} | |
} | |
# remove rows with NA | |
data <- stats::na.omit(data) | |
# check for rownames | |
if (!is.numeric(data[[1]])) { | |
rownames <- data[[1]] | |
data[, 1 := NULL] | |
} else { | |
rownames <- NULL | |
} | |
# transpose | |
if (on.columns) { | |
data_t <- t(data) | |
if (!is.null(rownames)) { | |
colnames(data_t) <- rownames | |
} | |
} else { | |
data_t <- as.matrix(data) | |
if (!is.null(rownames)) { | |
rownames(data_t) <- rownames | |
} | |
} | |
# check if PCA possible | |
if (ncol(data_t) < 3) { | |
stop(paste("PCA requires at least 3 elements. Found:", ncol(data_t))) | |
} | |
# remove constant rows (= genes with the same value for all samples) | |
data_t <- data_t[, apply(data_t, 2, function(x) min(x, na.rm = TRUE) != max(x, na.rm = TRUE))] | |
pca <- FactoMineR::PCA(data_t, scale.unit = TRUE, ncp = dimensions, graph = FALSE) | |
# plot -------------------------------------------------------------------- | |
theme1 <- ggplot2::theme( # no gray background or helper lines | |
plot.background = ggplot2::element_blank(), | |
panel.grid.major = ggplot2::element_blank(), | |
panel.grid.minor = ggplot2::element_blank(), | |
panel.border = ggplot2::element_blank(), | |
panel.background = ggplot2::element_blank(), | |
axis.line.x = ggplot2::element_line(size = .3), | |
axis.line.y = ggplot2::element_line(size = .3), | |
axis.title.x = ggplot2::element_text(color = "black", size = 11 * scale), | |
axis.title.y = ggplot2::element_text(color = "black", size = 11 * scale), | |
# plot.title = element_text(color = "black", size = 12), | |
plot.title = ggplot2::element_blank(), | |
legend.title = ggplot2::element_text(color = "black", size = 11 * scale), | |
text = ggplot2::element_text(size = 12 * scale) # size for all (legend?) labels | |
# legend.key = element_rect(fill = "white") | |
) | |
# show points if neither color- nor shape-groups | |
if (is.null(color.group) && is.null(shape.group)) { | |
invisible <- "none" | |
} else { | |
invisible <- "ind" | |
# prepare df for mapping | |
df <- data.frame(x = pca$ind$coord[, dimension.a], y = pca$ind$coord[, dimension.b]) | |
} | |
pca_plot <- factoextra::fviz_pca_ind(pca, axes = c(dimension.a, dimension.b), invisible = invisible, pointsize = pointsize * scale, label = "none", axes.linetype = "blank", repel = FALSE) | |
pca_plot <- pca_plot + theme1 | |
# grouping | |
scale_color <- NULL | |
scale_shape <- NULL | |
# color points by groups | |
if (is.vector(color.group)) { | |
color.group <- as.factor(color.group) | |
df <- data.frame(df, color = color.group) | |
scale_color <- ggplot2::scale_color_manual( | |
values = grDevices::colorRampPalette(palette)(nlevels(color.group)), | |
name = color.title | |
) | |
} | |
# shape points by groups | |
if (is.vector(shape.group)) { | |
shape.group <- as.factor(shape.group) | |
df <- data.frame(df, shape = shape.group) | |
scale_shape <- ggplot2::scale_shape_manual( | |
values = rep(shapes, length.out = nlevels(shape.group)), | |
name = shape.title | |
) | |
} | |
# generate mapping | |
if (!is.null(color.group) && !is.null(shape.group)) { | |
mapping <- ggplot2::aes_string(x = "x", y = "y", color = "color", shape = "shape") | |
} else if (!is.null(color.group)) { | |
mapping <- ggplot2::aes_string(x = "x", y = "y", color = "color") | |
} else if (!is.null(shape.group)) { | |
mapping <- ggplot2::aes_string(x = "x", y = "y", shape = "shape") | |
} | |
# apply grouping | |
if (!is.null(color.group) || !is.null(shape.group)) { | |
pca_plot <- pca_plot + | |
ggplot2::geom_point(data = df, mapping = mapping, size = pointsize * scale) + | |
scale_color + | |
scale_shape | |
} | |
if (labels) { | |
pca_plot <- pca_plot + ggrepel::geom_text_repel( | |
data = data.frame(pca$ind$coord), | |
mapping = ggplot2::aes_(x = pca$ind$coord[, dimension.a], y = pca$ind$coord[, dimension.b], label = rownames(pca$ind$coord)), | |
segment.color = "gray65", | |
size = labelsize * scale, | |
force = 2, | |
max.iter = 10000, | |
point.padding = grid::unit(0.1, "lines") | |
) | |
} | |
# ensure quadratic plot | |
# if (width == height) { | |
# pca_plot <- pca_plot + ggplot2::coord_fixed(ratio = 1) | |
# } | |
# add scale factor | |
width <- width * scale | |
height <- height * scale | |
# size exceeded? | |
exceed_size <- FALSE | |
if (width > 500) { | |
exceed_size <- TRUE | |
width <- 500 | |
} | |
if (height > 500) { | |
exceed_size <- TRUE | |
height <- 500 | |
} | |
return(list(plot = pca_plot, data = pca, width = width, height = height, ppi = ppi, exceed_size = exceed_size)) | |
} | |
#' Method for heatmap creation | |
#' | |
#' @param data data.table containing plot data. First column contains row labels. | |
#' @param unitlabel label of the colorbar | |
#' @param row.label Logical whether or not to show row labels. | |
#' @param row.custom.label Vector of custom row labels. | |
#' @param column.label Logical whether or not to show column labels. | |
#' @param column.custom.label Vector of custom column labels. | |
#' @param clustering How to apply clustering on data. c("none", "both", "column", "row") | |
#' @param clustdist Which cluster distance to use. See \code{\link[heatmaply]{heatmapr}}. | |
#' @param clustmethod Which cluster method to use. See \code{\link[heatmaply]{heatmapr}}. | |
#' @param colors Vector of colors used for color palette. | |
#' @param winsorize.colors NULL or a vector of length two, giving the values of colorbar ends (default = NULL). | |
#' @param plot.method Choose which method is used for plotting. Either "plotly" or "complexHeatmap" (Default = "complexHeatmap"). | |
#' @param width Set width of plot in cm (Default = "auto"). | |
#' @param height Set height of plot in cm (Default = "auto"). | |
#' @param ppi Pixel per inch (default = 72). | |
#' @param scale Modify plot size while preserving aspect ratio (Default = 1). | |
#' | |
#' @details Width/ height limit = 500. If exceeded default to 500 and issue exceed_size = TRUE. | |
#' | |
#' @return Returns list(plot = complexHeatmap/ plotly object, width = width in cm, height = height in cm, ppi = pixel per inch, exceed_size = Boolean whether width/ height exceeded max) depending on plot.method. | |
#' | |
#' @export | |
create_heatmap <- function(data, unitlabel = "auto", row.label = TRUE, row.custom.label = NULL, column.label = TRUE, column.custom.label = NULL, clustering = "none", clustdist = "auto", clustmethod = "auto", colors = NULL, winsorize.colors = NULL, plot.method = "static", width = "auto", height = "auto", ppi = 72, scale = 1) { | |
# force evaluation of all arguments | |
# no promises in plot object | |
forceArgs() | |
requireNamespace("heatmaply", quietly = TRUE) | |
requireNamespace("ComplexHeatmap", quietly = TRUE) | |
requireNamespace("grDevices", quietly = TRUE) | |
requireNamespace("circlize", quietly = TRUE) | |
# row label | |
if (!is.null(row.custom.label)) { | |
row_label_strings <- row.custom.label | |
} else { | |
row_label_strings <- data[[1]] | |
} | |
# column label | |
if (!is.null(column.custom.label)) { | |
column_label_strings <- column.custom.label | |
} else { | |
column_label_strings <- names(data)[-1] | |
} | |
# cm to pixel | |
if (is.numeric(width)) { | |
width <- width * (ppi / 2.54) | |
} | |
if (is.numeric(height)) { | |
height <- height * (ppi / 2.54) | |
} | |
# plot -------------------------------------------------------------------- | |
if (plot.method == "interactive") { | |
# estimate label sizes | |
# row label | |
rowlabel_size <- ifelse(row.label, max(nchar(data[[1]]), na.rm = TRUE) * 8 * scale, 0) | |
# column label | |
collabel_size <- ifelse(column.label, (2 + log2(max(nchar(names(data)), na.rm = TRUE)) ^ 2) * 10, 0) | |
# legend | |
legend <- nchar(unitlabel) * 10 | |
legend <- ifelse(legend < 90, 90, legend) | |
# plot size | |
# auto_width <- 20 * (ncol(data) - 1) + rowlabel_size + legend | |
auto_height <- 10 * nrow(data) + collabel_size | |
# data | |
plot <- heatmaply::heatmapr(data[, -1], | |
labRow = row_label_strings, | |
labCol = column_label_strings, | |
hclust_method = clustmethod, | |
dist_method = clustdist, | |
dendrogram = clustering, | |
distfun = factoextra::get_dist | |
# width = width, #not working | |
# height = height | |
) | |
# layout | |
plot <- heatmaply::heatmaply(plot, | |
plot_method = "ggplot", | |
node_type = "heatmap", | |
scale_fill_gradient_fun = ggplot2::scale_fill_gradientn(colors = colors, name = unitlabel, limits = winsorize.colors, oob = scales::squish), | |
heatmap_layers = ggplot2::theme(text = ggplot2::element_text(size = 12 * scale)) | |
) | |
plot <- plotly::layout(plot, autosize = ifelse(width == "auto", TRUE, FALSE), margin = list(l = rowlabel_size, r = legend, b = collabel_size), showlegend = FALSE) | |
# decide which sizes should be used | |
if (width == "auto") { | |
width <- 0 | |
# } else if(width <= auto_width) { | |
# width <- auto_width | |
} | |
if (height == "auto") { | |
height <- auto_height | |
} | |
# add scale | |
width <- width * scale | |
height <- height * scale | |
# size exceeded? | |
exceed_size <- FALSE | |
limit <- 500 * (ppi / 2.54) | |
if (width > limit) { | |
exceed_size <- TRUE | |
width <- limit | |
} | |
if (height > limit) { | |
exceed_size <- TRUE | |
height <- limit | |
} | |
plot$x$layout$width <- width | |
plot$x$layout$height <- height | |
# address correct axis | |
# scale axis tickfont | |
ticks <- list(size = 12 * scale) | |
if (clustering == "both" || clustering == "column") { | |
plot <- plotly::layout(plot, xaxis = list(showticklabels = column.label, tickfont = ticks), | |
yaxis2 = list(showticklabels = row.label, tickfont = ticks) | |
) | |
}else if (clustering == "row" || clustering == "none") { | |
plot <- plotly::layout(plot, xaxis = list(showticklabels = column.label, tickfont = ticks), | |
yaxis = list(showticklabels = row.label, tickfont = ticks) | |
) | |
} | |
# don't show dendrogram ticks | |
if (clustering == "row") { | |
plot <- plotly::layout(plot, xaxis2 = list(showticklabels = FALSE) | |
) | |
}else if (clustering == "column") { | |
plot <- plotly::layout(plot, yaxis = list(showticklabels = FALSE) | |
) | |
} | |
# pixel to cm | |
width <- width / (ppi / 2.54) | |
height <- height / (ppi / 2.54) | |
plot <- list(plot = plot, width = width, height = height, ppi = ppi, exceed_size = exceed_size) | |
}else if (plot.method == "static") { | |
# clustering | |
if (clustering == "none") { | |
cluster_rows <- FALSE | |
cluster_columns <- FALSE | |
} else if (clustering == "row") { | |
cluster_rows <- TRUE | |
cluster_columns <- FALSE | |
} else if (clustering == "column") { | |
cluster_rows <- FALSE | |
cluster_columns <- TRUE | |
} else if (clustering == "both") { | |
cluster_rows <- TRUE | |
cluster_columns <- TRUE | |
} | |
# | |
# Create new colour brakepoints in case of winsorizing | |
# | |
if (!is.null(winsorize.colors)) { | |
breaks <- seq(winsorize.colors[1], winsorize.colors[2], length = length(colors)) | |
} else { | |
breaks <- seq(min(apply(data[, -1], 2, function(x) {min(x, na.rm = TRUE)})), max(apply(data[, -1], 2, function(x) {max(x, na.rm = TRUE)})), length = length(colors)) | |
} | |
colors <- circlize::colorRamp2(breaks, colors) | |
# convert data to data.frame so rownames can be used for annotation | |
prep_data <- as.data.frame(data[, -1]) | |
row.names(prep_data) <- row_label_strings | |
colnames(prep_data) <- column_label_strings | |
plot <- try(ComplexHeatmap::Heatmap( | |
prep_data, | |
name = unitlabel, | |
col = colors, | |
cluster_rows = cluster_rows, | |
cluster_columns = cluster_columns, | |
clustering_distance_rows = clustdist, | |
clustering_distance_columns = clustdist, | |
clustering_method_rows = clustmethod, | |
clustering_method_columns = clustmethod, | |
show_row_names = row.label, | |
show_column_names = column.label, | |
row_names_side = "left", | |
row_dend_side = "right", | |
row_dend_width = grid::unit(1 * scale, "inches"), | |
# row_dend_gp = grid::gpar(lwd = 1, lex = scale), # don't seem to work | |
column_dend_height = grid::unit(1 * scale, "inches"), | |
# column_dend_gp = grid::gpar(lwd = 1, lex = scale), # don't seem to work | |
row_names_max_width = grid::unit(8 * scale, "inches"), | |
column_names_max_height = grid::unit(4 * scale, "inches"), | |
row_names_gp = grid::gpar(fontsize = 12 * scale), | |
column_names_gp = grid::gpar(fontsize = 12 * scale), | |
column_title_gp = grid::gpar(fontsize = 10 * scale, units = "in"), | |
heatmap_legend_param = list( | |
color_bar = "continuous", | |
legend_direction = "horizontal", | |
title_gp = grid::gpar(fontsize = 10 * scale), | |
labels_gp = grid::gpar(fontsize = 8 * scale), | |
grid_height = grid::unit(0.15 * scale, "inches") | |
) | |
)) | |
# width/ height calculation | |
col_names_maxlength_label_width <- max(vapply(colnames(prep_data), FUN.VALUE = numeric(1), graphics::strwidth, units = "in", font = 12)) # longest column label when plotted in inches | |
col_names_maxlength_label_height <- max(vapply(colnames(prep_data), FUN.VALUE = numeric(1), graphics::strheight, units = "in", font = 12)) # highest column label when plotted in inches | |
row_names_maxlength_label_width <- max(vapply(rownames(prep_data), FUN.VALUE = numeric(1), graphics::strwidth, units = "in", font = 12)) # longest row label when plotted in inches | |
row_names_maxlength_label_height <- max(vapply(rownames(prep_data), FUN.VALUE = numeric(1), graphics::strheight, units = "in", font = 12)) # highest row label when plotted in inches | |
# width | |
if (row.label) { | |
auto_width <- row_names_maxlength_label_width + 0.3 # width buffer: labels + small whitespaces | |
} else { | |
auto_width <- 0.3 # no labels | |
} | |
if (cluster_rows) auto_width <- auto_width + 1 # width buffer: dendrogram + small whitespaces between viewports | |
auto_width <- ncol(prep_data) * (col_names_maxlength_label_height + 0.08) + auto_width # readable rowlabels | |
# inch to px | |
auto_width <- auto_width * ppi | |
# height | |
auto_height <- 0.2 + 0.5 + (5 * row_names_maxlength_label_height) # height buffer: small whitespaces + color legend + 2 title rows(+whitespace) | |
if (column.label) auto_height <- auto_height + col_names_maxlength_label_width | |
if (cluster_columns) auto_height <- auto_height + 1 | |
auto_height <- auto_height + nrow(prep_data) * (row_names_maxlength_label_height + 0.06) | |
# inch to px | |
auto_height <- auto_height * ppi | |
# use auto sizes | |
if (height == "auto") { | |
height <- auto_height | |
} | |
if (width == "auto") { | |
width <- auto_width | |
} | |
# pixel to cm | |
width <- width / (ppi / 2.54) | |
height <- height / (ppi / 2.54) | |
# size exceeded? | |
exceed_size <- FALSE | |
if (width > 500) { | |
exceed_size <- TRUE | |
width <- 500 | |
} | |
if (height > 500) { | |
exceed_size <- TRUE | |
height <- 500 | |
} | |
plot <- list(plot = plot, width = width * scale, height = height * scale, ppi = ppi, exceed_size = exceed_size) | |
} | |
return(plot) | |
} | |
#' Method for geneView creation | |
#' | |
#' @param data data.table containing plot data | |
#' @param grouping data.table metadata containing: | |
#' column1 : key | |
#' column2 : factor1 | |
#' @param plot.type String specifying which plot type is used c("box", "line", "violin", "bar"). | |
#' @param facet.target Target to plot on x-Axis c("gene", "condition"). | |
#' @param facet.cols Number of plots per row. | |
#' @param colors Vector of colors used for color palette | |
#' @param ylabel Label of the y-axis (default = NULL). | |
#' @param ylimits Vector defining scale of y-axis (default = NULL). | |
#' @param gene.label Vector of labels used instead of gene names (default = NULL). | |
#' @param plot.method Choose which method used for plotting. Either "static" or "interactive" (Default = "static"). | |
#' @param width Set the width of the plot in cm (default = "auto"). | |
#' @param height Set the height of the plot in cm (default = "auto"). | |
#' @param ppi Pixel per inch (default = 72). | |
#' @param scale Modify plot size while preserving aspect ratio (Default = 1). | |
#' | |
#' @details Width/ height limit = 500. If exceeded default to 500 and issue exceed_size = TRUE. | |
#' | |
#' @import data.table | |
#' | |
#' @return Returns depending on plot.method list(plot = ggplot/ plotly object, width = width in cm, height = height in cm, ppi = pixel per inch, exceed_size = Boolean). | |
#' | |
#' @export | |
create_geneview <- function(data, grouping, plot.type = "line", facet.target = "gene", facet.cols = 2, colors = NULL, ylabel = NULL, ylimits = NULL, gene.label = NULL, plot.method = "static", width = "auto", height = "auto", ppi = 72, scale = 1){ | |
# force evaluation of all arguments | |
# no promises in plot object | |
forceArgs() | |
# grouping | |
# group by factor if existing (fill with key if empty) | |
grouping[grouping[[2]] == "", 2 := grouping[grouping[[2]] == "", 1]] | |
genes <- nrow(data) # number of genes (rows in matrix) | |
conditions <- length(unique(grouping[[2]])) # number of conditions (columns in matrix) | |
################### | |
# Combine and transform dataframes | |
################### | |
# detach ids from data/ replace with gene.label | |
if (is.null(gene.label)) { | |
data_id <- data[[1]] | |
} else { | |
data_id <- gene.label | |
} | |
data <- data[, vapply(data, is.numeric, FUN.VALUE = logical(1)), with = FALSE] | |
data_cols <- names(data) | |
data <- data.table::transpose(data) # switch columns <> rows | |
# place former colnames in cols | |
data$cols <- data_cols | |
data.table::setcolorder(data, c("cols", colnames(data)[seq_len(ncol(data)) - 1])) | |
# reattach ids as colnames | |
names(data)[2:ncol(data)] <- data_id | |
names(grouping)[1:2] <- c("cols", "condition") # add header for condition | |
data <- data[grouping, on = c(names(grouping)[1])] # merge dataframes by rownames | |
names(data)[1] <- "sample" # change Row.names to sample | |
data[, sample := NULL] # completely remove sample column again | |
# order conditions in plot according to grouping (instead of alphabetic) | |
data[, condition := factor(condition, levels = unique(condition))] | |
data <- data.table::melt(data, id.vars = "condition") | |
################### | |
# Choose color palette | |
################### | |
if (facet.target == "gene") { # facet = gene | |
num_colors <- conditions | |
} | |
if (facet.target == "condition") { # facet = condition | |
num_colors <- genes | |
} | |
if (is.null(colors)) { | |
color_fill_grayscale <- "grey75" #color to use for filling geoms in grayscale mode | |
colors <- rep(color_fill_grayscale, num_colors) | |
} else { | |
colors <- grDevices::colorRampPalette(colors)(num_colors) | |
} | |
################### | |
# Function to get standard error for error bars (box, bar, violin) | |
################### | |
get.se <- function(y) { | |
se <- stats::sd(y) / sqrt(length(y)) | |
mu <- mean(y) | |
data.frame(ymin = mu - se, y = y, ymax = mu + se) | |
} | |
################### | |
# Function to collapse the dataframe to the mean and the standard deviation/error before plotting (ONLY used for line plot) | |
################### | |
# data : a data frame | |
# varname : the name of a column containing the variable to be summarized | |
# groupnames : vector of column names to be used as grouping variables | |
data_summary <- function(data, varname, groupnames) { | |
summary_func <- function(x, col) { | |
c( | |
mean = mean(x[[col]], na.rm = TRUE), | |
sd = stats::sd(x[[col]], na.rm = TRUE), | |
se = stats::sd(x[[col]], na.rm = TRUE) / sqrt(length(x[[col]])) | |
) | |
} | |
data_sum <- plyr::ddply(data, groupnames, .fun = summary_func, varname) | |
data_sum <- reshape::rename(data_sum, c("mean" = varname)) | |
return(data_sum) | |
} | |
if (plot.type == "line") { | |
data <- data_summary(data, varname = "value", groupnames = c("condition", "variable")) # collapse the dataframe to the mean and the standard deviation for line plot | |
} | |
if (plot.type == "box" || plot.type == "violin" || plot.type == "bar" || plot.type == "line") { | |
################### | |
# Set common parameters for all plots | |
################### | |
# plot -------------------------------------------------------------------- | |
theme1 <- ggplot2::theme( # no gray background or helper lines | |
panel.grid.major = ggplot2::element_blank(), | |
panel.grid.minor = ggplot2::element_blank(), | |
axis.text.x = ggplot2::element_text(angle = 90, hjust = 1, vjust = 1), # x-axis sample lables = 90 degrees | |
strip.background = ggplot2::element_blank(), | |
panel.border = ggplot2::element_rect(colour = "black"), | |
legend.position = "none", # remove legend | |
legend.title = ggplot2::element_blank(), | |
axis.title.x = ggplot2::element_blank(), | |
text = ggplot2::element_text(family = "mono", size = 15 * scale) | |
# axis.line.x = element_line(size = .3), | |
# axis.line.y = element_line(size = .3), | |
# panel.background = element_blank(), | |
# axis.title.y = element_text(face = "bold", color = "black", size = 10), | |
# plot.title = element_text(face = "bold", color = "black", size = 12), | |
# axis.text.x = element_text(angle = 90, hjust = 1) # x-axis sample lables = vertical | |
) | |
matrixplot <- ggplot2::ggplot(data, ggplot2::aes(y = value)) | |
matrixplot <- matrixplot + | |
ggplot2::theme_bw() + theme1 + | |
ggplot2::ylab(ylabel) + | |
ggplot2::xlab("") + | |
ggplot2::scale_fill_manual(values = colors) + | |
ggplot2::scale_color_manual(values = colors) | |
################### | |
# Handle facetting and special parameters for line plot (no facetting, etc.) | |
################### | |
if (facet.target == "gene") { # facet = gene | |
matrixplot <- matrixplot + ggplot2::aes(x = condition, fill = condition) | |
if (plot.type == "line") { # line plot: no facetting, different size algorithm | |
matrixplot <- matrixplot + ggplot2::aes_(x = ~ variable, colour = ~ condition, group = ~ condition, fill = NULL) | |
matrixplot <- matrixplot + ggplot2::scale_x_discrete(expand = c(0.05, 0.05)) # expand to reduce the whitespace inside the plot (left/right) | |
} else { | |
# compute number of rows to get facet.cols columns (works better with plotly) | |
rows <- ceiling(length(levels(data$variable)) / facet.cols) | |
matrixplot <- matrixplot + ggplot2::facet_wrap( ~ variable, nrow = rows, scales = "free_x") | |
} | |
} | |
if (facet.target == "condition") { # facet = condition | |
matrixplot <- matrixplot + ggplot2::aes_(x = ~ variable, fill = ~ variable) | |
if (plot.type == "line") { # line plot: no facetting, different size algorithm | |
matrixplot <- matrixplot + ggplot2::aes_(x = ~ condition, colour = ~ variable, group = ~ variable, fill = NULL) | |
matrixplot <- matrixplot + ggplot2::scale_x_discrete(expand = c(0.05, 0.05)) # expand to reduce the whitespace inside the plot (left/right) | |
} else { | |
# compute number of rows to get facet.cols columns (works better with plotly) | |
rows <- ceiling(length(levels(data$condition)) / facet.cols) | |
matrixplot <- matrixplot + ggplot2::facet_wrap( ~ condition, nrow = rows, scales = "free_x") | |
} | |
} | |
################### | |
# Further handle plot types | |
################### | |
if (plot.type == "box") { # plot type: box | |
matrixplot <- matrixplot + ggplot2::geom_boxplot(position = ggplot2::position_dodge(1)) | |
matrixplot <- matrixplot + ggplot2::stat_boxplot(geom = "errorbar", size = 0.2, width = 0.5) # add horizontal line for errorbar | |
# matrixplot <- matrixplot + stat_summary(fun.data = get.se, geom = "errorbar", width = 0.2) # error bar of standard error | |
} | |
if (plot.type == "violin") { # plot type: violin | |
matrixplot <- matrixplot + ggplot2::geom_violin() | |
# matrixplot <- matrixplot + stat_summary(fun.y = "median", geom = "point") # add median dot | |
# matrixplot <- matrixplot + stat_summary(fun.data = get.se, geom = "errorbar", width = 0.2, position = position_dodge()) # error bar of standard error | |
} | |
if (plot.type == "bar") { # plot type: box | |
matrixplot <- matrixplot + ggplot2::stat_summary(fun.y = mean, geom = "bar", position = "dodge") # bar plot of the mean (color=condition) | |
matrixplot <- matrixplot + ggplot2::stat_summary(fun.data = get.se, geom = "errorbar", size = 0.2, width = 0.2, position = ggplot2::position_dodge()) # error bar of standard error | |
} | |
if (plot.type == "line") { | |
matrixplot <- matrixplot + ggplot2::theme(legend.position = "right") | |
# matrixplot <- matrixplot + geom_errorbar(aes(ymin = value - sd, ymax = value + sd), width = 0.05) # error bar = standard deviation | |
matrixplot <- matrixplot + ggplot2::geom_errorbar(ggplot2::aes_(ymin = ~ value - se, ymax = ~ value + se), size = 0.2, width = 0.05) # error bar = standard error | |
matrixplot <- matrixplot + ggplot2::geom_line() + ggplot2::geom_point() # bar plot of the mean (color = condition) | |
# set hovertext | |
matrixplot <- matrixplot + ggplot2::aes(text = paste("ID: ", data$variable, "\n", | |
"Condition: ", data$condition, "\n", | |
"Value: ", data$value | |
)) | |
} | |
# set y-axis ticks | |
y_ticks <- pretty(data[["value"]]) | |
if (length(data[["value"]]) != 1) { | |
if (!is.null(ylimits)) { | |
y_ticks <- pretty(ylimits) | |
} | |
matrixplot <- matrixplot + ggplot2::scale_y_continuous(breaks = y_ticks, limits = ylimits) | |
} else { | |
# change yaxis limits | |
if (!is.null(ylimits)) { | |
matrixplot <- matrixplot + ggplot2::ylim(ylimits) | |
} | |
} | |
} | |
# get names of columns / rows | |
if (plot.type == "line") { | |
if (facet.target == "gene") { | |
column_names <- data[["variable"]] | |
legend_names <- data[["condition"]] | |
} else { | |
column_names <- data[["condition"]] | |
legend_names <- data[["variable"]] | |
} | |
} else { | |
if (facet.target == "condition") { | |
column_names <- data[["variable"]] | |
title_names <- data[["condition"]] | |
} else { | |
column_names <- data[["condition"]] | |
title_names <- data[["variable"]] | |
} | |
} | |
# dynamic plot in inches | |
# calculate cex for better strwidth calculation | |
ccex <- function(x){ | |
2.3 - (x * log(1 + 1 / x)) | |
} | |
### width estimation | |
yaxis_label_height <- graphics::strheight(ylabel, units = "inches") | |
if (length(data[["value"]]) == 1 && floor(data[["value"]]) == data[["value"]]) { | |
# adds three characters '.05'; account for single integer value plots | |
value <- data[["value"]] + 0.05 | |
} else { | |
value <- y_ticks | |
} | |
yaxis_tick_width <- max(graphics::strwidth(value, units = "inches"), na.rm = TRUE) | |
xaxis_tick_height <- max(graphics::strheight(column_names, units = "inches", cex = 2), na.rm = TRUE) * length(levels(column_names)) | |
### height estimation | |
xaxis_tick_width <- max(graphics::strwidth(column_names, units = "inches", cex = ccex(max(nchar(levels(column_names))))), na.rm = TRUE) | |
if (plot.type == "line") { | |
### width estimation | |
max_chars <- max(nchar(levels(legend_names)), na.rm = TRUE) | |
legend_width <- max(graphics::strwidth(legend_names, units = "inches", cex = ccex(max_chars)), na.rm = TRUE) | |
legend_columns <- 1 + (length(levels(legend_names)) - 1) %/% 20 | |
auto_width <- 0.25 + yaxis_label_height + yaxis_tick_width + xaxis_tick_height + (legend_width + 0.5) * legend_columns | |
### height estimation | |
plot_height <- 4 | |
# top margin to prevent legend cut off | |
top <- 0 | |
if (plot.method == "static") { | |
margin_multiplier <- ceiling(length(levels(legend_names)) / legend_columns) | |
margin_multiplier <- ifelse(margin_multiplier < 17, 0, margin_multiplier - 17) | |
top <- 0.1 * margin_multiplier | |
matrixplot <- matrixplot + ggplot2::theme(plot.margin = grid::unit(c(top + 0.1, 0, 0, 0), "inches")) | |
} | |
auto_height <- plot_height + xaxis_tick_width + top | |
} else { | |
### width estimation | |
max_chars <- max(nchar(levels(title_names)), na.rm = TRUE) | |
title_width <- max(graphics::strwidth(title_names, units = "inches", cex = ccex(max_chars)), na.rm = TRUE) | |
# prevent cut off for small titles | |
title_chars <- sum(nchar(levels(title_names))) | |
if (facet.cols == 1 && max(nchar(levels(title_names))) <= 20) { | |
title_width <- title_width + (-log10(max(nchar(levels(title_names)))) + 1.6) / 3 | |
} else if (title_chars <= 20) { | |
title_width <- title_width + (-log10(title_chars) + 1.4) / 3 | |
} | |
# TODO margin between plots (not really needed) | |
plots_per_row <- ceiling(length(levels(title_names)) / rows) | |
auto_width <- yaxis_label_height + yaxis_tick_width + (ifelse(title_width > xaxis_tick_height, title_width, xaxis_tick_height) * plots_per_row) | |
###height estimation | |
title_height <- max(graphics::strheight(title_names, units = "inches", cex = 2), na.rm = TRUE) | |
plot_height <- 2 | |
auto_height <- (title_height + plot_height + xaxis_tick_width) * rows | |
} | |
# size inch -> cm | |
auto_width <- auto_width * 2.54 | |
auto_height <- auto_height * 2.54 | |
# use greater/ automatic sizes | |
if (width == "auto") { | |
width <- auto_width | |
} | |
if (height == "auto") { | |
height <- auto_height | |
} | |
# add scaleing factor | |
width <- width * scale | |
height <- height * scale | |
# size exceeded? | |
exceed_size <- FALSE | |
if (width > 500) { | |
exceed_size <- TRUE | |
width <- 500 | |
} | |
if (height > 500) { | |
exceed_size <- TRUE | |
height <- 500 | |
} | |
# plotly ------------------------------------------------------------------ | |
if (plot.method == "interactive") { | |
matrixplotly <- plotly::ggplotly( | |
tooltip = "text", | |
matrixplot, | |
width = width * (ppi / 2.54), | |
height = height * (ppi / 2.54) | |
) | |
plotly::layout(matrixplotly, autosize = FALSE) | |
return(list(plot = matrixplotly, width = width, height = height, ppi = ppi, exceed_size = exceed_size)) | |
}else{ | |
return(list(plot = matrixplot, width = width, height = height, ppi = ppi, exceed_size = exceed_size)) | |
} | |
} | |
#' Method to get equalized min/max values from vector | |
#' | |
#' @param values Numeric vector or table | |
#' | |
#' @return Vector with c(min, max). | |
equalize <- function(values) { | |
if (is.vector(values)) { | |
min <- abs(min(values, na.rm = TRUE)) | |
max <- abs(max(values, na.rm = TRUE)) | |
} else { | |
min <- abs(min(apply(values, 2, function(x) {min(x, na.rm = TRUE)}))) | |
max <- abs(max(apply(values, 2, function(x) {max(x, na.rm = TRUE)}))) | |
} | |
if (min > max) { | |
result <- min | |
} else { | |
result <- max | |
} | |
return(c(-1 * result, result)) | |
} | |
#' Function to search data for selection | |
#' | |
#' @param input Vector length one (single) or two (ranged) containing numeric values for selection. | |
#' @param choices Vector on which input values are applied. | |
#' @param options Vector on how the input and choices should be compared. It can contain: single = c("=", "<", ">") or ranged = c("inner", "outer"). | |
#' @param min. Minimum value that can be selected on slider (defaults to min(choices)). | |
#' @param max. Maximum value that can be selected on slider (defaults to max(choices)). | |
#' | |
#' @return Returns a logical vector with the length of choices, where every matched position is TRUE. | |
searchData <- function(input, choices, options = c("=", "<", ">"), min. = min(choices, na.rm = TRUE), max. = max(choices, na.rm = TRUE)) { | |
# don't apply if no options selected | |
if (is.null(options)) { | |
return(rep(TRUE, length(choices))) | |
} | |
if (length(input) > 1) { | |
# don't compare if everything is selected | |
if (options == "inner" & input[1] == min. & input[2] == max.) { | |
return(rep(TRUE, length(choices))) | |
} | |
selection <- vapply(choices, FUN.VALUE = logical(1), function(x) { | |
# NA & NaN == FALSE | |
if (is.na(x) | is.nan(x)) { | |
return(FALSE) | |
} | |
# range | |
if ("inner" == options) { | |
if (x >= input[1] & x <= input[2]) return(TRUE) | |
} | |
if ("outer" == options) { | |
if (x < input[1] | x > input[2]) return(TRUE) | |
} | |
return(FALSE) | |
}) | |
} else { | |
selection <- vapply(choices, FUN.VALUE = logical(1), function(x) { | |
# NA & NaN == FALSE | |
if (is.na(x) | is.nan(x)) { | |
return(FALSE) | |
} | |
#single point | |
if (any("=" == options)) { | |
if (x == input) return(TRUE) | |
} | |
if (any("<" == options)) { | |
if (x < input) return(TRUE) | |
} | |
if (any(">" == options)) { | |
if (x > input) return(TRUE) | |
} | |
return(FALSE) | |
}) | |
} | |
return(selection) | |
} | |
#' Function used for downloading. | |
#' Creates a zip container containing plot in png, pdf and user input in json format. | |
#' Use inside \code{\link[shiny]{downloadHandler}} content function. | |
#' | |
#' @param file See \code{\link[shiny]{downloadHandler}} content parameter. | |
#' @param filename See \code{\link[shiny]{downloadHandler}}. | |
#' @param plot Plot to download. | |
#' @param width in centimeter. | |
#' @param height in centimeter. | |
#' @param ppi pixel per inch. Defaults to 72. | |
#' @param save_plot Logical if plot object should be saved as .RData. | |
#' @param ui List of user inputs. Will be converted to JavaScript Object Notation. See \code{\link[RJSONIO]{toJSON}} | |
#' | |
#' @return See \code{\link[utils]{zip}}. | |
download <- function(file, filename, plot, width, height, ppi = 72, save_plot = TRUE, ui = NULL) { | |
session <- shiny::getDefaultReactiveDomain() | |
if (!is.null(session)) { | |
# show notification | |
shiny::showNotification( | |
id = session$ns("download-note"), | |
shiny::tags$b("Preparing download files. Please wait..."), | |
duration = NULL, | |
closeButton = FALSE, | |
type = "message" | |
) | |
shinyjs::runjs(paste0("$(document.getElementById('", paste0("shiny-notification-", session$ns("download-note")), "')).addClass('notification-position-center');")) | |
} | |
# cut off file extension | |
name <- sub("(.*)\\..*$", replacement = "\\1", filename) | |
# create tempfile names | |
plot_file_pdf <- tempfile(pattern = name, fileext = ".pdf") | |
plot_file_png <- tempfile(pattern = name, fileext = ".png") | |
if (!is.null(ui)) { | |
selection_file <- tempfile(pattern = "selection", fileext = ".json") | |
} else { | |
selection_file <- NULL | |
} | |
# save plots depending on given plot object | |
if (ggplot2::is.ggplot(plot)) { | |
# ggplot | |
ggplot2::ggsave(plot_file_pdf, plot = plot, width = width, height = height, units = "cm", device = "pdf", useDingbats = FALSE) | |
ggplot2::ggsave(plot_file_png, plot = plot, width = width, height = height, units = "cm", device = "png", dpi = ppi) | |
} else if (class(plot)[1] == "plotly") { | |
# plotly | |
# change working directory temporary so mounted drives are not a problem | |
wd <- getwd() | |
on.exit(setwd(wd)) # make sure working directory will be restored | |
setwd(tempdir()) | |
# Omit file path because orca adds it regardles of it already being there. | |
plotly::orca(p = plot, file = basename(plot_file_pdf)) | |
plotly::orca(p = plot, file = basename(plot_file_png)) | |
setwd(wd) | |
} else if (class(plot) == "Heatmap") { # TODO: find better way to check for complexHeatmap object | |
# complexHeatmap | |
grDevices::pdf(plot_file_pdf, width = width / 2.54, height = height / 2.54, useDingbats = FALSE) # cm to inch | |
ComplexHeatmap::draw(plot, heatmap_legend_side = "bottom") | |
grDevices::dev.off() | |
grDevices::png(plot_file_png, width = width, height = height, units = "cm", res = ppi) | |
ComplexHeatmap::draw(plot, heatmap_legend_side = "bottom") | |
grDevices::dev.off() | |
} | |
# vector with files to zip | |
files <- c(plot_file_pdf, plot_file_png) | |
# save user input | |
if (!is.null(selection_file)) { | |
# make key = value pair using value of name variable | |
ui_list <- list() | |
ui_list[[name]] <- ui | |
json <- RJSONIO::toJSON(ui_list, pretty = TRUE) | |
write(json, file = selection_file) | |
files <- c(files, selection_file) | |
} | |
# save plot object | |
if (save_plot) { | |
# create temp file name | |
plot_object_file <- tempfile(pattern = "plot_object", fileext = ".RData") | |
ggplot2_version <- as.character(utils::packageVersion("ggplot2")) | |
plotly_version <- as.character(utils::packageVersion("plotly")) | |
r_version <- R.Version()$version.string | |
save(plot, ggplot2_version, plotly_version, r_version, file = plot_object_file) | |
files <- c(files, plot_object_file) | |
} | |
# create zip file | |
out <- utils::zip(zipfile = file, files = files, flags = "-j") # discard file path | |
# remove tmp files | |
file.remove(files) | |
if (!is.null(session)) { | |
# remove notification | |
shiny::removeNotification(session$ns("download-note")) | |
} | |
return(out) | |
} | |
#' Force evaluation of the parent function's arguments. | |
#' | |
#' @param args List of Argument names to force evaluation. Defaults to all named arguments see \code{\link[base]{match.call}}. | |
#' | |
#' @details Similar to \code{\link[base]{forceAndCall}} but used from within the respective function. | |
#' @details This method is not using \code{\link[base]{force}} as it is restricted to it's calling environment. Instead \code{\link[base]{get}} is used. | |
#' | |
forceArgs <- function(args) { | |
if (missing(args)) { | |
# get parent's call | |
args <- match.call(definition = sys.function(-1), call = sys.call(-1)) | |
# use argument names | |
args <- names(as.list(args)) | |
# omit empty names ("") | |
args <- args[-which(args == "")] | |
} | |
for (i in args) { | |
get(i, envir = sys.parent()) | |
} | |
} |